
ORIGINAL RESEARCH ARTICLE
published: 23 April 2012

doi: 10.3389/fmicb.2012.00137

The membrane QmoABC complex interacts directly with
the dissimilatory adenosine 5′-phosphosulfate reductase in
sulfate reducing bacteria
Ana Raquel Ramos1, Kimberly L. Keller 2,3, Judy D. Wall 2,3 and Inês A. Cardoso Pereira1*

1 Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
2 Biochemistry Department of the University of Missouri, Columbia, MO, USA
3 Ecosystems and Networks Integrated with Genes and Molecular Assemblies, Berkeley, CA, USA

Edited by:

Niels-Ulrik Frigaard, University of
Copenhagen, Denmark

Reviewed by:

Ulrike Kappler, University of
Queensland, Australia
Ben Berks, University of Oxford, UK

*Correspondence:

Inês A. Cardoso Pereira, Instituto de
Tecnologia Química e Biológica,
Universidade Nova de Lisboa, Av.
República, EAN, 2780-157 Oeiras,
Portugal.
e-mail: ipereira@itqb.unl.pt

The adenosine 5′-phosphosulfate reductase (AprAB) is the enzyme responsible for the
reduction of adenosine 5′-phosphosulfate (APS) to sulfite in the biological process of dis-
similatory sulfate reduction, which is carried out by a ubiquitous group of sulfate reducing
prokaryotes. The electron donor for AprAB has not been clearly identified, but was pro-
posed to be the QmoABC membrane complex, since an aprBA–qmoABC gene cluster
is found in many sulfate reducing and sulfur-oxidizing bacteria. The QmoABC complex
is essential for sulfate reduction, but electron transfer between QmoABC and AprAB
has not been reported. In this work we provide the first direct evidence that QmoABC
and AprAB interact in Desulfovibrio spp., using co-immunoprecipitation, cross-linking Far-
Western blot, tag-affinity purification, and surface plasmon resonance studies.This showed
that the QmoABC–AprAB complex has a strong steady-state affinity (K D = 90 ± 3 nM), but
has a transient character due to a fast dissociation rate. Far-Western blot identified QmoA
as the Qmo subunit most involved in the interaction. Nevertheless, electron transfer from
menaquinol analogs to APS through anaerobically purified QmoABC and AprAB could not
be detected. We propose that this reaction requires the involvement of a third partner to
allow electron flow driven by a reverse electron bifurcation process, i.e., electron confurca-
tion.This process is deemed essential to allow coupling of APS reduction to chemiosmotic
energy conservation.
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INTRODUCTION
Sulfate respiration is an anaerobic process carried out by a phylo-
genetically diverse group of organisms including both Bacteria and
Archaea. This process is a major contributor to the global cycling
of sulfur and carbon in anaerobic habitats, and has very important
environmental and economical impacts (Muyzer and Stams, 2008;
Barton and Fauque, 2009). Sulfate reducing prokaryotes (SRP) are
found ubiquitously in anaerobic environments, and are particu-
larly abundant in marine habitats due to the high concentration
of sulfate in sea water. As a group SRP are physiologically versatile
and capable of metabolizing a wide variety of substrates, and they
can also grow syntrophically with other organisms in the absence
of sulfate (Stams and Plugge, 2009; Plugge et al., 2011). Despite
its fundamental importance, the mechanism of energy conserva-
tion in sulfate respiration remains to be fully elucidated. For many
years it was thought that quinones did not play a role in the process,
despite their known presence in SRP, and intracellular hydrogen
cycling was proposed to account for proton motive force genera-
tion. Nowadays, hydrogen cycling is considered as only one of the
possible pathways for energy conservation, operating in some, but
not all SRP (Keller and Wall, 2011; Pereira et al., 2011). Sulfate
reduction is an intracellular process requiring active transport of

sulfate, and its activation by reaction with ATP to form adeno-
sine 5′-phosphosulfate (APS). The two terminal reductases, APS
reductase (AprAB) and dissimilatory sulfite reductase (DsrAB),
are soluble and thus not directly involved in membrane-linked
electron transport. One of the key questions remaining about
sulfate reduction is the identification of the electron donors to
AprAB and DsrAB. The involvement of membrane proteins in
the process was first described by Mander et al. (2002) and Pires
et al. (2003) through the identification of the DsrMKJOP (initially
named Hme) and QmoABC complexes. These two complexes
are found both in SRP (Pereira, 2008) and in many anoxygenic
phototrophic and chemotrophic sulfur-oxidizing bacteria (SOB;
Frigaard and Dahl, 2009), indicating a dedicated role in sulfur
metabolism. Furthermore, the two complexes are conserved in
the genomes of SRP described to date, with very few exceptions:
the archeon Caldivirga maquilingensis lacks the qmoABC genes
and in some Gram-positive bacteria the qmoC gene is absent;
in both cases also a simpler version of the DsrMKJOP complex
occurs, since only the dsrMK genes are present (Junier et al.,
2010; Pereira et al., 2011). The QmoABC and DsrMKJOP com-
plexes share an interesting characteristic in that they both contain
subunits that are related to heterodisulfide reductases (Hdr) of
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methanogens (Thauer et al., 2008), and subunits known to inter-
act with quinones. In several organisms, the qmoABC genes cluster
with the aprAB genes, and the dsrMKJOP genes cluster with dsrAB,
strongly suggesting an involvement of QmoABC in the electron
transfer pathway to AprAB and DsrMKJOP in the electron transfer
pathway to DsrAB.

The QmoABC complex has one membrane (QmoC) and two
cytoplasmic subunits (QmoAB), and the two QmoC hemes b are
reduced by quinols, indicating that the Qmo complex participates
in electron flow between the quinone pool and the cytoplasm, in a
process that may result in energy conservation (Pires et al., 2003).
In Desulfovibrio vulgaris Hildenborough a deletion mutant of the
qmoABC genes could not grow with sulfate as electron acceptor,
but grew normally with sulfite or thiosulfate, providing conclu-
sive evidence that QmoABC is required for reduction of sulfate
(Zane et al., 2010). Also, in the green sulfur-oxidizer Chlorobium
tepidum the Qmo complex was shown to be involved in oxida-
tion of sulfite as an intermediary in the sulfur oxidation pathway
(Chan et al., 2008; Rodriguez et al., 2011). These results show
that the Qmo complex is involved in electron flow between the
menaquinone pool and APS reduction or oxidation by AprAB.
However, direct electron transfer between the isolated Desulfovib-
rio desulfuricans ATCC 27774 Qmo complex and AprAB could
not be detected, which could indicate that additional proteins are
involved in the pathway (Pires et al., 2003). In this work we report
protein–protein interaction studies that show that there is a direct
interaction between QmoABC and AprAB, and that the interaction
involves the QmoA subunit. The mechanism of AprAB reduction
is further discussed.

MATERIALS AND METHODS
PROTEIN PURIFICATION
Cells of D. desulfuricans ATCC 27774 were grown according to Liu
and Peck (1981). The cells were broken and centrifuged and the
membrane fraction was used to purify the QmoABC complex in n-
Dodecyl-β-d-maltoside (DDM), as previously described by Pires
et al. (2003), following its characteristic UV–Visible absorption
spectrum. The purification of Qmo was carried out both in aero-
bic and anaerobic conditions. AprAB was purified from the soluble
fraction in anaerobic conditions following the catalytic activity
of sulfite oxidation (Fritz et al., 2002a,b). Anaerobic purifications
were carried out inside a Coy anaerobic chamber (95% N2, 5% H2)
using an AKTA™ Prime plus™ system. The soluble fraction from
D. desulfuricans was ultracentrifuged at 140,000 × g for 2 h, and
then applied to a Q-Sepharose FF column equilibrated with 50 mM
Tris–HCl (pH 7.6) buffer with 10% glycerol (v/v; buffer A). A step-
wise gradient of increasing NaCl concentration was performed
and fractions were separated according to UV–Visible spectra. The
fractions containing highest AprAB activity, which eluted between
180 and 200 mM NaCl, were pooled. After concentration and low-
ering of ionic strength, this sample was loaded on a Q-Sepharose
HP column equilibrated with buffer A. Again, a stepwise gradient
of increasing NaCl concentration was performed. The fractions
were separated according to the UV–Visible spectra and activity.
The pool of fractions with higher activity was diluted in buffer
A and applied in a second Q-Sepharose HP column equilibrated
with 10 mM potassium phosphate buffer (pH 7) containing 10%

glycerol (v/v; Buffer B). A stepwise gradient of increasing NaCl
concentration was performed, and fractions containing purified
AprAB eluted at 150 mM NaCl. The purified enzyme had a sul-
fite oxidation activity of 3.3 μmol min−1 mg−1 and displayed the
characteristic two subunits on an SDS-PAGE gel.

APS REDUCTASE ACTIVITY
The AprAB activity was determined as formation of APS in 50 mM
Tris–HCl (pH 7.6), 2 mM Na2SO3, 2 mM AMP, 1 mM K3Fe(CN)6,
at room temperature (Fritz et al., 2000, 2002a), or by APS reduction
in 80 mM potassium phosphate (pH 7), 30 μM APS, and 0.75 mM
methyl viologen as reductant (Fritz et al., 2002a). Methyl viologen
was reduced with 0.2 g of metallic zinc granules in the same buffer.

CO-IMMUNOPRECIPITATION
Antibodies for QmoABC complex and AprAB from D. desul-
furicans were produced from the purified proteins by Davids
Biotechnology (Regensburg, Germany) and used for Co-
immunoprecipitation (Co-IP) experiments with the Thermo Sci-
entific Pierce® Co-IP kit, following the kit instructions. The anti-
Qmo antibody did not cross-react with AprAB, and the anti-Apr
antibody did not cross-react with QmoABC. Two approaches
were used to investigate protein–protein interaction, one based
on Anti-QmoABC antibodies and the other based on Anti-AprAB
antibodies. In the first case, 500 μg of Anti-QmoABC antibody
were immobilized in the AminoLink® Plus Coupling Resin in a
small column, and 1 μM of Qmo in the kit Lysis/Wash buffer
was added and incubated for 1 h at 4˚C. After one washing step
with Lysis/Wash buffer 1 μM of AprAB in the same buffer was
loaded in the column and incubated for 2 h at 4˚C. After five
washing steps, the co-IP products were eluted with the kit Elu-
tion buffer. The protocol was repeated with 500 μg of Anti-AprAB
antibody, 1 μM of AprAB, and 1 μM of QmoABC in the same
buffer. Control experiments were run in parallel with no anti-
body bound to the control resin. The eluates (∼100 μg) were
separated in SDS-PAGE gels [12% acrylamide, (v/v)], and trans-
ferred to polyvinylidene difluoride (PVDF) membranes (Transfer
buffer: 48 mM Tris–HCl pH 9.2 and 39 mM Glycine) using a
Mini Trans-Blot® electrophoretic transfer cell (Bio-Rad) during
40 min at 4˚C, 100 V, and 350 mA. The membranes were blocked
with blocking buffer [20 mM Tris–HCl pH 7.5, 150 mM NaCl,
0.05% Tween 20 (v/v), and 5% non-fat milk (w/v)], overnight at
room temperature. After two washing steps with TBST [20 mM
Tris–HCl pH 7.5, 150 mM NaCl, 0.05% Tween 20 (v/v)] anti-
QmoABC antibody at 1:200 dilution in TBST or anti-AprAB
antibody at 1:1,000 dilution in TBST were incubated with the
membranes for 1 h, followed by two washing steps with TBST,
and incubation with anti-rabbit IgG antibody (Sigma-Aldrich®)
at 1:15,000 dilution in TBST for 45 min. After three washing steps
with TBS, protein detection was performed with Alkaline Phos-
phatase Buffer (100 mM Tris–HCl pH 9.5, 100 mM NaCl, and
5 mM MgCl2), and NBT (nitro-blue tetrazolium chloride)/BCIP
(5-bromo-4-chloro-3-indolyl phosphate).

SURFACE PLASMON RESONANCE
The surface plasmon resonance (SPR) experiments were per-
formed at 25˚C on a BIAcore 2,000 instrument (Biacore Inc., GE
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HealthCare). The proteins samples were exchanged to the buffer
used as running buffer for the SPR experiments [10 mM HEPES
pH 7.4 + 150 mM NaCl + 3 mM EDTA + 0.01% DDM (w/v)],
using a HiTrap™ Desalting column (Amersham Biosciences).
AprAB was immobilized in a CM5 sensor chip (GE® Healthcare)
by standard NHS/EDC amine coupling resulting in an immobi-
lization level of 1,000 RU. Flow cell 1 was similarly treated with
buffer in the absence of AprAB (control cell). Interaction exper-
iments with QmoABC were performed with duplicate injections
of 3.9, 7.8, 15.6, 31.25, 62.5 nM of QmoABC at a flow rate of
15 μl/min. After the end of each injection dissociation was per-
formed with running buffer for 10 min, after which all of the
protein completely dissociated from the surface (as indicated by
a return to baseline level of the sensorgram) and thus no further
regeneration was required. The sensorgrams were processed using
the double referencing method to eliminate the non-specific bind-
ing from background contribution and the buffer artifacts were
removed by subtracting signals from the reference flow cell and
from buffer blank injections. The BIA evaluation 3.2 RC1 analysis
software was used to determine ka and kd from the processed data
sets by globally fitting to a 1:1 biomolecular binding model with
drifting baseline. The K D was calculated from the quotient kd/ka.

For the competition experiments, 62.5 nM of QmoABC was
incubated with 62.5 or 125 nM AprAB and injected in the chip
surface at the same flow rate as before.

CROSS-LINKING FAR-WESTERN BLOT
Ten microgram of pure QmoABC were separated in a 12% SDS-
PAGE gel and blotted to a PVDF membrane. After overnight block-
ing, the membrane was incubated with AprAB (1 μM) for 1 h in
20 mM Tris–HCl pH 7.6, 10% Glycerol (v/v), at room temperature.
The membrane was washed once with bidistilled water (bDW) and
incubated with 32 mM N -ethyl-N ′-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC; Sigma-Aldrich®) in bDW for
1 h at room temperature (Sato et al., 2011). After three wash-
ing steps with bDW, Western Blot against Anti-AprAB was per-
formed. As positive control we used AprAB and as negative control
QmoABC that was not incubated with AprAB.

D. VULGARIS HILDENBOROUGH STRAINS AND GROWTH CONDITIONS
A mutant strain lacking the qmoA gene was produced by dou-
ble homologous recombination in D. vulgaris Hildenborough –
IPAR02 – according to Keller et al. (2011), with the exception
that following electroporation the cells were recovered and plated
in MOYLS3 (lactate 30 mM/sulfite 15 mM) and the electropora-
tion parameters were 1,500 V, 250 Ω, and 25 μF. The pMOIP02
plasmid for the qmoA deletion was obtained by sequence lig-
ation independent cloning (SLIC; Li and Elledge, 2007). Three
segments were amplified by PCR with Herculase polymerase II
(Stratagene®): 942 bp upstream of qmoA (QmoA Up Fw P1-
GCCTTTTGCTGGCCTTTTGCTCACATAAGAGCGCGGTTCT
GAAATCATGC and QmoA Up Rev P2-CCTGCGTGCAATCCATC
TTGTTCAATCATCCTTGGTATCCTCCCTACGTGT), 932 bp
downstream of qmoA (QmoA Dwn Fw P3-CCTTCTATCGCCTTC
TTGACGAGTTCTTCTAGACCATAATGGCCAGCAGAATTGG
and QmoA Dwn Rev P4-CGAGGCATTTCTGTCCTGGCTGGAG
TGACGTGTTCAGGATGAAGGCA),and the kanamycin resistance

gene from pSC27 (Keller et al., 2011; Kan aa2 Fw-
ATTGAACAAGATGGATTGCACGCAGG and Kan aa264 Rev-
GAAGAACTCGTCAAGAAGGCGATAGAAGG), and then added
into pMO719 background via SLIC. Products from the amplifica-
tions were transformed into E. coli α-select Silver Efficiency (Bio-
line®) and successful transformants were isolated on LC medium
(Zane et al., 2010). Correct isolates were identified by the expected
PCR amplicons from the plasmids constructs and also by sequenc-
ing performed at the DNA Core Facility at the University of
Missouri, USA. The pMOIP02 produced was electroporated into
D. vulgaris according to Keller et al. (2011), Zane et al. (2010), from
which strain IPAR02 was obtained, by selecting with MOYLS3
medium containing 400 μg/ml of geneticin. The deletion of qmoA
was confirmed by Southern blot. The IPAR02 mutant strain grows
in lactate/sulfite as described previously for the mutant lacking
qmoABC (Zane et al., 2010) and is kanamycin resistant.

A complementation plasmid pMOIP05 was produced also by
SLIC encoding qmoA with a Strep-TEV-FLAG (STF) tag. To cre-
ate this vector two segments were amplified by PCR: the qmoA
gene (QmoA Exp Vctr P1 Fw-AGGTTGGGAAGCCCTGCAA
TGCAGTCCCAGGAGGTACCATATGTCGAACTCCATACTCGT
CGTCG and QmoA ExpVctr P2 Rev-AATTTTTTCGAACTGCGG
GTGGCTCCACCTCCCTCTCACCGTTTGAATCGC) and the
STF-tag gene from pSLIC-DVU0171-STF-Kan-Tag (Chhabra
et al.,2011a; STF-Tag Fw-TGGAGCCACCCGCAGTTCGAAAAAA
TT and STF-Tag Rev-GATCGTGATC CCCTGCGCCATCAGATC-
CTTGCTACTTGTCATCGTCATCCTTGTAGTCGATGTCA); and
then added into pMO9075 background via SLIC. The amplifi-
cations products were transformed into E. coli α-select Silver
Efficiency (Bioline®), and cells were plated on spectinomycin
(100 μg/ml)-containing agar plates. The correct plasmid construct
was screened by colony PCR and later confirmed by sequencing at
the DNA Core Facility at the University of Missouri, USA.

The pMOIP05 was successfully introduced in IPAR02 by
electroporation (Keller et al., 2011) selecting with MOYLS3
medium containing 400 μg/ml of geneticin and 100 μg/ml of
spectinomycin, to generate the complemented strain IPAR03.
The plasmid was confirmed by PCR amplification of the insert
and also by sequencing performed in GATC Biotech, Germany.
The complemented mutant strain IPAR03 was grown either
in MOYLS3 lactate/sulfite medium or MOYLS4 lactate/sulfate
medium (Zane et al., 2010; Keller et al., 2011) with spectinomycin
(100 μg/ml).

PULL-DOWN ASSAY
For the pull-down assay, IPAR03 was grown in 100 ml of MOYLS4
with spectinomycin at 37˚C for about 24 h. Cells were har-
vested by centrifuging at 2,500 × g for 15 min at 4˚C, washed
with 20 mM Tris–HCl buffer (pH 7.6) + 10% glycerol (v/v), and
again centrifuged as before. Cells were then disrupted using
BugBuster® Protein Extraction Reagent (Novagen®) for 20 min
at room temperature and centrifuged at 16,000 × g for 20 min
at 4˚C. The soluble fraction of IPAR03 was loaded in micro-
columns containing Strep®-Tactin resin (IBA GmBH) equili-
brated with 50 mM Tris–HCl pH 7.6, 150 mM NaCl, and 10%
glycerol (v/v; Buffer W). After five washing steps with Buffer
W, the recombinant protein QmoA was eluted with Buffer W
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containing 2.5 mM desthiobiotin. The elution product was pre-
cipitated in acetone and analyzed by SDS-PAGE and Western
Blot with Strep-Tactin horse radish peroxidase (HRP) conjugate.
The co-elution of AprAB with QmoA was detected by Western
Blot with Anti-AprAB from D. desulfuricans. In a control exper-
iment the same conditions were used with wild-type cells of D.
vulgaris.

ELECTRON TRANSFER EXPERIMENTS
The electron transfer between QmoABC and AprAB was tested
in spectrophotometer assays inside the anaerobic chamber, using
quartz cuvettes equipped with a magnetic stirrer. The first assay
was based on AprAB activity, as previously described (Pires
et al., 2003), following reduction of the menaquinone analog
2,3-dimethyl-1,4-naphthoquinone (DMN) with sulfite (reverse
reaction) at 350 nm (at 270 nm there is interference from AMP).
DMN (500 μM) reduction was followed in 50 mM Tris–HCl (pH
7.6) with 0.0125% DDM (w/v), 2 mM Na2SO3, 2 mM AMP, and
0.5 μM of QmoABC after addition of 1.2 μM AprAB. The sec-
ond assay was based on oxidation of quinol reduced QmoABC
by APS (direct reaction). Qmo (0.3 μM) was reduced with differ-
ent amounts of menadiol (25, 50, 100, 300, 930 μM) in 10 mM
Phosphate buffer (pH 7), 0.0125% DDM (w/v). Qmo heme b oxi-
dation was followed at 424 nm in the presence of different amounts
of APS (30, 60, and 120 μM; Sigma®), after addition of 0.1 μM
AprAB.

RESULTS
A link between the QmoABC complex and APS reductase was first
inferred from the co-localization of their genes in the genomes
of several sulfate reducing and SOB. Subsequent deletion of the
qmo genes in these organisms proved that the Qmo complex is
required for the reduction of sulfate in SRP (Zane et al., 2010),
and the oxidation of sulfite in green sulfur bacteria (Rodriguez
et al., 2011). However, the fact that no electron transfer could
be observed between the two proteins (Pires et al., 2003) raised
doubts as to whether there is a direct interaction between them,
or if other proteins are involved. Recently, a proteomic study of
protein–protein interactions in D. vulgaris Hildenborough was
reported, in which several key proteins were used as baits for affin-
ity purification followed by mass spectrometry (Chhabra et al.,
2011b). The bait proteins included Strep-tagged AprA and AprB,
and again no evidence for a direct interaction with QmoABC pro-
teins was obtained. However, interactions between redox proteins
are notably difficult to observe due to their transient nature, which
is required for the fast turnover of electron exchange reactions in
energy metabolism (Bashir et al., 2011; Martinez-Fabregas et al.,
2011). In addition, the fact that Qmo is a membrane-associated
complex is likely to further hinder proteomic-based studies. These
kind of high-throughput approaches, although invaluable from
the amount of information that can be obtained, suffer from the
use of the same conditions to evaluate many different types of
interactions between many different proteins, so a high number
of false negative results is likely to occur. In this work we took
advantage of the fact that we can purify both QmoABC and AprAB
from D. desulfuricans ATCC 27774 to perform detailed interaction
studies between the two proteins.

CO-IMMUNOPRECIPITATION EXPERIMENTS
The first approach to evaluate a possible interaction
between QmoABC and AprAB complexes was to use co-
immunoprecipitation (co-IP). For this we used a Thermo Sci-
entific Pierce® Co-IP kit in which the antibodies are covalently
coupled to an amine-reactive resin. Anti-QmoABC or Anti-
AprAB specific antibodies were generated using the purified
proteins, and immobilized in columns containing the coupling
resin. The two antibody-loaded resins were then incubated with
the corresponding prey protein (QmoABC or AprAB), washed,
and then incubated with the interacting bait partner (AprAB
or QmoABC). After several washing steps the retained proteins
were eluted and the Co-IP products were separated by SDS-
PAGE and blotted to a PVDF membrane. The membranes were
treated by Western blot using the antibodies against the bait pro-
tein. Two control experiments were run in parallel, where no
antibodies were bound to the resin. The Western blot results
(Figure 1) show that it was possible to co-immunoprecipitate
QmoABC and AprAB, using either of the corresponding anti-
bodies, indicating that there is a direct physical interaction
between the two proteins. The control experiments reveal some
unspecific retention of both proteins, but the strong differ-
ence between the experiments and the controls are indicative of
co-immunoprecipitation.

SURFACE PLASMON RESONANCE EXPERIMENTS
Since an interaction between QmoABC and AprAB was detected
we next sought to quantify the kinetics and affinity parameters of
this interaction. For this we used SPR, which is a gold standard for
studying protein–protein interactions, since it can provide direct
quantitative measurements of binding kinetics and affinities, with-
out the need for any labeling methods. Using a CM5 sensor chip
we tested covalent immobilization of either QmoABC or AprAB.
Considerable loss of immobilized material was observed in the
case of QmoABC, likely due to gradual dissociation of subunits,
whereas this was not observed with immobilized AprAB. Further
studies proceeded using AprAB as the ligand and QmoABC as
the analyte. An interaction was again observed between the two
proteins, which could be detected even at low concentrations of
QmoABC. The dissociation of QmoABC was complete after injec-
tion stopped, and did not require special regeneration conditions,
which confirms the transient nature of the interaction between the
two proteins. The sensorgrams obtained (Figure 2A) were used to
calculate the binding rate constants, by fitting the results to a 1:1
interaction model with drifting baseline, yielding an association
rate constant ka = (3.0 ± 0.1) × 105 M−1 s−1, a dissociation rate
constant kd = (2.7 ± 0.4) × 10−2 s−1, and an equilibrium affin-
ity constant K D = 90 ± 3 nM. These values reveal a high affinity
for the AprAB–QmoABC complex in steady-state conditions, and
that the complex dissociation is very fast, as it is to be expected for
an electron transfer interaction. To further validate these results
we carried out a competition assay in which QmoABC was pre-
incubated with two different concentrations of free AprAB in
solution before the SPR measurement (Figure 2B). This exper-
iment confirmed a reduced interaction between QmoABC and
the immobilized AprAB protein, due to the competition of AprAB
in solution.
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FIGURE 1 | Western Blot analysis of co-immunoprecipitation experiment.

(A) Western Blot with Anti-QmoABC of the elution products of: E – the Co-IP
using immobilized Anti-AprAB antibody; C – control resin with no antibody.

(B) Western Blot with Anti-AprAB of the elution products of: E – the Co-IP
using immobilized Anti-QmoABC antibody; C – control resin with no antibody.
M – Pre-stained molecular mass markers.

CROSS-LINKING FAR-WESTERN BLOT
Recently, a modification of the Far-Western protocol to include
a cross-linking step was described, which allows for the detec-
tion of weak or transient interactions (Sato et al., 2011). Since
a strong steady-state interaction was detected between QmoABC
and AprAB, we used cross-linking Far-Western blot to try to eluci-
date which subunits are involved in this interaction. In this exper-
iment, the QmoABC subunits were separated in a SDS-PAGE gel
and blotted to a PVDF membrane. The membrane was incubated
with AprAB, washed, and EDC was then added to promote cross-
linking to the retained protein, following which detection was per-
formed by Western blot with Anti-AprAB antibodies (Figure 3).
This showed a positive signal for the QmoA band and a weaker sig-
nal for the QmoC band. A shift in the molecular mass of the Qmo
subunits is not expected to occur since they are already fixed in the
membrane upon incubation with AprAB. No signals were detected
when the experiment was run in the absence of cross-linker. In the
reverse experiment where AprAB was run in the gel and the mem-
brane was incubated with QmoABC, followed by cross-linking
and detection with Anti-QmoABC antibodies, no signals could
be detected. This indicates that in this case the denaturation of
the AprAB subunits in SDS-PAGE prevents the interaction with
QmoABC.

PULL-DOWN ASSAY
Since the QmoA protein is the subunit showing stronger interac-
tion with AprAB, we set up an endogenous pull-down assay using
single-epitope tag-affinity purification based on tagged QmoA.
No genetic tools are available for the organism D. desulfuricans

ATCC 27774, but D. vulgaris Hildenborough can be genetically
manipulated and extensive tools have been developed allowing
chromosomal deletion and tagging of specific genes (Chhabra
et al., 2011a,b; Keller et al., 2011). A D. vulgaris Hildenborough
mutant strain lacking the qmoA gene (IPAR02) was produced
by double homologous recombination, as previously described
(Zane et al., 2010), and was complemented with plasmid pMOIP05
encoding qmoA with a Strep-TEV-FLAG (STF) tag to give strain
IPAR03. This strain could grow on lactate/sulfate, in contrast to
IPAR02 that only grew on lactate/sulfite, confirming that the com-
plementation was successful. The QmoA protein was detected both
in the membrane and in the soluble fraction of strain IPAR03
grown in lactate/sulfate. We took advantage of this fact to perform
affinity tag purification of the soluble fraction using Strep-Tactin
resin. The desthiobiotin elution fraction was analyzed by SDS-
PAGE gel followed by Western blot with antibodies against D.
desulfuricans AprAB (it was previously confirmed that these anti-
bodies recognized the AprAB protein from D. vulgaris). A band for
AprA was detected in the Western blot (Figure 4), confirming the
ability of QmoA to interact and pull-down AprAB from the solu-
ble fraction. In a parallel control experiment with wild-type cells
of D. vulgaris Hildenborough no band was detected for AprAB.

ELECTRON TRANSFER EXPERIMENTS
Since it was established that QmoABC can interact directly with
AprAB we attempted again to observe electron transfer using
anaerobically purified proteins. Previous experiments had been
carried out with proteins purified aerobically (Pires et al., 2003),
which could have suffered some damage to their iron–sulfur
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FIGURE 2 | Surface plasmon resonance analysis of the interaction

between QmoABC (analyte) and immobilized AprAB (ligand). (A)

Sensorgrams obtained from injection of serial dilutions of 62.5, 31.25, 15.6,

7.8, 3.9 nM QmoABC at 15 μl/min flow rate and 25˚C. (B) Competition
experiment where QmoABC (62.5 nM) was mixed with 62.5 (1:1) or 125 nM
(1:2) of AprAB before injection.

centers thus preventing electron transfer. We tested reduction of
a menaquinone analog (DMN) with sulfite (reverse reaction), or
oxidation of quinol reduced QmoABC by APS (direct reaction;
Scheme 1). Despite a screening of different conditions,no evidence
for electron transfer could be obtained.

DISCUSSION
The AprAB APS reductase from SRP is a heterodimeric iron–
sulfur flavoenzyme, which catalyzes the reversible reduction of
APS to sulfite and AMP (Lampreia et al., 1994). It binds FAD,
which is the site of APS reduction, and two [4Fe–4S] clusters that
serve to transfer electrons from the protein surface to the cat-
alytic site (Fritz et al., 2002a,b). Its physiological electron donor
has not been unequivocally identified, but in many SRP and SOB
the aprAB genes are part of a sat–aprBA–qmoABC gene cluster
(Meyer and Kuever, 2007a,b; Frigaard and Dahl, 2009; Gregersen
et al., 2011; Pereira et al., 2011; sat codes for the sulfate adeny-
lyltransferase), which together with other indirect evidence (Pires
et al., 2003; Haveman et al., 2004) led to the general conviction
that QmoABC is the missing electron donor to AprAB, linking the

quinone pool to sulfate reduction. The essential role of QmoABC
in sulfate reduction has been recently established (Zane et al.,
2010), but a direct connection between the two proteins has not
been reported and direct electron transfer could not be observed
(Pires et al., 2003). In some SOB lineages the qmoABC genes are
absent and instead an aprM gene coding for a membrane protein is
present (Hipp et al., 1997; Meyer and Kuever, 2007a; Frigaard and
Dahl, 2009), suggesting that AprM can replace QmoABC in elec-
tron exchange between AprAB and the quinone pool. Homology
modeling of AprAB from the different SOB lineages highlighted
differences in the AprB structure that correlate with the presence
of either the qmo or aprM genes. This points to adaptation of
the electron transfer protein AprB as a result of docking to either
Qmo or AprM proteins (Meyer and Kuever, 2008), and further
substantiates a direct interaction.

In this work we report the first evidence that in SRP the
QmoABC complex interacts directly with the APS reductase. This
interaction could be detected by co-IP, and SPR showed that the
two proteins are involved in a transient interaction that has a strong
affinity (K D = 90 ± 4 nM) in equilibrium conditions, and which
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FIGURE 3 | Detection of interacting subunits by cross-linking

Far-Western Blot with Anti-AprAB antibodies. From left to right:
M – Pre-stained molecular mass markers; (1) QmoABC in PVDF membrane
was incubated with AprAB (AprAB inc), cross-linked with EDC and
detected; (2) positive control with AprAB in PVDF membrane; (3) negative
control with QmoABC in PVDF membrane not incubated with AprAB.

has a fast dissociation rate. This property allowed the cross-linking
of two proteins and detection by Far-Western blot, which revealed
that the QmoA subunit, and to a less extent QmoC, is involved
in the interaction. The reverse experiment gave no results, but
in the case of AprAB it is known that AprA is the catalytic sub-
unit and AprB the electron transfer subunit (Fritz et al., 2002a,b),
so that interaction with the electron donor should involve AprB.
Expression of a tagged version of QmoA in D. vulgaris Hilden-
borough, followed by affinity purification allowed the detection of
co-eluting AprAB, further confirming a specific direct interaction
between the two proteins in a physiological setting.

However, reduction of APS with a menaquinol analog in the
presence of QmoABC and AprAB could not be detected. The
QmoABC subunits bind two hemes b, two FAD groups and several
iron–sulfur centers, and are homologous to subunits of solu-
ble (HdrABC) and membrane-bound (HdrED) heterodisulfide
reductases from methanogens (Scheme 1; Pires et al., 2003; Thauer
et al., 2008). QmoA and QmoB are both soluble iron–sulfur flavo-
proteins homologous to HdrA, the flavin-containing subunit of
soluble HDRs. The function of HdrA has not been completely
established, but it has been proposed to be involved in flavin-based
electron bifurcation carried out by a complex between HdrABC
and the F420-non-reducing MvhADG hydrogenase (Scheme 1C),
which allows the coupling between the exergonic reduction of the
CoM-S-S-CoB heterodisulfide by H2 to the endergonic reduction

FIGURE 4 | Analysis of Pull-down assay. Strep-Tactin desthiobiotin elution
products of soluble fraction from cells expressing STF-tagged QmoA
(IPAR03) or wild-type D. vulgaris (DvH wt, negative control) analyzed by
Western Blot with Anti-AprAB. M – Pre-stained molecular mass markers.

of ferredoxin by H2 (Thauer et al., 2008; Kaster et al., 2011). This
bifurcation process is believed to involve the HdrA FAD cofactor,
which transfers one electron to the heterodisulfide through HdrBC
and another electron to ferredoxin. Such process may also occur
with formate instead of H2, with a formate dehydrogenase replac-
ing the Mvh hydrogenase (Costa et al., 2010). QmoB includes
also a domain similar to MvhD, the [2Fe–2S] subunit of the Mvh
hydrogenase that is responsible for electron transfer to HdrABC
(Scheme 1C; Stojanowic et al., 2003). QmoC is a fusion protein
that contains a cytochrome b transmembrane domain related to
HdrE (Scheme 1D) and a hydrophilic iron–sulfur domain related
to electron transfer subunit HdrC. Thus, QmoC fuses in a single
protein the two subunits that in many trimeric respiratory oxidore-
ductases (composed of membrane subunit, electron transfer sub-
unit, and catalytic subunit) are responsible for electron exchange
with the quinone pool and electron transfer to the catalytic subunit
(Rothery et al., 2008; Simon et al., 2008). This leaves two subunits,
QmoA and QmoB, with an unknown function and which will
likely interact with other physiological partners. QmoA is shown
here to interact with AprAB, but the function of QmoB remains
enigmatic. Its similarity to HdrA and MvhD suggests the involve-
ment of a third physiological partner for the Qmo complex. We
must also consider that menaquinol (E0′ −75 mV) cannot serve as
sole electron donor to reduce APS (E0′

APS/SO2−
3 = −60 mV) due

to the small difference in redox potentials, and to the fact that the
membrane potential (∼150 mV) has to be overcome when trans-
ferring electrons from the quinone binding site in QmoC (likely
situated toward the periplasmic side of the membrane) to AprAB
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SCHEME 1 | Schematic representation of the QmoABC–AprAB

interaction and the proposed involvement of third partners. (A) In the
hypothesis of an electron bifurcation process the putative electron acceptor
of QmoB with a high redox potential is represented by a question mark. (B) In
the hypothesis of an electron confurcating mechanism several possible
co-electron donors for the Qmo complex are considered: ferredoxin (Fd),

hydrogenase (Hase), formate dehydrogenase (Fdh) or NADH dehydrogenase
(Nox). The soluble HdrABC–MvhGAD complex (C) and the membrane-bound
HdrED (D) of methanogens are shown for comparison. The gray dashed
arrows represent electron bifurcation in (A,C), or electron confurcation in (B).
The gray boxes represent the cytoplasmic membrane with + indicating the
periplasm and − the cytoplasm.

in the cytoplasm. Thus, the reduction of APS by menaquinol has
to be driven by coupling it to a second more favorable reaction.
The idea that an electron bifurcation or confurcation mechanism,
originally proposed by Buckel and coworkers (Herrmann et al.,
2008), could be operating in the reduction of APS then appears
as a very attractive and plausible hypothesis. Two possibilities can
be envisioned: in the first one (Scheme 1A) the QmoB subunit
reduced by menaquinol could bifurcate electrons to QmoA/AprAB
and to a second electron acceptor with a high redox potential.
The energetically favorable reduction of such electron acceptor
by menaquinol could drive the unfavorable reduction of APS by
menaquinol. The only problem with this hypothesis is that we
cannot identify a candidate in SRB with a high enough reduction
potential to drive this reaction.

The second possibility, that we favor, is to consider a reverse
electron bifurcation mechanism, which has been referred to as

electron confurcation. In such a process menaquinol and a cyto-
plasmic reductant of low redox potential could both serve as
electron donors to the Qmo complex, which would confurcate
electrons to the APS reductase (Scheme 1B). The favorable reduc-
tion of APS by this low potential electron donor would drive
the unfavorable reduction of APS by menaquinol. The process of
bifurcation/confurcation requires the presence of a two-electron
center, such as a flavin, as the coupling site. In Qmo there are two
FAD cofactors that can perform this process. According to the idea
of crossed potentials at the flavin proposed by Nitschke and Rus-
sell (2011), the reduction of FAD at QmoA or QmoB by the low
potential electron donor could generate a “hot” flavosemiquinone
with a high redox potential that would then be a favorable electron
acceptor for a second electron coming from menaquinol, and in
practice “pulling” this electron from the quinone. Electron con-
furcation has been reported in the reduction of NADP+ with both
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reduced ferredoxin and NADH by Clostridium kluyveri NfnAB
(Wang et al., 2010), and also in a multimeric soluble [FeFe] hydro-
genase from Thermotoga maritima, which uses both NADH and
reduced ferredoxin to produce H2 (Schut and Adams, 2009).
This process has also been implicated in the energy metabo-
lism of syntrophic organisms (Müller et al., 2010; Sieber et al.,
2010).

Several coupling partners for Qmo can be considered in the
confurcation hypothesis. The first is a hydrogenase or a formate
dehydrogenase by analogy to what happens with HdrABC of
methanogens (Costa et al., 2010; Kaster et al., 2011). An analysis of
SRP genomes showed that a cytoplasmic version of either one of
the two enzymes is always present (Pereira et al., 2011), except in C.
maquilingensis where the qmoABC genes are also absent. In several
organisms an MvhADG homolog is present, which in the archeal
and in some bacterial organisms is part of an mvhADG–hdrABC
gene cluster, suggesting this was acquired by lateral gene transfer
from methanogenic organisms. In other bacteria the mvhADG
genes are isolated, which may indicate subsequent loss of the
hdrABC genes. In Desulfovibrio organisms no mvhADG genes are
present, but genes coding for a membrane-associated hydroge-
nase (Ech or Coo) or a soluble [FeFe] hydrogenase are detected.
The second possible partner for QmoB is a ferredoxin, also by
analogy to HdrA. Ferredoxins are present in the genomes of all
SRP, often in multiple copies (Pereira et al., 2011). Several proteins
in SRP are known to reduce ferredoxin, including hydrogenases
and formate dehydrogenases, pyruvate:ferredoxin oxidoreductase
and the Rnf complex, which is also present in several Desulfovib-
rio spp. (Pereira et al., 2011). Finally, a third possible partner of
QmoB is the mononuclear NADH oxidoreductase, Nox, which has
been reported to reduce AprAB (Chen et al., 1994). Nox homologs
(DVU3212 in D. vulgaris Hildenborough) are also present in
the 25 genomes of SRP analyzed, except Thermodesulfovibrio yel-
lowstonii. Recently, a study of protein–protein interactions failed
to detect a link between Nox and energy metabolism proteins
(Chhabra et al., 2011b), but such a negative result is not entirely

conclusive due to the possibility of transient interactions not being
detected in the conditions used. In these hypotheses H2 (E0′
−414 mV), formate (E0′ −430 mV), NADH (E0′ −320 mV), or
ferredoxin (E0′

∼−400 mV), would all be favorable reductants for
APS (E0′

APS/SO2−
3 = −60 mV). It is conceivable that more than

one of these compounds may be used depending on the meta-
bolic conditions, as observed for HdrABC (Costa et al., 2010),
which could explain why no genes for interacting partners are co-
localized with the sat–aprBA–qmoABC gene cluster. Any of these
reductants could serve as a sole electron donor for the reduction
of APS on its own, but in such situation the cells would get no
energy benefit from this step. Coupling of APS reduction with oxi-
dation of the menaquinone pool allows for energy conservation,
considering that the oxidation of menaquinol by QmoC occurs
at the periplasmic side of the membrane, with release of pro-
tons to the periplasm. In conclusion, the confurcation mechanism
proposed here effectively allows the coupling of sulfate reduction
with chemiosmotic energy conservation, a process long known to
occur in SRP, but for which the molecular basis has been hard to
identify. Clearly, further experiments will be required to test this
hypothesis.
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