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Characterization of the response of the host immune system is important in understanding
the bidirectional interactions between the host and microbial pathogens. For research on
the host site, flow cytometry has become one of the major tools in immunology. Advances
in technology and reagents allow now the simultaneous assessment of multiple markers
on a single cell level generating multidimensional data sets that require multivariate sta-
tistical analysis. We explored the explanatory power of the supervised machine learning
method called “induction of decision trees” in flow cytometric data. In order to examine
whether the production of a certain cytokine is depended on other cytokines, datasets
from intracellular staining for six cytokines with complex patterns of co-expression were
analyzed by induction of decision trees. After weighting the data according to their class
probabilities, we created a total of 13,392 different decision trees for each given cytokine
with different parameter settings. For a more realistic estimation of the decision trees’
quality, we used stratified fivefold cross validation and chose the “best” tree according
to a combination of different quality criteria. While some of the decision trees reflected
previously known co-expression patterns, we found that the expression of some cytokines
was not only dependent on the co-expression of others per se, but was also dependent
on the intensity of expression. Thus, for the first time we successfully used induction of
decision trees for the analysis of high dimensional flow cytometric data and demonstrated
the feasibility of this method to reveal structural patterns in such data sets.

Keywords: flow cytometry, cytokines, machine learning, induction of decision trees, imbalanced data, multidimen-

sionality

1. INTRODUCTION
Flow cytometry is a fundamental technology in immunology.
It allows the identification of cell populations as well as func-
tional properties of immune cells with high speed and precision.
Because of its ability to analyze thousands of cells per second,
this technique is key for the study of immune cell population
dynamics in the context of microbial infection or autoimmune
disease. Recent advances in flow cytometry instrumentation and
reagents provide researchers now with the capability to assess
simultaneously multiple phenotypic and functional markers on
a single cell level (Perfetto et al., 2004). Assessment of multiple
phenotypic and functional markers gives the opportunity for a
comprehensive single cell analysis, but the resulting data sets are
quite complex. Therefore, the gap between generation of such
data and our understanding of it is growing. Conventional analy-
sis approaches are based on filtering of populations (subsets) of
interest and subsequent analysis of the expression of certain mark-
ers within these populations. This, however, often neglects the
multidimensionality of the data. If, for example, the expression
of n markers is analyzed in a given subpopulation, the resulting

dataset has n dimensions. Using color-coded representation of the
third dimension, three different parameters can be displayed in a
two-dimensional dot-plot (Roederer and Moody, 2008). However,
analysis of data sets with more than three dimensions is heav-
ily impaired by our limited capability to integrate information
from more than three dimensions and biased by the experience of
the researcher, leaving some information unexploited. By using
machine learning methods commonly used in data mining, it
should be possible to automate analysis, preclude the operator-
introduced bias and reveal structural patterns of the data which
would have been unrecognized with conventional approaches
(Sachs et al., 2005). Machine learning methods learn decision
rules from training data sets to classify new, unknown data sets
and thereby can describe the structural patterns contained in the
data. Machine learning methods are divided into supervised and
unsupervised methods. For supervised learning methods a label
(also referred to as a class) is known for the training data set, for
instance the outcome of a medical treatment depending on clini-
cal or laboratory parameters. For unsupervised methods a known
outcome is not used. In flow cytometry a training data set can

www.frontiersin.org April 2012 | Volume 3 | Article 114 | 1

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SvenjaSimon&UID=43370
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ReinhardGuthke&UID=29488
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=OliverFrey&UID=46727
mailto:simon@dbvis.inf.{\penalty -\@M }uni-konstanz.de
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive
http://www.frontiersin.org/Microbial_Immunology/10.3389/fmicb.2012.00114/abstract


Simon et al. Multidimensional flow cytometric data analysis

be considered as a collection of analyzed cells with its different
expression values for a set of markers (attributes) and an outcome
(class label). For instance, a class could be defined by the absence or
the presence of a given marker which could be dependent on the
expression of the other measured markers. Thus, by supervised
machine learning methods the dependency of the expression of
one marker on the expression of other markers can be analyzed. A
supervised method with an easily understandable graphical rep-
resentation is the induction of decision trees. Basically, decision
trees represent the structural patterns of the data. Beginning at
the root, the data set is split at each node according to a marker
and a split value is assigned to this node. At each node, the marker
and the split value is chosen to maximize a split criterion. In this
way the cells are routed down the tree and reach a specific leaf,
which gives a classification. The aim of our study was to test the
feasibility of this approach for the identification of structural pat-
terns in flow cytometric data. We used data sets from experiments
where the expression of six cytokines in antigen-specific T helper
(Th) cells from a murine arthritis model were analyzed (Schubert
et al., 2004; Frey et al., 2010b). Our results show that the supervised
machine learning method induction of decision trees is a versatile
tool for identification of structural patterns in multidimensional
data obtained by flow cytometry.

2. MATERIALS AND METHODS
2.1. DATA GENERATION AND ACQUISITION
We used a data set from intracellular cytokine staining of acti-
vated Th cells (Frey et al., 2011b). The cells were stained and
analyzed for the expression of six cytokines as described in the
following. DBA/1 mice in the age of 6–12 weeks were subcu-
taneously immunized at the base of the tail with recombinant
glucose-6-phosphate isomerase (G6PI) in an emulsion contain-
ing also Freunds complete adjuvant as described (Bruns et al.,
2009; Frey et al., 2010a,b, 2011a,b). At day 21 after immuniza-
tion, the draining lymph nodes (inguinal, axillary, paraaortic)
were aseptically removed and prepared to a single cell suspen-
sion. In addition, beside the wild type DBA/1 mice (WT) also
interferon-gamma (IFN-γ) receptor knock-out DBA/1 mice (KO)
were analyzed (Frey et al., 2011b) and we performed the analyses
also for other time points (day 9 and day 21 after immunization).
Altogether, we studied four conditions: WT-day 21 (standard con-
dition) as well as the additional conditions WT-day 9, KO-day 21,
and KO-day 9. The additional conditions have only been applied
for the results shown in Figures 10–12 for a comparative study
and to investigate the robustness of the results against experi-
mental variations. For detection of antigen-specific cells by their
CD154 expression (Kirchhoff et al., 2007), cells (1 × 107/ml in
a 48 well plate) were restimulated with 20 μg/ml G6PI. Control
samples were left unstimulated. The total restimulation time was
6 h and Brefeldin A (Sigma) at 5 μg/ml was added to all sam-
ples for the last 4 h to block cytokine secretion and to stabilize
CD154 expression. These assay conditions have been determined
to be optimal for a simultaneous detection of CD154 expression
and cytokine production in antigen-specific CD4+ T helper cells.
At the end of the restimulation period, cells were washed with
ice-cold phosphate-buffered saline (PBS) and incubated with the
fixable amine-reactive Aqua viability stain (Invitrogen) for 30 min

on ice, fixed with 2% paraformaldehyde in PBS and permeabilized
with 0.5% Saponin/0.5% BSA/0.02% NaN3 in PBS. Non-specific
binding of antibodies was blocked by preincubation of the cells
with anti-CD16/32 (2.4G2) and rat IgG (both at 5 μg/ml) for
8 min, followed by staining with fluorochrome-conjugated mAbs
against CD4, CD154, GM-CSF, TNF-α, RANKL, IL-2, IL-17, and
IFN-γ (all from BD, eBiosciences, Biolegend, or Miltenyi Biotech).
For optimal staining results all antibodies were properly titrated
and the binding of the anti-CD4 antibody to fixed and perme-
abilized cells was verified. After an additional washing step 0.5%
Saponin/0.5% BSA/0.02% NaN3 in PBS, cells were resuspended
in 0.5% BSA/0.02% NaN3 in PBS and measured within 3 h after
staining. Cell analysis was performed on a BD LSR II flow cytome-
ter equipped with 405, 488, and 633 nm laser lines and standard
filter sets, except additional detectors for detection of Alexa-700
(red laser, 685 nm long-pass and 710/50 band-pass filters) and
Qdot655 (violet laser, 635 nm long-pass and 670/14 band-pass fil-
ters, not used for this study). For fluorescence standardization and
monitoring of the instrument performance, the cytometer setup,
and tracking module of the BD FACSDiVa was used. Compen-
sation for spectral overlap of the fluorochromes was done with
the use of singly stained BD CompBeads and a compensation
matrix was calculated using the BD FACSDiVa software. At least
1.5 million events were acquired.

2.2. DATA PRE-PROCESSING
For analysis, data were exported as FCS3.0 files. Further pre-
processing was done using FlowJo 8.1.1 (Treestar Inc., Ashland,
Oregon). For identification of antigen-specific cells the following
progressive filtering (also referred to as gating) strategy was used:
events were first filtered on a FSC-A vs. FSC-W plot (forward
scatter pulse area vs. pulse width) for the exclusion of doublets.
Thereafter, a filter was set on lymphocyte in FSC-A vs. SSC-A plot
(side scatter pulse area), followed by the exclusion of aqua+ dead
cells. Subsequently, cells were filtered for CD4-positive events. The
small compartment of antigen-specific T cells was identified by
their expression of CD154. The filter for CD154 expression was
set using unstimulated control samples. Only the filtered CD154+
events were than exported into a new data file. These resulting data
files containing the events from single animals were than concate-
nated into a single file containing data from four mice and were
used for further analyses. This electronic pooling of the data was
performed in order to have a sufficient number of cells for further
analysis by machine learning methods. The distributions of MFI
values for each cytokines were compared between the four bio-
logical replicates which were pooled for further analysis. By visual
comparison the variance was assessed.

2.3. DATA ANALYSIS
The data analysis was performed using the programming language
and statistical software R (R Development Core Team, 2009). To
read in the pre-processed FACS data set the R/Bioconductor pack-
age flowCore was used (Data File Standards Committee of the
Society for Analytical Cytology, 1990; Gentleman et al., 2004;
Hahne et al., 2009). The intensity of the staining was mea-
sured as mean fluorescence intensity (MFI) value. To distinguish
between specifically stained cells and background fluorescence
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we used appropriate controls, including unstimulated samples
and fluorescence-minus-one controls (Hulspas et al., 2009). We
defined this MFI value as a cut-off and considered a cell as positive
for a given cytokine if their MFI exceeded this cut-off value and
cells with a MFI values below this cut-off value are referred to as
cytokine-negative cells.

For the induction of decision trees we used the WEKA java
implementation J48 of the C4.5 algorithm of Quinlan in revision
8 (Quinlan, 1993; Witten and Frank, 2005) through an interface
provided by the R package RWeka (Hornik et al., 2009). Since the
outcome of the induction of a decision tree is highly dependent on
the parameter setting and since it is not known which parameters
are the best, our approach is to build decision trees for different
parameter settings, to compare their quality and choose the best
tree according to some quality criteria. We therefore varied the
following parameters:

• pruning (reduced error pruning vs. heuristic or no pruning)
• minimum size of data in each leaf
• exclusion of one or more cytokines for the induction of decision

trees (like a brute-force way of feature selection)
• exclusion of cytokine-negative cells

Cytokine-negative cells are cells which are not stained specifically
for any cytokine. Their MFI values for each cytokine are under
the experimentally determined threshold for cytokine production.
Thus they produce none of the measured cytokines. We created
decision trees with and without cytokine-negative cells to test if the
presence of these cells has an effect on the quality of the decision
trees.

Due to the fact that decision trees work best with balanced data
(Weiss and Provost, 2003; Sun et al., 2007), the data was also weight
according to the class probabilities (CostSensitiveClassifier Class of
WEKA).

To choose one tree we applied different quality criteria on
stratified fivefold cross validation results in a stepwise manner:

1. choose all trees whose G-mean (definition see below) is
maximal 5% below the best G-mean

2. choose all trees of these with ROC AUC greater than 80%, if
values greater than 80% exist

3. choose all trees of these whose F-mean (definition see below)
is maximal 5% below the best F-mean of these

4. choose the smallest of these trees

G-mean is the geometric mean of the TP rate and the TN rate.
TP (true positive) and TN (true negative) rate is the proportion
of the positive cells which were correctly classified as positive (also
called sensitivity and recall) or as negative (also called specificity),
respectively. We used both values, since we assess both as equally
important, and the geometric mean, since this mean gives the
smaller value more weight than the arithmetic mean. This helps
to filter out trees where only either the TP rate or TN rate is
good. The name G-mean was introduced by Kubat et al. (1998).
G-mean is the geometric mean of the TP rate and the TN rate.
TP (true positive) and TN (true negative) rate is the proportion
of the positive cells which were correctly classified as positive (also

called sensitivity and recall) or as negative (also called specificity),
respectively. We used both values, since we assess both as equally
important, and the geometric mean, since this mean gives the
smaller value more weight than the arithmetic mean. This helps
to filter out trees where only either the TP rate or TN rate is good.
The name G-mean was introduced by Kubat et al. (1998). For the
same reason we used the geometric mean of the F-measures. The
F-measure combines the precision and the recall, where precision
is the fraction of cells correctly classified as positive. We calculate
the F-measure for the class positives and also an F-measure for the
class negatives and determined the geometric mean of both, called
F-mean.

Decision trees route data (cells) down the tree, starting at the
top (root), ending at the colored boxes (leaves). Leaves classify the
cells either as positive (green) or negative (red). This classification
can be correct or incorrect. To decide which route is taken by a
cell, the attribute values (MFI values of the other cytokines) are
compared to the split values at the branch. The names in the white
boxes (inner nodes) state the attribute to which this split value
has to be applied to. Additional each node contains the number of
cells in the data set, which were routed to this inner node. To ease
the analysis of the decision trees and to avoid many look ups at the
raw data sets we included some additional information in the raw
decision trees. First, we visualized the experimentally determined
cut-off values of a cytokine as a further attribute at the corre-
sponding node to allow for a simple assessment between the split
value and the cut-off value. Cut-off values are colored in green if
the split value is close to the cut-off value, and red or blue if the
split value is below or above the cut-off value, respectively. Second,
we visualized in each leaf the proportion of positive (or negative)
cells in this leaf on all positive (or negative) cells. This allows for
an easy assessment of the importance of a particular leave in the
overall classification.

3. RESULTS
Figure 1 shows the filtering of the raw data. The resulting data set
of antigen-specific activated T helper (Th) cells contains measure-
ments for the six cytokines TNF-α, RANKL, IL-17, IL-2, IFN-γ,
and GM-CSF. The intensity of the staining for this cytokines was
measured as mean fluorescence intensity (MFI) value. The vari-
ance of the MFI values for the same conditions was found to be low
as assessed for four biological replicates (Figure 2). As shown in
Figure 3A a huge proportion of antigen-specific activated Th cells
(71%) produced TNF-α, followed by expression of RANKL, IL-17,
IL-2, IFN-γ, and GM-CSF. Of note, the sum of these cells exceeds
100% because of the co-expression of two or more cytokines which
is shown in Figure 3B. We found a strong co-expression of TNF-α
together with GM-CSF, IFN-γ, and IL-17 (first row in Figure 3B),
whereas for IL-2 and RANKL this association was lower. There
was also a huge proportion of cells (58.65%) which produced
only TNF-α and no other cytokines. A strong association was also
seen between GM-CSF, IFN-γ, and RANKL (58.25 and 49.51%,
respectively, column GM-CSF in Figure 3B). In other cases the
co-expression was surprisingly low, for instance only 2.58% of the
IL-2 positive cells also co-produced GM-CSF. However, such pair-
wise comparisons are limited because they neglect the possibility
that the expression of a certain cytokine could be dependent of
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FIGURE 1 | Progressive filtering (gating) strategy for identification of antigen-specificT helper cells. Total events measured were filtered (gated) for single
cell (A) and for lymphocytes (B). To exclude dead cells aqua dye positive cells were excluded from further analysis (C). The remaining cells were further selected
for CD4 (D).

the co-expression of two or more cytokines simultaneously. To
study the dependencies of the co-expression patterns of cytokines
we formed a data set for each cytokine, with the expression of
this cytokine as the class and with the measurements of the five
remaining cytokines as attributes. We considered cells as positive
for a given cytokine according to the cut-off value defined by our
biological and staining control samples. Since the data sets were
highly imbalanced (for instance only 1.4% of all cells produce
GM-CSF, see Figure 3A) we weighted the data according to the
class probabilities (extitCostSensitiveClassifier Class of WEKA).
The resulting data sets were used to build decision trees to test if the
graphical representation of the decision trees can reveal structural
patterns in the data. This approach yielded 13,392 different deci-
sion trees for each given cytokine. We assumed that if a decision
tree gives a good classification, the structure of the decision tree
reflect reasonable patterns of co-expression. We therefore aimed
at the identification of the best decision tree out of the 13,392
generated for each cytokine.

With the approach explained in the section 3 we chose the“best”
tree for every cytokine out of the many trees which were build with
different parameter settings.

For instance, the tree of IL-2 (Figure 4) is to be read as
followed:

For this decision only cells with expression of at least one
cytokine were used. The tree thus begins with 2590 cells at the
root. Based on the MFI value of the root attribute TNF-α the 2590
cells are routed down the tree. If the TNF-α MFI value of a cell
is equal or below the split value 2390, the cells are routed to the
inner left node. Otherwise the cells are routed down to the right
leaf which classifies 1859 cells as IL-2 negative. This classification
is correct for 1611 cells, they are true negative (TN). For 248 cells
this classification is wrong, they are false negative (FN). Further
information in this leave show that the leaf captures 78.66% of the
IL-2 negative cells and 45.76% of the IL-2 positive cells. Due to
the imbalance of the data set there is a high percentage of the IL-2
positive cells in this leaf, but only a small number of false negative
cells. 20% of all measured cells produce IL-2 (see Figure 3A). The
inner node splits the cells based on the MFI value of RANKL and
routes them to the right leaf if the RANKL MFI value is above
the split value of 1817. This leaf classifies the cells again as IL-
2 negative. If the RANKL MFI value is equal or below the split
value, they are routed to the left leaf, which classifies these cells as
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FIGURE 2 | Kernel density estimation of MFI values of the four biological

replicates. Method density from R (R Development Core Team, 2009) was
used with default parameter settings. Data values are logicle transformed
according to Parks et al. (2006) using flowCore (Hahne et al., 2009).

IL-2 positive. This leaf contains 356 cells, of which 251 are classi-
fied correctly as positive (true positive – TP) and 105 are wrongly
classified as positive (false positive – FN). This leaf than contains
46.31% of the IL-2 positive cells and 5.13% of the IL-2 negative
cells. Furthermore, the split values of TNF-α and RANKL capture
all cells which are negative for TNF-α and RANKL but positive
for IL-2. Therefore, the split values have to be so low that they do

not route cells down to this leaf which express RANKL or TNF-
α. This is indeed true since the split values are very close to the
experimentally determined cut-off values of these cytokines. The
experimentally determined cut-off values are shown below the
root and inner nodes, the green color indicates that the split values
are close to the cut-off value. Finally, the proportion of RANKL
and TNF-α negative cells in this leaf exceeds 100%. Thus, it is clear
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FIGURE 3 | Cytokine expression by antigen-activatedT helper cells.

Expression of the cytokines TNF-α, RANKL, IL-2, IL-17 IFN-γ, and GM-CSF was
measured in lymph node cells as described in section 2. Data depict the
proportion of activated cells (identified by expression of the marker CD154)
that produce the indicated cytokine (A). As the cells can express multiple
cytokines simultaneously, pair-wise co-expression patterns of cytokines are

shown in (B). The primary cytokines are listed from left to right as the column
names. For each primary cytokine the percentage of cells co-expressing one
of the other cytokines (listed as row names) are shown. As an example
GM-CSF expressing cells often co-express TNF-α (75.73% of all GM-CSF
expressing cells) but only rarely IL-2 (13.59%). (Green background = low
co-expression, red background = high co-expression).

FIGURE 4 | Best decision tree for the classification of cells as positive

or negative for IL-2 expression. Cells are classified based on the MFI
values of first TNF-α and second RANKL. The green colored cut-off values
below the inner nodes, indicate that the split values are near the cut-off
values. Therefore, these nodes dived the cells in TNF-α (respectively
RANKL) negative and positive cells. The cells are routed to the right leaf if
they do not express TNF-α. This leaf captures 78.66% of all IL-2 negative
cells, but also 45.76% of the IL-2 positive cells. The leaf in the middle
classifies cells as IL-2 negative, which do not express TNF-α but RANKL. The
left node classifies cells as IL-2 positive and captures 46.31% of the IL-2
positive cells. It is stated that this node contains 100.56% of the TNF-α and
RANKL negative cells. Thus, also cells which are positive for TNF-α and/or
RANKL are in this leaf. This is due to the split values of TNF-α. The split value
is slightly above the real cut-off, therefore a few TNF-α positive cells have
been routed to the left and are therefore contained in the leftmost leaf.
Since the split value of RANKL is below the cut-off value, no RANKL
positive cells can be contained in the leftmost leaf.

that there are few cells in this leave which are positive for TNF-
α, RANKL, or both. A closer comparison of the split values and

cut-off values reveal that these cells can only be TNF-α and not
RANKL positive, since the split value of TNF-α is slightly above
the cut-off value, but the split value of RANKL is slightly below
the cut-off value.

All resulting decision trees (besides the tree of IL-17) were of
sufficient quality to reveal meaningful structural patterns. This
implies that there are associations between the expressions of dif-
ferent cytokines. An interesting common finding for the decision
trees for TNF-α (Figure 5) and IL-2 (Figure 4) was the fact that
the chosen split thresholds of all used cytokines (RANKL, IL-2
respectively TNF-α, RANKL) were close to the experimentally
determined cut-off value of these cytokines. These finding sug-
gests that the expression (or non-expression) of TNF-α and IL-2
depends on if the other cytokines are expressed or not. Inter-
estingly, there was an inverse relationship between the cytokines:
no expression of RANKL and IL-2 classified cells as positive for
TNF-α (Figure 5). Similarly, no expression of TNF-α and RANKL
classified cells as positive for IL-2 (Figure 4). One obvious rea-
son for this classification is that TNF-α and IL-2-expressing cells
have a high proportion of cells producing only a single cytokine
(see Figure 3B). While the IL-2-expressing Th cells contain 44.1%
single producers (Figure 3B) by bivariate analysis, our multidi-
mensional analysis classified 46.31% of all IL-2 positive cells into
the left leave of the decision tree (Figure 4). These cells do neither
produce TNF-α nor RANKL and can therefore be considered as
IL-2 single producers. We therefore can conclude that only the IL-
2 single producers are classified correctly. However the decision
tree can not reveal patterns in the IL-2 positive cells which are
co-expressed with other cytokines. The TNF-α tree (Figure 5) has
a similar structure as the IL-2 tree (Figure 4). Cells are classified as
TNF-α positive if they neither produce RANKL nor IL-2. Unlike
in the IL-2 tree, the TNF-α positive leave does not contain only
TNF-α single producers (74.87% TNF-α positive cells, Figure 5
vs. 58.65% TNF-α single producers in Figure 3B). We therefore
conclude from the two trees for cytokine expression with a high
percentage of single producers that the decision trees could reveal
this pattern. Furthermore, other subsets with a high percentage
of single producers were used to filter out cells negative for the
cytokine of interest. Therefore, the decision trees detect nearly
exactly the experimentally determined cut-off values of these
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FIGURE 5 | Best decision tree for the classification of cells as positive

or negative forTNF-α expression. Cells are classified based on the MFI
values of first RANKL and second IL-2. The green colored cut-off values
below the inner nodes, indicate that the split values are close to the cut-off
values. Therefore, these nodes dived the cells in RANKL (respectively IL-2)
negative and positive cells. The cells are routed to the right leaf if they do
not express RANKL. Cells of this leaf are classified as negative and this leaf
capture 52.61% of all TNF-α negative cells, and only classifies 15.04% of
the TNF-α positive cells incorrectly. The leaf in the middle classifies cells as
TNF-α negative which do not express RANKL, but do express IL-2. The left
node classifies cells as TNF-α positive and captures 74.87% of the TNF-α
positive cells. This node contains not all RANKL and IL-2 negative cells, but
98.38% of them. Since the split values of RANKL and IL-2 are slightly below
the real cut-off a few RANKL and IL-2 positive cells have been routed to the
right and are therefore not contained in the leftmost leaf.

cytokines. RANKL (tree not shown) also had a high percentage
of single producers. We thus expected a tree with the same
structure like for TNF-α and IL-2. Compared to these easy and
compact trees, the RANKL decision tree was quite complex, how-
ever it could be pruned to the same structure like the IL-2 and
TNF-α tree (not shown). This pruning only slightly impaired the
classification and resulted in a tree with TNF-α as root and IL-2
as next split attribute. As for RANKL and TNF-α the split values
were very close to the experimentally determined cut-off values.
Cells were classified as RANKL positive if TNF-α and IL-2 were
not expressed and classified as RANKL negative if one of them was
expressed. Other decision trees (Figures 6 and 8) had split values
highly above the experimentally determined cut-off values. These
high split values also revealed some biologically relevant informa-
tion. As an example, the tree for IFN-ma (Figure 6) was splitted
into IFN-γ positive and negative cells by the expression of TNF-α
with an MFI of about 6621. Due to this high split value, the node
to the right (MFI for TNF-α > 6621) only contained 37.43% of
all TNF-α positive cells. However, this node contained 81.47% of
all TNF-α and IFN-γ positive cells. Given that the expression of
TNF-α started above an MFI of 2368 (as measured by controls),

FIGURE 6 | Best decision tree for the classification of cells as positive

or negative for IFN-γ expression. Cells are classified based on the MFI
values of first TNF-α and second GM-CSF. The blue colored TNF-α (red
colored GM-CSF) cut-off value indicates that the split value is high above
(below) the cut-off value. Therefore, these nodes dived the cells not just in
TNF-α (respectively GM-CSF) negative and positive cells. Only a proportion
of the cells which express TNF-α are routed to the right leaf. Contained in
this leafs are only 37.43% of all TNF-α positive cells due to this high split
value compared to the cut-off value. This leaf captures 62.8% of the IFN-γ
positive cells, these are 233 cells (TP – true positive). The leaf also contains
the information that this leave captures 81.47% of all IFN-γ and TNF-α
positive cells. The leaf in the middle classifies cells as IFN-γ positive and
captures 10.78% of all IFN-γ positive cells. The left node classifies cells as
IFN-γ negative, thus this leaf wrongly classifies 26.42% of the IFN-γ
positive, but captures 92.11% of all IFN-γ negative cells.

FIGURE 7 | Cells with highTNF-α expression are enriched for IFN-γ

expressing cells. Dot plots show the expression of IFN-γ vs. GM-CSF in
the same data set for all cells with expression of TNF-α (left), for cells with
expression of TNF-α below the split value 6621 given by the decision tree
shown in Figure 6 (middle) and for cells with high TNF-α expression (right).
Horizontal and vertical lines represent the experimentally determined
cut-off values that define the expression for these cytokines as estimated
by controls. The cells in the lower left quadrant produce neither IFN-γ nor
GM-CSF and the cells in the upper right quadrant produce both. Numbers in
quadrants give the percentage of the cells in the respective quadrant.

it can be concluded that especially a high expression of TNF-α is
associated with the expression of IFN-γ. Routing down the tree
of IFN-γ further, the next node contained GM-CSF expression
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as split attribute for cells with a TNF-α expression below 6621
(Figure 6). However, the split value of 863 for GM-CSF expression
was far below the threshold for GM-CSF positive cells as estimated
by biological controls (MFI > 1192). This lead to the classification
IFN-γ negative for cells below this threshold (TN rate is 92.11%,
FN 26.42%) and a classification as IFN-γ positive for cells above
this threshold (TP rate 10.78%). Since the TP rate was only around
11% and the split value did not correspond with the true cut-off
of GM-CSF, it can be concluded that IFN-γ expression is probably
only loosely associated with the expression of GM-CSF. Most of
the IFN-γ negative cells do not express GM-CSF since the true
negative (TN) rate is high.

To further confirm the relationship between the produc-
tion of IFN-γ and TNF-α, we filtered the data on TNF-α high
(MFI > 6621) and TNF-α low (MFI < 6621) cells. As shown in
Figure 7, TNF-α-high cells were highly enriched for IFN-γ pro-
ducing cells (5.52 vs. 29.7%; left vs. right plot in Figure 7), while
TNF-α-low cells are depleted of IFN-γ producing cells (5.52 vs.
1.95%; left vs. middle plot in Figure 7). Strikingly, although seg-
regation into TNF-α high and low populations did also enrich
GM-CSF producers, the proportion between GM-CSF single pos-
itive cells and GM-CSF, IFN-γ double positive cells was similar for
unfiltered TNF-α low and TNF-α high cells (Figure 7). Thus, the
co-production of GM-CSF and TNF-α seems to be independent
of IFN-γ production.

GM-CSF showed a complex decision tree with many leaves
(Figure 8). Comparable to IFN-γ (Figure 6), the first split was
at a high level of TNF-α production, but captured most of the
GM-CSF and TNF-α positive cells (80.77%). Further splits were
at IFN-γ and RANKL expression again with split values above the
cut-off value of these cytokines. Cells with expression of TNF-
α below 7213, IFN-γ below 2458, and RANKL below 2729 were
classified as GM-CSF negative cells (TN = 88.84% in Figure 8).
The decision tree of IL-17 (Figure 9) did not provide useful
patterns, because the split values were always below the real cut-
off values of these cytokines. Nevertheless the classification is
quite good.

To validate the robustness of identified patterns we gener-
ated decision trees not only for the standard condition (WT-
day 21) as presented up to this point, but also for three addi-
tional experimental conditions (WT-day 9, KO-day 21, and KO-
day 9). The trees for IFN-γ are almost identical as shown in
Figures 10A–C and 6. The four trees demonstrate that high TNF-
α production is required for IFN-γ expression. Quite similar,
the expression of GM-CSF is the most important split criterion
for the expression of IL-17 as shown in Figure 9 for the stan-
dard condition and the three trees shown in Figures 11A–C for
the additional conditions. In addition, also the pattern found
for the standard condition WT-day 21 (Figure 9) is very sim-
ilar to that found for KO-day 21 shown in Figure 11C. These
two trees show that IL-17 is expressed if both GM-CSF and
TNF-α are expressed. The importance of TNF-α as the sec-
ond important criterion for IL-17 production is only evident
at the day 21 after immunization (Figures 9 and 11C), not at
the day 9 (Figures 11A,B). Further comparisons of the induced
trees demonstrate that the expression of TNF-α is the most

FIGURE 8 | Best decision tree for the classification of cells as positive

or negative for GM-CSF expression. Cells are first classified based on the
MFI values of TNF-α. The blue colored TNF-α cut-off value indicates that the
split value is high above the cut-off value. Therefore, only a proportion of the
cells which express TNF-α are routed to the right leaf. A closer look at this
leafs shows that due to the split value high above the cut-off value only
19.44% of all TNF-α positive cells are contained in this leaf. But this leaf
captures 61.17% of the GM-CSF positive cells. The leaf also contains the
information that this leave captures 80.77% of all GM-CSF and TNF-α
positive cells. Form the root (top) cells with a TNF-α MFI value equal or
below 12618 are routed down to the next inner node. This node splits the
cells on the MFI value of IFN-γ. Again, the blue colored cut-off values
indicates that not all IFN-γ positive cells in this node are routed to the leaf at
the right. This leaf also classifies cells as GM-CSF positive. This leaf
captures less of the GM-CSF positive cells – around one out of four. The
other two leafs which give a positive classification captures even less of the
GM-CSF positive cells, but summed up the four leaves which give a
positive classification captures 96.12% of all GM-CSF positive cells.

important split criterion also for the GM-CSF as well as IL-
2 production not only for the standard condition (Figures 4
and 8 for IL-2 and GM-CSF, respectively) but also for the
knock-out mutant when observed at 21 days after immunization
(KO-day 21, Figures 12A,B for IL-2 and GM-CSF, respectively).
These rules have not been confirmed when measured 9 days after
immunization.

As stated in the section 3 we use different parameter settings
and chose the best tree according to specific quality criteria. The

Frontiers in Microbiology | Microbial Immunology April 2012 | Volume 3 | Article 114 | 8

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


Simon et al. Multidimensional flow cytometric data analysis

FIGURE 9 | Best decision tree for the classification of cells as positive

or negative for IL-17 expression. Cells are first classified based on the
MFI values of GM-CSF. The red colored GM-CSF cut-off value indicates that
the split value is high below the cut-off value. The cells routed to the left
node do not express GM-CSF and this value split captures 59.59% of all
IL-17 negative cells and only wrongly classifies 13.73% of the IL-17 positive
cells. The next split on the right is on TNF-α, but again the split value is
below the cut-off value. The split values of GM-CSF and TNF-α are below the
cut-off value and thus not all cells, which are routed down the path to the
rightmost leaf express this two cytokines. Nevertheless this leaf correctly
classifies 69.61% of the IL-17 positive cells as positive. Only 15.17% of the
IL-17 negative cells are wrongly classified in this leaf. Also the last split
value again on GM-CSF is below the cut-off value.

question is whether our quality criteria always choose a tree created
with the same parameter settings. The answer is no. The parame-
ter settings for the induction of the decision trees clearly vary for
each cytokine to meet our quality criteria. For instance, the induc-
tion of the “best” decision trees for GM-CSF, IFN-γ, and IL-17
required the inclusion of all cells (cytokine-positive and negative)
while for IL-2, RANKL, and TNF-α, a better classification could
be reached when cytokine-negative cells were omitted. This is due
to the fact that IL-2, RANKL, and TNF-α have a high percentage
of cells which only produce this cytokine (see Figure 3). The cor-
responding decision trees have the characteristic that positive cells
are routed to the left most node (see Figures 4 and 5), thus these
cells are correctly classified as positive if they do not produce the
cytokines used for this trees. If also the cytokine-negative cells have
been used to induce decision trees for IL-2, RANKL, and TNF-α,
then also all cytokine-negative cells would have been routed to this
leaf and that would have worsen the classification. Consequently,
although the induction of decision trees seems to be a promis-
ing approach for the analysis of multidimensional data, standard

FIGURE 10 | IFN-γ (A) WT-day 9, (B) KO-day 9, (C) KO-day 21.

parameter settings that are suitable for all data sets cannot be pro-
posed. Our approach to choose a decision tree will be discussed in
the next section.
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FIGURE 11 | IL-17 (A) WT-day 9, (B) KO-day 9, (C) KO-day 21.

4. DISCUSSION
Commonly used sequential filtering strategies have several dis-
advantages in the analysis of multi-parametric flow cytometry
data. They are time-consuming and subjective and therefore

information which is contained in the dataset might be lost. Per-
haps more importantly, this approach is mainly descriptive and
not quantitative. The establishment of an improved workflow for
the analysis of flow cytometric data is a demanding need since
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FIGURE 12 | (A) IL-2 KO-day 21, (B) GM-CSF KO-day 21.

further increases in data complexity can be expected by the cur-
rent technical advance in flow cytometry technology (Perfetto
et al., 2004; Lugli et al., 2010; Bendall et al., 2011; Mittag and
Tarnok, 2011). We tested the feasibility of the induction of deci-
sion trees to identify structural patterns in multidimensional flow
cytometric data. Data sets from intracellular cytokine staining
of antigen-specific T helper cells were analyzed in our proof-of-
concept study. T helper cell cytokine production is critical for their
capacity to regulate different aspects of the immune response.
Cytokine secretion must occur in a coordinated way for maxi-
mum efficiency of an immune response. In several independent
studies, it has been demonstrated that the protective or pathogenic

potential of a T cell response is not determined by the produc-
tion of a single cytokine. It is rather correlated to their capacity
for a coordinated expression of cytokines. For instance, protec-
tion against infection with the intracellular parasite Leishmania
major is related to a high number of Th cells producing TNF-α,
IFN-γ, and IL-2 simultaneously (Darrah et al., 2007; Seder et al.,
2008). The identification of patterns of cytokine expression by
machine learning might be a useful tool for a better understand-
ing of both T cell immunology and system biology of microbial
infection, which critically depends on bidirectional interactions
between the pathogen and the host. This prompted us to test the
feasibility of the induction of decision trees for the analysis of
highly complex flow cytometric data. We hypothesized that good
retrieval of information requires good classification by the deci-
sion tree. Unfortunately, universally applicable criteria that assess
the quality of a decision tree do not exist; these criteria depend
on both the data and on the intention of the researcher. Fur-
thermore, there are no general applicable parameter settings in
machine learning. Thus, we used different parameter settings and
ended up with a large set of decision trees from which we had to
choose. Our approach was to select the one tree we considered to
be the “best” tree. For the selection of the best, we chose a com-
bination of different criteria, including the geometric mean of the
TP rate and the TN rate, the area under the ROC curve (AUC)
and geometric mean of the F-measures (see section 3). Since deci-
sion trees works best with balanced data, we also weighted our
highly imbalanced data sets regarding positive and negative cells
(see Figure 3A). Although, we were able to identify a tree of suf-
ficient for each cytokine, the parameter settings for the induction
of the decision trees clearly varied to meet our quality criteria. For
instance, the induction of the “best” decision trees for GM-CSF,
IFN-γ, and IL-17 required the inclusion of all cells (cytokine-
positive and negative). In contrast for IL-2, RANKL, and TNF-α,
a better classification could be reached when cytokine-negative
cells were omitted. This shows that although the induction of
decision trees seems to be a promising approach for the analy-
sis of multidimensional data, standard parameter settings, which
are suitable for all data sets, cannot be proposed. The choice and
combination of the quality measure was adjusted for our task. We
consequently used primarily the geometric mean of the TP and
TN rate since we considered both as equally important and chose
the smallest tree, since we aimed at a visual expert inspection of
the trees. Other tasks may require other criteria. An extension to
our approach to chose only the “best” tree could be to provide the
expert user with a set of good trees. A comparison of these set
could reveal more insight and will be the scope of future work.
Another discussable point is the weighting of the data sets accord-
ing to their imbalance. Due to the weighting of the data, a node
is also classified as positive if the number of cells negative for this
cytokine is much higher than the number of cells positive for this
cytokine. Thus, the precision of classification becomes lower. Such
low precision heavily impairs the ability to predict the expression
of a given marker depending on the known expression of other
markers, in order to avoid its direct measurement. Since we used
decision trees to find structural patterns in the data and to gen-
erate hypothesis from these patterns, precision does not play a
critical role.
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The work was focused on standard condition (WT-day 21).
However, for comparative reasons and to check the robustness
of identified rules, additional conditions were investigated using
knock-out mice (KO) and measurement already 9 days after
immunization. The importance of high TNF-α expression for
IFN-γ was confirmed for all conditions while for GM-CSF and
IL-2 production only when measured 21 days after immuniza-
tion. Furthermore, TNF-α was identified as the second important
criterion also for IL-17 production but again only when mea-
sured 21 days after immunization. Summarizing, some rules of
co-expression have been confirmed with different experimental
conditions. Thus, the method of induction of decision trees is
able to extract robust rules. Interestingly, the strong dependency
of the expression of one cytokine on the expression of others
which we found reproducibly between different time points and
despite differing genotypes implies some biological significance of
these findings. We have previously shown in a kinetic study that
TNF-α is one of the earliest cytokines produced after activation of
antigen-specific T cells (Frey et al., 2010b). Given that expression
of the other cytokines starts later, the strong relationship between

TNF-α and the expression of the other cytokines could argue for
a hard-wired connection between the expression of these medi-
ators. High TNF-α expression has been described as a marker
of polyfunctional T cells in another study (Darrah et al., 2007;
Seder et al., 2008), supporting our hypothesis that TNF-α expres-
sion is highly correlated with the expression of other effector
cytokines.

In conclusion, the presented results show that data analysis with
decision trees can easily reveal structural patterns in flow cyto-
metric data that would have been missed by conventional analysis.
Such patterns can be used for the generation of hypothesis on the
complex biology of certain subsets of cells.
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