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Zinc is a recognized essential element for the majority of organisms, and is indispensable
for the correct function of hundreds of enzymes and thousands of regulatory proteins. In
aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic
anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic
anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different
metal cofactors such as Co?* and Cd?*. Given the global importance of marine phytoplank-
ton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus
cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the
open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria
have focused on freshwater strains and zinc toxicity; much less information is available on
marine strains and zinc limitation. Several systems for zinc homeostasis have been char
acterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp.
PCC 6803, but little is known about zinc requirements or zinc handling by marine species.
Comparative metallo-genomics has begun to explore not only the putative zinc proteome,
but also specific protein families predicted to have an involvement in zinc homeostasis,
including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake
systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins

(BmtA), and efflux pumps (ZiaA and its homologs).
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INTRODUCTION

Zinc might be considered as one of the most inconspicuous trace
elements. To some extent, this is due to its “boring” (Levi, 1984)
chemistry —in its only biologically relevant oxidation state, Zn(II),
it is colorless and does not display any redox chemistry of its own.
Because Zn%t is not redox-active, many authors tend to consider
it as less important than iron or copper in terms of both essential-
ity and toxicity, even though between 5 and 9% of the predicted
proteomes of most organisms correspond to zinc-requiring pro-
teins — in most cases more than either the predicted iron or copper
sub-proteomes (Andreini et al., 2009).

This is even true for prokaryotes which once were thought to
“avoid the hidden cost of zinc homeostasis” (Luisi, 1992). Several
recent bioinformatic approaches aimed at predicting metallopro-
teomes (Andreini et al., 2006, 2008; Dupont et al., 2010) found that
although overall zinc utilization in bacteria is undoubtedly lower
than in eukaryotes, Zn-binding domains are yet highly abundant
in predicted bacterial proteomes. For the case of currently existing
prokaryotes, there is clear evidence for widespread zinc utilization,
in particular in hydrolytic enzymes (Decaria et al., 2010). A major
reason for lower zinc utilization by bacteria is likely the much
lower abundance of zinc finger domains in their proteomes. Fur-
thermore, at least in heterotrophs, the cellular quotas for zinc and
iron tend to be similar (Outten and O’Halloran, 2001), although

it should be emphasized that metal quotas do not necessarily bear
a direct relationship to metal requirements.

Virtually all organisms have elaborate mechanisms to control
zinc levels and distribution (Hantke, 2005; Eide, 2006; Fukada and
Kambe, 2011). Total cellular concentrations typically are in the
high micromolar range; however, various lines of evidence have
indicated that “free” cytosolic zinc concentrations are extremely
low. Values given in the literature vary between nanomolar and
femtomolar — with the true regulated value probably somewhere
in the picomolar range (Krezel and Maret, 2006). The apparent
need for the narrow range of tolerable zinc concentrations had
initially puzzled some researchers, as there seems to be a wide-
spread belief that zinc is not particularly toxic to cells. It could
be argued that this is only true for cells that have efficient mech-
anisms to deal with zinc; otherwise free zinc concentrations as
low as nanomolar can be toxic (Bozym et al., 2010). Deleteri-
ous effects of Zn?t may, at least to some extent, be due to its
high position in the Irving—Williams series (Irving and Williams,
1953), meaning that it outcompetes less competitive metal ions
such as Fe?* and Mn?* for their protein binding sites, as demon-
strated recently for the Mn-binding protein MncA (Tottey et al,,
2008). This latter study illustrated why it is important to limit the
amount of exchangeable zinc in the cytosol of cells, by the demon-
stration that the major periplasmic Mn-binding protein MncA
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of Synechocystis sp. PCC 6803 (a freshwater cyanobacterium) can
only incorporate the essential cofactor Mn?* to a significant extent
if this is present in 100000-fold molar excess over Zn?*. Since
MncA folds and is loaded with Mn?" in the cytosol, this finding
implies the need for a very low free cytosolic zinc concentration in
Synechocystis sp. PCC 6803. Little information is available on zinc
toxicity to marine cyanobacteria. A study on Synechococcus strains
in the strait of Gibraltar noted that even micromolar concentra-
tions of zinc had only a moderate effect on growth (Debelius et al.,
2011), but zinc sensitivity may differ considerably depending on
the natural habitat of a given cyanobacterium.

There are indications for an impact of zinc on major global bio-
geochemical cycles. A “zinc hypothesis” was put forward in 1994 in
astudy that demonstrated zinc and carbon co-limitation in marine
phytoplankton (Morel et al., 1994). A link between zinc and car-
bon fixation is also reflected in the arctic ice-core record (Hong
etal., 1996): during periods of glaciation, zinc levels were at least 10
times higher, whilst CO; levels were significantly lower than in the
intervening periods. Changes in zinc levels due to increased depo-
sition of dust into the oceans are thought to have had an effect
on marine microbial community structure, and the decrease in
CO; levels could be attributed to increased CaCO3 production
by coccolithophores and a resulting decrease in atmospheric CO,
(Schulz et al., 2004). The amount of data on geochemical zinc
fluxes is limited, and it is not clear whether dust deposition today
does (Thuroczy et al., 2010) or does not (Bruland et al., 1994) sig-
nificantly contribute. In terms of a direct biochemical link between
zinc and organic CO; fixation, there are of course the carbonic
anhydrases, which operate in all marine phytoplankton, including
cyanobacteria (Cannon et al., 2010), although substitution with
either Co or Cd has been demonstrated for eukaryotic phytoplank-
ton (Xu et al., 2008). There are also strong indications for links
between Zn and phosphorus cycles (Jakuba et al., 2008), thought
to be due to the requirement of Zn for alkaline phosphatase.

An absolute requirement for zinc has been clearly demonstrated
for marine eukaryotic phytoplankton (Sunda and Huntsman,
1995, 2005), but the situation is less clear for marine cyanobac-
teria, as discussed below. With this review, we aim to make a
case for intensifying studies into the relevance of zinc for marine
cyanobacteria.

MARINE CYANOBACTERIA

Cyanobacteria are a group of phototrophic prokaryotes that all
have the ability to perform oxygenic photosynthesis. In the marine
environment a large diversity of both unicellular (e.g., Syne-
chococcus, Prochlorococcus, Cyanobium, Acaryochloris, and Cro-
cosphaera) and filamentous (e.g., Trichodesmium, Lyngbya, Oscilla-
toria, Nodularia, and Microcoleus) genera exist, occupying habitats
ranging from intertidal microbial mats through to oligotrophic
open-ocean waters (see Whitton and Potts, 2000).

The numerically dominant cyanobacteria in open-ocean waters
are the unicellular genera Synechococcus and Prochlorococcus which
contribute significantly to marine CO; fixation (Li, 1994; Jardil-
lier et al., 2010). Synechococcus are the more widely distributed,
being found in waters covering a broad temperature range, from
ca. 2-3°C to >30°C (Shapiro and Haugen, 1988; Waterbury et al.,
1996; Fuller et al., 2006; Zwirglmaier et al., 2008), and including

open-ocean, coastal and estuarine environments (Partensky et al.,
1999; Scanlan, 2003). Prochlorococcus appears to be more con-
strained in its distribution occupying waters roughly between
45°N and 40°S but within these latitudes it is extremely abundant,
routinely reaching concentrations of 10> cells per ml or higher
(Partensky et al., 1999; Partensky and Garczarek, 2010). Prochloro-
coccus can be distinguished from Synechococcus by its lack of a phy-
cobilisome light-harvesting antenna complex. Instead, it possesses
thylakoid membrane proteins binding unique divinyl derivatives
of chlorophyll a and b (Goericke and Repeta, 1992; Partensky
and Garczarek, 2003). In stratified tropical and subtropical waters
Prochlorococcus cells undergo vertical partitioning between dis-
tinct high light- and low light-adapted ecotypes (Moore et al,,
1998; West and Scanlan, 1999). Both Synechococcus and Prochloro-
coccus have relatively small genomes ranging in size between 1.64
and 2.7 Mb in Prochlorococcus and from 2.2 to 2.86 Mb in Syne-
chococcus (Kettler et al., 2007; Dufresne et al., 2008; Scanlan et al.,
2009). In the case of Prochlorococcus, significant genome reduction
has occurred during evolution of the genus, likely an adaptation
to the oligotrophic gyre systems they inhabit, providing significant
economies in energy and nutrients (Dufresne et al., 2005).

As well as contributing to marine carbon cycling, some
cyanobacteria are also capable of nitrogen fixation (Zehr, 2011).
Trichodesmium, a filamentous non-heterocystous genus, is ubiq-
uitous in tropical and subtropical environments (Capone et al.,
1997) and until recently was thought to be the dominant marine
nitrogen-fixer. However, it is now clear that the unicellular UCYN-
A and UCYN-B lineages, the latter encompassing the genera
Crocosphaera and Cyanothece, also contribute significantly to this
process (Zehr,2011). Surprisingly, despite its global distribution in
the Atlantic and Pacific Oceans Crocosphaera appears to have lim-
ited genetic diversity with high identity and synteny of the cultured
genome sequence to environmental metagenomic datasets for this
genus (Zehr et al., 2007). Interestingly, metabolic insights from the
genome of the UCYN-A lineage reveals a cyanobacterium lacking
photosystem II, RuBisCO, and a tricarboxylic acid cycle (Tripp
et al., 2010) suggesting it requires a symbiotic partner.

The high diversity of marine cyanobacteria is epitomized by
Acaryochloris marina, a cyanobacterium that uniquely utilizes
chlorophyll d as its main photosynthetic pigment (Kuhl et al,,
2005) trapping the far-red light that penetrates beneath the didem-
nid ascidians (sea squirts) upon which these organisms are found
(Ohkubo et al., 2006). Curiously, the A. marina genome is con-
siderably larger than other sequenced unicellular strains (Swingley
etal.,2008) comprising a circular chromosome of 6.5 Mb and nine
distinct plasmids giving a total DNA content of 8.3 Mb. Over 10%
of the protein families contain duplicated copies in A. marina and
this information, together with its utilization of far-red light that
is not absorbed by other aerobic photoautotrophs, suggests that
Acaryochloris species fill a non-competitive niche where they are
apparently free to specialize their metabolic library, and potentially
explains their expansive genome size (Swingley et al., 2008).

BIOLOGICAL AND CHEMICAL CO-EVOLUTION, AND CYANOBACTERIAL
METAL REQUIREMENTS

It has been hypothesized that metal ion bioavailability presented
an evolutionary selection pressure on the “choice” of metals
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within metalloenzymes (Williams and Da Silva, 2003). Con-
versely, biological evolution and the emergence of life has changed
the chemical composition, or more precisely, the speciation of
the atmosphere, the lithosphere, and of course the hydrosphere.
Arguably, cyanobacteria might be deemed responsible for the
greatest change of all by inventing oxygenic photosynthesis (Ray-
mond and Blankenship, 2004). Consequently, they were amongst
the first organisms that encountered, and had to cope with,
the changes in the chemical composition of their environment
that oxygenation brought about (Cavet et al., 2003; Saito et al.,
2003). For metal ion speciation, both fundamental considerations
(Williams and Da Silva, 2001) as well as detailed studies (Saito et al.,
2003) agree that the presence of oxygen meant a drastic reduction
in iron, cobalt, nickel, and manganese availability, and a signifi-
cant increase in the concentrations of zinc, copper, and cadmium
(Williams and Da Silva, 2001; Williams, 2011). It is reasonable to
accept that these changes in chemistry and bioavailability directed
biological evolution, including that of metal-binding biomole-
cules (Williams and Da Silva, 2000). Indeed, even though it has
been suggested that microbial metalloproteomes are still largely
uncharacterized (Cvetkovic et al., 2010), bioinformatic genome
analyzes of known metal-binding protein domains (Dupont et al.,
2010) as well as elemental analysis experiments on marine phy-
toplankton (Bertilsson et al., 2003; Heldal et al., 2003; Ho et al.,
2003; Quigg et al., 2003, 2011; Morel, 2008) give a picture that is
consistent with this idea. Thus, the “co-evolution of biology and
chemistry” is imprinted on both the metallome and the metal-
loproteome. The interested reader is directed to a recent debate
regarding the evolution of zinc-binding domains (Mulkidjanian
and Galperin, 2009; Dupont and Caetano-Anolles, 2010).

In the case of cyanobacteria, metal ion requirements and sensi-
tivities, as far as they have been experimentally determined, agree
with the notion that they evolved in an environment with metal
ion concentrations typical of a sulfidic or a ferrous ocean (Saito
et al., 2003): both marine Synechococcus (Sunda and Huntsman,
1995) and Prochlorococcus (Saito et al., 2002) strains have been
shown to be cobalt-limited, whereas the requirements for zinc are
so low (Saito et al., 2003) that only mild reductions in growth
rates were observed at the lowest possible free zinc concentrations
(Saito et al., 2002).

Our previous genome-mining approaches have identified
strong candidate genes for potentially zinc-requiring carboxyso-
mal carbonic anhydrases, ABC-type zinc uptake systems, as well
as for proteins involved in the intracellular handling of zinc
(Blindauer, 2008b). Several other enzymes in cyanobacteria are
also predicted to require zinc for function, including for example
DNA ligase and alkaline phosphatase (Palenik et al., 2003), the
latter leading to the suggestion that cyanobacteria may be Zn—
P co-limited. Indeed, in certain cyanobacterial strains, alkaline
phosphatase activity is elicited by phosphorus limitation (Moore
et al., 2005), and direct crosstalk between P and Zn, mediated by
the regulatory protein PtrA, has been found in Synechococcus sp.
WHS8102 (Ostrowski et al., 2010). PtrA responds to phosphorus
depletion and its expression up-regulates not only the expression
of phosphatases, but also that of proteins predicted to be involved
in zinc acquisition and distribution — including ZnuABC and a
member of the COG0523 family (see below). However, it has to

be noted that the true metal requirements of each of these pro-
teins has yet to be experimentally verified, and there is reason to be
cautious, with some evidence for the in vivo replacement of zinc
with cobalt (Sunda and Huntsman, 1995) and cadmium (Lee and
Morel, 1995) in marine phytoplankton. Very recently though, uti-
lization of an alternative calcium-requiring phosphatase (PhoX)
has been shown for uncultured Prochlorococcus (Kathuria and
Martiny, 2011), suggesting a further mechanism for reducing zinc
requirements.

In conclusion, although cyanobacteria are at the root of what
life and marine trace metal chemistry are like today, their metal
requirements require further study; none of the predicted major
destinations for zinc are experimentally confirmed, and informa-
tion about if, and how, zinc requirements can be alleviated by
either Co or Cd substitution, is limited.

ZINC SPECIATION IN SEA WATER

In order to understand how cyanobacteria might acquire zinc from
the marine environment, we must first understand its chemical
nature in seawater. The concentration of zinc in oceanic waters
follows typical nutrient-like depth profiles (Bruland, 1980; But-
ler, 1998), with the lowest concentrations found in the euphotic
zone with dissolved zinc rapidly removed to lower depths as
a constituent of colloidal particles (Bruland, 1989; Wells et al,,
1998). Total dissolved zinc concentrations in surface waters of
the North Atlantic Ocean range from just 0.1 to 0.3nM (Ell-
wood and van den Berg, 2000), similar to values obtained from
measurements taken in the North Pacific Ocean (Bruland, 1980).
The vast majority of this zinc (~98%) is found complexed to
uncharacterized organic ligands (Bruland, 1989; Donat and Bru-
land, 1990; Ellwood and van den Berg, 2000) with conditional
stability constants, log K'z,1, of between 10.0 and 10.5 (Wells
et al., 1998; Ellwood and van den Berg, 2000). This results in
a concentration of free Zn’t of 1-20pM. The distribution of
these metal complexing ligands suggests a surface source (Bruland,
1980) that may include phytoplankton including cyanobacteria.
This contribution could be through the direct secretion of zinc-
bindingligands into the ocean. There is already some evidence that
cyanobacteria actively secrete ligands that complex other biolog-
ically important trace metals including copper, iron, and cobalt.
The marine Synechococcus sp. strains WH8101 and WH7805 have
both been found to produce siderophores (Wilhelm and Trick,
1994) for scavenging iron from nutrient-depleted environments,
whilst Cu-complexing ligands are produced to mitigate the toxic
effects of copper (Wiramanaden et al., 2008), with cyanobacteria
particularly sensitive to this metal (Mann et al., 2002). Significant
quantities of strong cobalt-binding ligands were produced by a
Synechococcus-dominated microbial community in the Costa Rica
upwelling dome (Saito et al., 2005).

Alternatively the Zn complexing ligands could be released from
cyanobacterial cells indirectly, perhaps as a consequence of cell
lysis by marine phages (Wells et al., 1998). Despite the fact that
the vast majority of zinc in ocean waters is present in the form of
organic metal complexes, there is evidence that free Zn’* is the
major form of this nutrient taken up by phytoplankton (Ander-
son et al., 1978; Sunda and Huntsman, 1992; Sunda et al., 2005). In
the Pacific Ocean the concentration of free Zn?>* in surface waters
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ranges from only 1 to 14 pM (Bruland, 1980; Donat and Bruland,
1990), and in the Atlantic Ocean ranges from 6.8 to 20 pM (Brand
et al., 1983). The concentration of free Zn>* in surface waters is
thought to be sufficiently low to limit the growth of some marine
phytoplankton (Brand et al., 1983; Sunda and Huntsman, 1992)
although one study found that phytoplankton growth was not
limited by low Zn>* concentrations even after iron limitation was
alleviated (Coale et al., 1996). Conversely, productivity in the sub-
tropical Atlantic was further boosted by addition of Zn or Co to
water that had also been enriched with Fe and P (Dixon, 2008),
providing evidence for Zn/Fe/P co-limitation. Similarly, the iron-
depleted waters of the Southern Ocean and the sub-arctic Pacific
are also extremely zinc-depleted (Sunda and Huntsman, 2000)
which appears to induce high levels of Cd uptake and high Cd:P
ratios in phytoplankton. It is thus clear that interactions between
the cycles of different metal ions exist, and that co-limitation needs
to be studied (Saito et al., 2008). How important such crosstalk is
in cyanobacteria is not yet well understood, and further work is
required to determine if mechanisms exist for the active uptake of
zing, and if so, in what form zinc is acquired by cyanobacteria, and
to determine the impact that cyanobacteria have on trace metal
speciation in ocean waters (Leao et al., 2007).

SYSTEMS FOR ZINC HOMEOSTASIS

Zinc homeostasis in bacteria is largely achieved through a balance
of active uptake and efflux by specific membrane transporters
(Hantke, 2005), plus proteins mediating intracellular zinc han-
dling (Figure 1). In the freshwater cyanobacterium Synechocystis
sp- PCC 6803, a zinc-specific high affinity ABC transporter termed
ZnuABC has been identified for the active uptake of zinc from
the periplasm (Cavet et al., 2003). Putative ZnuABC systems
have also been identified in most strains of marine cyanobacte-
ria (Blindauer, 2008b; Scanlan et al., 2009). The putative znuABC
gene cluster of many of the marine strains also contains a putative
zur gene (Blindauer, 2008b). Zur proteins (for zinc uptake reg-
ulator) are low-zinc sensors; their zinc-loaded forms repress the
expression of znuABC under zinc-replete conditions (Patzer and
Hantke, 2000).

To date no specific mechanisms for the active uptake of zinc
across the outer cell membrane of cyanobacteria has been iden-
tified. It is generally considered that metal ions are small enough
to diffuse freely through porins in the outer-membrane of Gram-
negative bacteria; however, as described above, the concentration
of free Zn?* in surface layers of the world’s oceans is extremely
low, with the vast majority of zinc complexed to as yet uncharac-
terized ligands of unknown structure and origin (Bruland, 1989).
Whether at least some of these ligands are actively secreted to aid in
zinc acquisition remains an open question; there is also the possi-
bility that at least in coastal environments, ligands are synthesized
in response to zinc excess and hence to avoid toxicity (Lohan et al.,
2005; Leao et al., 2007).

In order to deal with excess zinc, Synechocystis sp. PCC 6803 has
a zinc-specific efflux pump, ZiaA (Thelwell et al., 1998), similar
to other P1-type ATPase metal ion transporters, that transports
Zn?T from the cytoplasm to the periplasmic space (Figure 1).
Expression of this efflux system is induced by zinc and is regulated
by ZiaR (Thelwell et al., 1998), a zinc-specific repressor protein.

With the exception of Lyngbya sp. and Nodularia sp., most marine
strains of cyanobacteria appear to lack zinc-specific efflux pumps
(Blindauer, 2008b; Scanlan et al., 2009) reflecting the nutrient
poor environments they occupy, with free Zn?* concentrations
being in the picomolar range in ocean waters (Hunter and Boyd,
1999). Instead, at least some marine cyanobacteria seem to rely on
a mechanism of zinc sequestration by bacterial metallothioneins
(BmtAs; Blindauer, 2008b) to deal with any eventual excess. Met-
allothioneins are small cytosolic proteins rich in cysteine residues
that bind and sequester metal ions and thereby prevent any delete-
rious interactions (Blindauer and Leszczyszyn, 2010). The metal-
lothionein SmtA of the freshwater cyanobacterium Synechococcus
sp. PCC 7942 is induced by several metal ions but most promi-
nently by zinc (Huckle et al., 1993) and its expression is controlled
by the zinc sensor SmtB (Osman and Cavet, 2010) that is highly
similar to ZiaR. Several marine strains of cyanobacteria appear
to lack an SmtB/ZiaR type regulator (Blindauer, 2008b) despite
the presence of one or more genes for a BmtA (Table 1). Fur-
thermore, many also appear to lack any established mechanism
for dealing with zinc excess, with all Prochlorococcus and some
Synechococcus strains apparently lacking both a ZiaA efflux pump
and a metallothionein encoding gene (Blindauer, 2008b). Pre-
sumably these bacteria never encounter toxic levels of zinc in

Low Zinc High Zinc
Zn
5 Outer
- membrane
Znn Periplasm
Cytoplasmic
membrane
Cytoplasm
Zn @B A Zn
cOBDs257 &N@j 2y,
ZiaR
DNA Zn

SmtB

"
Zur

FIGURE 1 | Known and proposed elements of zinc homeostasis in
cyanobacteria. A requirement for zinc is sensed by the transcriptional
regulator Zur, leading to the upregulation of the components of the
ZnuABC uptake system. Some members of the putative
metallochaperone family COG0523 are also regulated by Zur, and have,
in other bacteria, been shown to be expressed in response to zinc
deficiency. In most freshwater cyanobacteria, excessive levels of zinc
are sensed by SmtB and its homologs (ZiaR, AztR, BxmR), and these
sensors regulate either the expression of efflux pumps (ZiaA) or
metallothioneins (SmtA and homologs).
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Table 1 | Presence of selected genes predicted to be involved in zinc homeostasis in marine cyanobacterial genomes.

Species/strain Zur

Zinc-related COG0523?2

BmtA SmtB In gene cluster?

<

Acaryochloris marina MBIC11017
Crocosphaera watsonii WH 8501

Cyanobium sp. PCC 7001 [D]°

Lyngbya sp. PCC 8106

Microcoleus chthonoplastes sp. PCC 7420 [D]
Nodularia spumigena sp. CCY9414
Oscillatoria sp. PCC 6506

Synechococcus sp. CC9311

(\

Synechococcus sp. CC9605
Synechococcus sp. WH 7803
Synechococcus sp. WH8102

N NN N NN

Synechococcus sp. PCC 7002
Synechococcus sp. WH 8109 [D]
Synechococcus sp. WH5701
Synechococcus sp. CC9902
Synechococcus sp. BL107 [D]
Synechococcus sp. PCC 7335 [D]
Synechococcus sp. RCC307 [D]
Synechococcus sp. RS9916 [D]
Synechococcus sp. RS9917 [D]
Synechococcus sp. WH7805 [D]
Trichodesmium erythraeum IMS101

R N N R B SV N VAN

Prochlorococcus marinus sp. AS9601
P marinus sp. MIT 9211

P marinus sp. MIT 9215

P marinus sp. MIT 9301

P marinus sp. MIT 9303

P marinus sp. MIT 9312

P marinus sp. MIT 9313

P marinus sp. MIT 9515

P marinus sp. MIT9202 [D]

P marinus NATLTA

P marinus NATL2A

P marinus marinus CCMP1375°
P marinus pastoris CCMP1986°

N N N N N N N N N N N N N N N N N N N N N N NN NENEN

N NN N N N N NN

yes

NN

yes

v yes

NN N R N N N N RN

Empty cells indicate absence of a recognizable zinc-related homolog, “?” indicate presence of homologs with unclear metal specificity.

aAccording to analysis of syntenic genome regions or presence of upstream Zur box.

b[D] Draft genome.
¢CCMP1375 also known as SS120; CCMP1986 also known as MEDA4.

the environment, although it also remains possible that they may
employ novel mechanisms for zinc homeostasis that have yet to be
discovered.

SENSING A REQUIREMENT FOR ZINC: Zur TRANSCRIPTION FACTORS

In bacteria, the expression of proteins that deal with metal ion
homeostasis is predominantly regulated at the transcriptional level
(Finney and O’Halloran, 2003; Giedroc and Arunkumar, 2007;
Waldron et al., 2009), and is mediated by sensor proteins for zinc
excess (e.g., SmtB and its relatives; Giedroc and Arunkumar, 2007;
Osman and Cavet, 2010) and zinc depletion (Zur and others).
Seven major groups of bacterial metalloregulatory proteins have
so far been defined: the Fur-family (for “ferric uptake regulator”)

is one of them (COGO0735; Bagg and Neilands, 1987), and also
comprises paralogous sensors for zinc (Zur), nickel (Nur), man-
ganese (Mur; Lee and Helmann, 2007), and hydrogen peroxide
(PerR; Jacquamet et al., 2009).

Metal sensing in bacteria occurs overwhelmingly in the cytosol
(Waldron and Robinson, 2009). Ultimately, the sensor proteins are
the proteins that need to be the “most specific” — they should ide-
ally either not bind any other metal ion, or if that is not possible,
they should not respond to other metal ions in the same way as
to their cognate metal. The key concepts of access and allostery, as
well as the importance of relative affinities of different metallopro-
teins for different metal ions, have been highlighted by Waldron
et al., 2009.
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The dissociation constants of Zn?>*—Zur complexes are in the
femtomolar range; similar data are also available for zinc excess
sensors (Outten and O’Halloran, 2001; Giedroc and Arunkumar,
2007) — these data also support the idea that the free Zn’* concen-
tration in the cytosol is extremely low. Several crystal structures
of representatives of the COG0735 family have been determined
(Pohl et al., 2003; Lucarelli et al., 2007; Jacquamet et al., 2009;
Sheikh and Taylor, 2009; Shin et al., 2011). All members stud-
ied adopt a “winged-helix” fold (Figures 2A,C) and all assemblies
are homo-dimeric, as are many other proteins that specifically
recognize DNA sequences.

All “urs” are thought to bind their cognate DNA in the pres-
ence of the entity to be sensed. Although no structures in the
presence of DNA are available, it is thought that DNA-binding
is mediated by the first ca. 80 residues, whilst dimerization, also
a prerequisite of DNA-binding, is mediated by the C-terminal
half, in particular by the formation of a six-stranded B-sheet
formed by both monomers. The overall shape of the dimeric
assembly can be described as an “arch” (Figure 2C), and the two
DNA-binding domains are thought to “grip” the DNA using their
DNA-recognition helices. It is likely that the interaction between
protein and DNA requires a particular conformation that is stabi-
lized by the presence of the sensed metal. The sensing appears to
be mediated by two inter-domain hinges that are likely to be sta-
bilized by metal-binding. In contrast to metal sensors of the SmtB
family in which complete metal sites form between monomers,
each metal site in Fur-family proteins is formed from residues
from one monomer only. If the respective metal is absent, a differ-
ent conformation may become more favorable, and DNA-binding
no longer occurs, leading to the de-repression of gene transcrip-
tion. Despite this general mechanistic idea, there is considerable
ambiguity about the molecular detail of metal-binding, and how
the binding of the “correct” metal mediates DNA-recognition.
Despite the availability of X-ray structure for no less than seven
Fur-family proteins, the identity of the residues involved in bind-
ing the metal ion to be sensed is unclear, in particular in those
“urs” that contain three metal sites per monomer.

A structural zinc site formed by four conserved Cys residues is
present in the majority of Fur-family members, independent of the
sensed metal. One or two further sites participate in sensing. An
inspection of various X-ray structures of Fur-family proteins sug-
gested that sample preparation for such studies seems to be quite
challenging; in particular, appropriate population with the correct
complement of metal ions appears to be less than straightforward,
and in several cases, workers appear to have resorted to populating
all sites with Zn?*, Whilst this is certainly appropriate for Zurs, in
other cases this may lead to ambiguous conclusions, as the coordi-
nation preferences of Zn>* are rather different to those of Fe** or
Ni*. It has been demonstrated experimentally for SmtB/ArsR
sensors that coordination geometry (Cavet et al., 2002) is an
important discriminator in metal sensor proteins (via allostery).
For Pseudomonas aeruginosa Fur, it has been shown in vitro that
Zn?* -loaded Fur interacted with a Fur-binding DNA sequence in
a different manner to that observed with Fe2t (Ochsner et al.,
1995). It should also be noted that despite full conservation of
the respective residues, the crystallographically observed metal-
binding sites in the Fur proteins from Pseudomonas aeruginosa

on the one hand and Vibrio cholerae and Helicobacter pylori on
the other (all structures contain only Zn2T ions) are not identical
(see Figure 2B), and that the domain orientations in the dimeric
assemblies also differ significantly — likely as a consequence of the
different coordination modes. It is conceivable that the binding
mode for Fe>* differs from both experimentally observed sites,
with likely consequences for the structure that is competent to
bind to Fur boxes.

Even in the case of the Zur sensors, metal population seems to
be problematic, and as a consequence, there is some controversy
over stoichiometry as well as the role of the various sites. For the
Zurs from Streptomyces coelicolor (Shin et al., 2011) and Bacillus
subtilis (Ma et al., 2011), there is agreement that site 2 (Figure 2A)
is the major sensory site. Variations of site 2 are present in Fur,
Nur, and PerR (Figure 2B), and in each case, this site has been
identified as the sensory site. Site 3 was only partially occupied in
the M. tuberculosis structure (Lucarelli et al., 2007), and the dimer
displayed an open conformation, probably with reduced DNA-
binding ability. In contrast, site 3 (site D) was fully occupied in
the structure of S. coelicolor Zur, and the dimer showed a closed
conformation, thought to be DNA-binding competent. This led
to suggestions that site 3 fine-tunes the response to zinc (Shin
et al., 2011). This assessment has been contested based on studies
of mutants of B. subtilis Zur (Ma et al., 2011), which suggested
that site 3 is not populated under physiological conditions at all,
but that the two site 2s in the dimer have different affinities and
show negative cooperativity. In either case, it was suggested that
different metal affinities of the various sites allow the broadening
of the operating range of the Zur proteins.

We believe that the preceding discussion demonstrates the chal-
lenges encountered in the study of metal-binding and -sensing
proteins, but also highlights how important continued studies of
metalloproteins are. Unfortunately, so far, no structure for any “ur”
from a cyanobacterium has been elucidated, but in the following,
we will explore what can be achieved using theoretical approaches.

BLAST searches in the genomes of marine cyanobacteria
retrieved members of the COGO0735 family as summarized in
Table 1; Figure 3 and Figures S1 and S2 in Supplementary Mate-
rial. They cluster into four distinct groups. Although it should
be recognized that sequence similarity and metal specificity of
sensors (or indeed other metalloproteins) need not be congru-
ent (Campbell et al., 2007), comparisons with other “urs” of
known specificity, first and foremost Synechocystis Zur, suggest
that the branch highlighted in light purple corresponds to Zurs.
Furthermore, an analysis of the genome environments of the Zurs
from the majority of Prochlorococcus strains supports this idea
(Figure 4).

Intriguingly, sequence comparisons (Figure 2B) show that an
equivalent of site 2 cannot be identified in the cyanobacterial Zur
homologs, and neither are all residues of site 3 the same as in
structurally characterized Zur proteins. We have constructed a
homology model of the representative from Prochlorococcus sp.
§8120 (CCMP1375) to test whether likely alternative binding sites
might be predicted. The model obtained (Figure 2C) suggests that
the cyanobacterial Zurs may contain a variation of site 3, compris-
ing D80, H82, C98, and H118. Thus, the predicted zinc-sensing
site is in a location corresponding to site 3, but has a ligand set that
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Site 1: v
C90,C93, Site 2

D65,C79,H85,F

D80, H82, C98, H118:
proposed sensory

site
Prochiloroc. m. CCMP1986 - --————————————— MPMDRSTPEISERQKQLLQELKKCN-DELSGQELHRQLHQSENAMGLATVYRNLQ
Synechococcus WH8102 --MTGSSPA--—————————————m LNARQOQALLTALNACG-DEMSGQQLHRSL-DDEASMGLATVYRNLR
Crocosphaera watsonii @ 0——————— e MKAKYTRSQEKIIRVLKSLK-YGISAQDLYAELKHRDQPLGLATVYRALE
Synechocystis PCC 6803 =-MSLPTPS—-——=====- LAVRLESLTVNQRLVLQALQRET-EPLSAQALFAKLRET-KKIGLATVYRALD
Gloeobacter_violacaeus —————— MPA- === ——— RKLTKGQQAVLEALASSK-RPLCAQDIYLQLRGTEQEVGLATVYRSLE
M. tuberculosis pdb 2003  ----- MASA-===———m———— AGVRSTRQRAAISTLLETLD-DFRSAQELHDELRRRGENIGLTTVYRTLQ
Str. coelicolor pdb 3IMWZ -=-VTTAGPP---==———————= VKGRATRQRAAVSAALQEVE-EFRSAQELHDMLKHKGDAVGLTTVYRTLQ
Bacillus subtilis Zur 0 0—————-—---—- MNVQEALNLLKENGYKYTNKREDMLQLFADSD-RYLTAKNVLSALNDDYPGLSFDTIYRNLS
Pseudom. aer. Fur 1MZB -GSMVENSE-=======- LRKAGLKVTLPRVKILOMLDSAEQ! SAEDVYKALMEAGEDVGLATVYRVLT
Vibrio cholerae Fur 2W57 --MSDNNQA----————— LKDAGLKVTLPRLKILEVLOQQPECOHISAEELYKKLIDLGEEIGLATVYRVLN
Helicobacter p. Fur 2XIG -MKRLETLESILERLRMSIKKNGLKNSKQREEVVSVLYRSG-THLSPEEITHSIRQKDKNTSISSVYRILN
Str. Coelicolor Nur 3EYY “MVUSTDWKS ====mmwe= DLRQRGYRLTPQRQLVLEAVDTLE--HATPDDILGEVRKTASGINISTVYRTLE
Bacillus subtilis PerR 2FE3 --MAAHELK----EALETLKETGVRITPQRHAILEYLVNSM-ARIPTADDIYKALEGKFPNMSVATVYNNLR
8082 98 118

Prochloroc. m. CCMP1986  VLVKQGLVRSRHLPTGEVLYTPVER--DIHHLTCVNCGETTRLEGCPVNTMNVPKKTSEKFELLFHTLEFFGLC---QNCLOKKES————~
Synechococcus WH8102 QLQQORGLVRCRHLPTGEALYAPVDR--DRHHLTCVDEGTTQVLDHCP IHGI DVPADSRGDFELLFHTLEFFGFC---SSCRPQRSSKP-——

Crocosphaera walsonii GLKTQGTVKSRTLSNGEAIYSVIS--HEQHHVICVSCGOS FVINECPVHDLEKRLEKTYNFQVYYHTLEFFGREC---HECNTKSVL----~—
Synechocystis PCC 6803 ALKLAGFIQHQATMTGELLYQTLEQ--DOQHCLTCLQCGESVPIQGCPVQSLEENLOQANYSFRIYYHTLEFFGLC---QLCAKGSD------
Gloeobacter violacaeus ALLADDRIQIIDVRDNQAHYLMGRANHSQHHLICLSCKRVVPLDHCPVSALEQHLSQDHEFQIAYHVLDFYGTC---GECRQAVGA----~—

M. tuberculosis Zur 2003 SMASSGLVE@TLHTDTGESVYRRESE-H LVCRSCGSTIEVGDHEVEAWAAEVATKHGFSDVSHTIEIFGTE---SDCRS—————-——-
Str. coelicolor Zur 3AMWZ SLADAGEV@VLRTAEGESVYRRE@STGD! M1, VCRACGKAVEVEGPAVEKWAEATAAEHGYVNVAHTVEIFGTC---ADCAGASGG----—

Bacillus subtilis Zur LYEELGILQTTELSGEKLFREFKQSFTH! FICLACGKTKEIESCPMDK---LCDDLDGYQVSGHKFEIYGTC---PDCTAENQENTTA-
Pseudom. aer. Fur IMZB ~ QFEAAGLVVRHNFDGGHAVFELADS -GEHBHMVCVDTGEVIEFMDAE IBKROKE IVRERGFELVDENLVLYVRKKK-—-————————————
Vibrio cholerae Fur 2W5S7 IBHT. VCL.DCGEVIEFSDDVIEQRQKEIAAKYNVQLTNRSLYLYGKCGS DGSCKDNPNAHKPKK

Helicobacter p. Fur 2XIG FLEKENFISVLETSKSGRRYBIAAK-EHEHT ICLHCGKI IBFADPE IENRONEVVKKYQAKLISYDMKMFVWC---KECQESES————-—
Str. Coelicolor Nur 3EYY LLEELGLVSHAHLGHGAPTY] LADR—IH IHLVCRDCTNVIEADLSVAADFTAKLREQFGFDTDMKHFAIFGRE---ESCSLKGSTTDS--
Bacillus subtilis PerR 2FE3 ~ VFRESGLVKELTYGDASSRFEEFVT-—-SDig| Y8~ ICENCGKIVDFHYPGLDEVEQLAAHVTGFKVSRLE IYGVEC---QECSKKENH-----
Zinc sites in 3AMWZ 1 90 93 105 122 130 133

FIGURE 2 | Structural features of Zur proteins. (A) Crystal structure of the structural zinc site. (C) Homology model for Pro1502, a predicted Zur
Zur from Streptomyces coelicolor (Shin et al., 2011; pdb 3SMWM). Only protein from Prochlorococcus marinus sp. CCPM1375. Inspection of initial
one monomer is shown. The three zinc-binding sites are highlighted in red metal-free models and conservation of potential ligands [see (B)]

(site 2 — major sensory site), yellow (site 3), and gray (site 1 — structural suggested that cyanobacterial Zurs contain only one sensory binding site
site). (B) Sequential alignment of structurally characterized Furfamily that differs significantly from the sites in other Fur-family proteins including
proteins from various bacteria together with selected sequences from the two Zur proteins from S. coelicolor and M. tuberculosis, but the
cyanobacteria. The color-coding for the Zur proteins from S. coelicolor and combination of donor atoms is the same as for site 2 (=N,OS). Further
M. tuberculosis corresponds to that shown in (A). The consensus sensory variations within the cyanobacterial Zur proteins are possible, as indicated
site 2 is clearly not present in cyanobacterial sequences, but a variation of for the sequences from Gloeobacter violaceus (a genus forming the

site 3, highlighted in yellow, can be discerned. Corresponding sites in earliest branch of the cyanobacterial phylogenetic tree) and Crocosphaera
Fur/Nur/PerR proteins are highlighted in dark and light green, and gray for watsonii, which could form N;S sites.

www.frontiersin.org April 2012 | Volume 3 | Article 142 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Microbiological_Chemistry/archive

Barnett et al.

Zinc homeostasis in cyanobacteria

57 901800d

)

0 dZ 9089 D0d S BLOIRIOSO

A\
%
. 707 9,
Syn Pee 007 5907 &?’Q);@
Synechocoesye o 2 01 2P : %
Us sp. RCC307 YP 001257, 96 2

Synechococe,
45 0. W 102 pp ¢
Synechococcus sp. CCQSEJ%P
0

90,
Synechococeus s’;' $L1o

FIGURE 3 | Phylogenetic relationship among Fur-like proteins from
marine cyanobacteria. Sequences are labeled with species and protein
accession number; a rectangular tree including bootstrap statistics can be
found in Figure S1 in Supplementary Material, and the actual sequences are
documented in Figure S2 in Supplementary Material. Additional proteins for
the experimentally verified Fur from Escherichia coli and Synechocystis sp.
PCC 6803 are also included (green boxes), along with the Zur proteins from
Streptomyces coelicolor, Mycobacterium tuberculosis, and Synechocystis sp.
PCC 6803 (purple boxes). Amino acid sequences (see Figure S2 in
Supplementary Material) were aligned using CLUSTALW (Larkin et al., 2007),
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and manually edited prior to import into MEGAS (Tamura et al., 2011).
Phylogeny was inferred using the minimal evolution method. Bootstrap values
are the result of 1000 replications. Evolutionary distance was estimated using
the JTT model of substitution. There are four clear branches. Inclusion of
Synechocystis Zur and Fur allows the suggestion that the branches containing
these sequences correspond to zinc-responsive (light purple bubble) and
iron-responsive (light green bubble) regulators. The Zur and Fur sequences
from other bacteria do not cluster with any of the four branches, indicating
that similarity between cyanobacterial sequences and those from other
bacteria do not allow to infer metal specificity.

is similar to that of site 2, which may suggest that the zinc-binding
affinity of this site is also closer to that of site 2. The four residues

identified are almost fully conserved in putative Zur proteins from
all cyanobacteria (Figure S2 in Supplementary Material). A notable
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All Prochlorococcus, except MIT9303 and MIT9313

Prochlorococcus str. MIT9313 and MIT 9303:

(6 kB)

Crocosphaera watsonii

ZnuB & ZnuC 'ZnuA

Synechococcus sp. CB0205:

Synechococcus sp. CB0101:

B K, - JIU

Synechococcus sp. WH5701

. -

Synechococcus sp. 7002

EDEDED

FIGURE 4 | Selected variations in genome neighborhoods of elements
of zinc homeostasis in marine cyanobacteria, with a focus on putative
Zur (left) and COG0523 (right) proteins. ZnuA is the periplasmic binding
protein, ZnuB the permease, and ZnuC the ATPase component of the
ZnuABC uptake transporter (also see Figure 1). In other strains and
species (e.g., other Synechococcus strains, Lyngbya sp. PCC 8106,
Microcoleus chthonoplastes), the gene for Zur is not co-localized with

Prochlorococcus MIT9303, Synechococcus sp. WH8102

Lyngbya sp. PCC 8106

Acaryochloris marina (AM1_3031)

[z) /5B )/

Acaryochloris marina

(AM1_3070)

Crocosphaera watsonii

recognizable elements of zinc homeostasis. Note that there appear to be
two ZnuABC-type systems in Prochlorococcus marinus sp. MIT 9303. The
Acaryochloris marina genome and plasmids harbor at least nine COG0523
family members; AM1_3070 (corresponding to UniProt entry
BOCDJ7_ACAM1) and AM1_3031 (corresponding to UniProt entry
BOCCJ8_ACAMN1) are directly or indirectly associated with zinc
homeostasis.

exception is the homolog from Trichodesmium erythraeum, in
which H82 is replaced by a Tyr residue.

From this analysis, we would predict that the molecular mecha-
nism for sensing in cyanobacterial Zurs differs to some extent from
that of other bacterial Zurs with three metal sites, but the general
idea of zinc stabilizing domain orientation still holds. Notably,
the recognition motifs (Zur boxes) for cyanobacterial Zurs differ
somewhat from those of other bacteria (Haas et al., 2009), which
may require an adapted mode of operation of the protein.

Using the Zur box motif developed by Haas et al
(2009) we have interrogated the genomes of Synechococcus sp.
CC9311, Prochlorococcus sp. CCMP1375, and Prochlorococcus sp.
CCMP1986. We have also examined the entries for cyanobacterial
Zur regulons in the RegPrecise database (Novichkov et al., 2010).
The motifs developed by Haas and by RegPrecise differ (Figure 5),
but common features can still be discerned, and it is likely that the
consensus Zur box in cyanobacteria corresponds to an (imper-
fect) inverted repeat, analogous to Zur and Fur boxes from other
bacteria (Gabriel et al., 2008).

In the Prochlorococcus strains examined, a putative Zur box
was found in the intergenic region between a putative znuA and
znuC. All three components of the ABC transporter are arranged
into one gene cluster that also comprises the respective putative
zur gene (Figure 4). All other strains inspected (Trichodesmium

erythraeum, Synechococcus sp. WH8102, Synechococcus sp. PCC
7002) also contain one or more Zur boxes in their znuABC gene
cluster.

In the genome of Prochlorococcus sp. CCMP1986, Zur boxes
were also identified upstream of several genes encoding ribosomal
proteins (S7, S12, and S14p/S29e). This is of potential interest,
because in other bacteria several ribosomal proteins, e.g., S14,
L31, L33, and L36, occur in two versions, one requiring a zinc
ion to stabilize a zinc-ribbon fold, and one version not requiring
zinc (Makarova et al., 2001). The latter versions have been shown
to be regulated by Zur in several bacterial species (Panina et al.,
2003; Owen et al., 2007; Gabriel and Helmann, 2009). It has been
suggested that the ribosome is, under zinc-replete conditions, a
substantial store for cellular zinc, and that the “alternative” ver-
sions are expressed in response to zinc deprivation (Owen et al.,
2007), operating as a backup for growth in Zn-poor environments,
thus helping to reduce the overall requirement for zinc and the cel-
lular zinc quota. The transcriptional response of E. coli to extreme
zinc limitation (Graham et al., 2009) highlights that zinc limita-
tion not only affects the transcription of genes encoding proteins
involved in zinc homeostasis, and that are zinc-requiring, but
also, importantly, zinc-independent proteins. Similarly, in other
bacterial species it has been demonstrated that a variety of zinc-
independent proteins including an alternative version of the global
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FIGURE 5 | Sequence logos for Zur boxes in cyanobacteria. (A)
Consensus sequence developed by Haas et al. (2009), using 14
sequences found upstream of COG0523 genes in Prochlorococcus
marinus sp. CCMP1986, P marinus sp. CCMP1375, Nostoc sp. PCC
7120, Cyanothece sp. PCC 7424, Cyanothece sp. PCC 8802,
Cyanothece sp. PCC 8801, Cyanothece sp. ATCC 51142, and
Cyanothece sp. PCC 7425. (B) Consensus sequence deposited in the
RegPrecise database (Novichkov et al., 2010) using 75 sequences from
the genomes of Synechocystis PCC 6803, Synechococcus sp. PCC
7002, Synechococcus sp. PCC 7942, Synechococcus JA-3.3Ab,
Thermosynechococcus elongatus BP-1, Synechococcus sp. WH8102,
Prochlorococcus sp. MIT 9313, Trichodesmium erythraecum IMS101,
Cyanothece sp. PCC 7425, Cyanothece sp. PCC 8801, Cyanothece sp.
ATCC 51142, Microcystis aeruginosa NIES-483, Nostoc sp. PCC 7120,
and Gloeobacter violaceus PCC 7421. There are clear similarities
between the two logos as indicated by the suggested alignment of
parts A and B.

transcription factor DksA in Pseudomonas aeruginosa (Blaby-Haas
etal., 2011), are under the control of Zur, and genome analyses of
Zur regulons suggest that this is a widespread phenomenon (Haas
et al., 2009). However, neither of the two versions of S14 present
in the genome of Prochlorococcus sp. MED4 displays any salient
signatures for zinc-binding, and neither S7 nor S12 are known to
bind zinc or occur in duplicate, so the significance of their vicinity
to Zur boxes is in need of further investigation.

Another set of potential Zur boxes were found in a cluster
that comprises FutC, ferritin, and a Rieske iron—sulfur protein.
According to the manually curated database of bacterial regulons
RegPrecise, the cognate sequences of Furs and Zurs differ signifi-
cantly (Novichkov et al., 2010). Hence, the detection of potential
Zur boxes within a cluster related to iron homeostasis suggests
that there is some crosstalk between the homeostasis of these two
metal ions; this has been observed in other bacteria, e.g.,in S. coeli-
color, where the gene cluster responsible for the production of the
siderophore coelibactin is regulated by Zur (Kallifidas et al., 2010).

The only Zur box that we were able to identify in the genome
of Synechococcus sp. CC9311 was upstream of a predicted ZIP
transporter protein (Sync_2443). ZIP (for “zinc—iron permeases”)
proteins are involved in zinc uptake in a variety of organisms
including plants, animals, fungi, and bacteria. However, ZIP
proteins have as yet not been reported for cyanobacteria, and
no recognizable homologs of Sync_2443 were found in any other
cyanobacterium; the closest match in a BLAST search was a zinc
transporter from the y-proteobacterium Francisella novicida. If
Sync_2443 really is a zinc transporter, this coastal strain has an

even more remarkable repertoire for dealing with fluctuations in
zinc concentrations than previously thought (Palenik et al., 2006).
Two further notable RegPrecise entries were found for the genomes
of Trichodesmium erythraeum, indicating Zur boxes upstream of a
putative metallochaperone of the COG0523 family (Tery_4617),
and Synechococcus sp. WH8102, which contains two Zur boxes
upstream of a gene encoding a potential bacterial metallothionein
(SYNWO0359) — both groups of proteins are discussed below.

Very recently, Napolitano et al. (2012) studied the response of
Anabaena sp. PCC7120 to zinc starvation. Aided by gel shift assays
and a deletion mutant, the product of the all2473 gene, previously
designated FurB and thought to be involved in the response to
oxidative stress (Lopez-Gomollon et al., 2009), was identified as
a true Zur. Several gene clusters that contain putative Zur boxes
were shown to be regulated by changes in zinc levels in this organ-
ism. The expression of four categories of proteins was regulated
by Zur: (i) zinc-free paralogs of zinc proteins, (ii) putative met-
allochaperones of the COGO0523 family, (iii) ABC transporters
including a predicted ZnuABC system, and (iv) outer-membrane
proteins, particularly TonB-dependent receptors. A 7-1-7 palin-
dromic DNA sequence to which Zur bound with high specificity
was also determined, and agrees well with the Zur box consensus
motifs shown in Figure 5. The protein sequence of the all2473
product clusters with those predicted by us to be Zurs (Figure 3),
and the four residues predicted to be involved in zinc-sensing are
also conserved in the all2473 protein.

MEMBERS OF THE C0G0523 FAMILY AND ZINC

In our earlier work (Blindauer, 2008b), we noted that the genome
neighborhood of putative zur and znuABC genes in numerous
genomes from cyanobacteria harbored genes that were anno-
tated as “Putative GTPase, G3E family”, “Cobalamin synthesis
protein/P47K”, or “CobW”. The latter protein is a cobalt chap-
erone that is part of the machinery for Vitamin B12 synthesis,
and at the time, this raised the question whether our putative
zinc-related genes might actually be involved in the regulation
and transport of cobalt. In the meantime however, Haas et al.
(2009) have conducted a thorough analysis of the COG0523 fam-
ily (Leipe et al., 2002) to which CobW belongs. All members of
COGO0523 have a P-loop GTPase domain, and are thus also related
to nickel-chaperones of the G3E family with the same domain that
are involved in the maturation and assembly of urease (UreG),
and hydrogenase (HypB), as well as to the iron-chaperone Nha3
required for maturation of nitrile hydratase. G3E family proteins,
and by inference, COG0523 proteins, function as either insertases —
proteins that perform energy-requiring metal insertion into target
proteins — or as cytosolic storage and transport devices for metals
(=metallochaperones), or both.

The COG0523 members are composed of two domains, a
well-conserved N-terminal GTPase domain, and a more vari-
able C-terminal domain. They have been categorized as segmen-
tally variable genes (Haas et al., 2009), and this points toward
a role in adaptation to environmental stresses and/or variability,
and indicates development of binding specificity for other pro-
teins or small molecules. Haas et al. note that “the COG0523
family is a striking example of systematic homology-based mis-
annotation” — a specific function (in this case a role in cobalamin

Frontiers in Microbiology | Microbiological Chemistry

April 2012 | Volume 3 | Article 142 | 10


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiological_Chemistry
http://www.frontiersin.org/Microbiological_Chemistry/archive

Barnett et al.

Zinc homeostasis in cyanobacteria

biosynthesis) being assigned even though the level of sequence
similarity does not support this conclusion. We would add that
such mis-annotation is certainly rife in the case of gene annota-
tion for metal-binding proteins. The fact that many Zur proteins
are annotated as Fur is another example of this problem, and issues
surrounding the annotation of ABC-type transporters and metal-
transporting ATPases have been discussed elsewhere (Blindauer,
2008b).

Importantly, the theoretical and experimental studies of Haas
et al. as well as the work of other groups (Gabriel et al., 2008)
strongly suggested that a subset of COG0523 proteins is involved
in zinc homeostasis. The most prominent member of zinc-related
COGO0523 is probably Bacillus subtilis YciC (Gabriel et al., 2008); it
has been established that its expression is under the control of Zur,
leading to upregulation when zinc is scarce. It is suggested that the
expression of zinc-related COG0523 proteins may provide advan-
tages under conditions of poor zinc nutrition — obviously, these are
conditions always present for open-ocean cyanobacteria. Unfortu-
nately, no suitable studies at the protein level seem to be available
for any COG0523 member, so although a link to zinc deprivation
is solidly established at the transcriptional level, it is not known
whether and which metal ion these proteins bind either in vitro or
in vivo. Whilst the requirement of metallochaperones for copper,
nickel, and cobalt can be easily understood, as the target proteins
for whose assembly they are required are few and well identified, a
similar scenario for zinc has been deemed unlikely, as it is thought
that even in bacteria, there are too many destinations for zinc, so
the tenet that there is one chaperone per metalloprotein is incon-
ceivable. Hence, two hypotheses have been put forward regarding
the role of the zinc-related COG0523 members (Haas et al., 2009):
(i) they are up-regulated to function in the recruitment and supply
of a metal ion that is not zinc to metalloproteins — the latter may
be either normally zinc-requiring or a different paralog — (ii) these
COGO0523 proteins may be involved in the (re-)allocation of zinc
when this becomes necessary.

Sequence analysis of cyanobacterial COG0523 proteins
(Figure 7; FiguresS3 and S4 in Supplementary Material) illus-
trates characteristic features, for example a well-conserved GCxCC
motif which has been suggested as potential metal-binding site
previously (Haas et al., 2009); however, its location in a f strand
makes this less likely (see below and Figure 8). Another intrigu-
ing feature is the insertion of stretches with repetitive HHX, and
HXH motifs of up to 70 amino acid residues in total. These
His-rich stretches have been suggested to be hallmarks for met-
allochaperone activity of G3E GTPases. In the COG0523 subset
we have analyzed 115 out of 150 proteins (77%) display such
stretches. The phylogenetic tree for cyanobacterial COG0523 pro-
teins (Figure 6) is roughly split into three major branches, each
of which is divided into two sub-branches. Phylogenetic analysis,
together with analyses of genome contexts (Figure 4), suggests
that phylogeny and metal specificity are not congruent — in agree-
ment with the findings of Haas et al. who defined 15 phylogenetic
sub-groups for COG0523 members, with links to zinc homeostasis
found in several sub-groups, and various sub-groups containing
representatives with links to several different metal ions. A strong
link to znuABC- and zur-containing gene clusters is present in one
branch (1a) of the phylogenetic tree (Figure 6) for sequences from

Prochlorococcus and Synechococcus sp. WH8102. Analysis of the
genome environment for these sequences reveals co-localization
of COGO0523 with a WD-40 repeat gene (Figure 4). This associa-
tion is also strongly conserved for other members in this branch,
although the functional significance of the WD-40 repeat protein
is unclear. Interestingly, COG0523 sequences of branch la con-
tain long inserts (ca. 150 aa), distinct from those described above,
as they are not particularly rich in His residues (Figure 7). Sec-
ondary structure prediction for these inserts suggests the presence
of four to six B-strands and one or two short a-helices. It is con-
ceivable that this insert forms an additional domain in its own
right, though no similarity to any known domains was found in
an InterPro-scan search.

There is currently only one X-ray structure available for a
COGO0523 protein — the YjiA protein from E. coli (Khil et al., 2004).
According to the analysis by Haas et al. (2009) YjiA belongs to their
subgroup 9, for which no clear association with any particular
metal ion was reported. The crystal structure (pdb 1N]JI) also does
not contain any metal ions, but considering that the structure is a
product of a structural genomics effort, this may not be surprising.
Analysis of potential metal sites in the structure using the CHED
server (Levy et al., 2009) revealed the presence of two surface-
exposed sites with potential for metal-binding; these are both in
the GTPase domain and are composed of H23, E27, and H29, and
D52, D79, and D82.

We were interested to see whether it would be possible to pin-
point distinguishing elements that would indicate metal-binding
capacity, with the help of homology models for COG0523 proteins.
We therefore chose BOCCJ8_ACAMI1 from Acaryochloris marina
that is present in branch 1 as a target for comparative model-
ing. The respective AM1_3031 gene is next to a WD-40 repeat
gene and also in the neighborhood of a zur gene (Figure 4). In
addition, we modeled BOCD]7_ACAM], since the gene for this
protein (AM1_3070) is co-localized with a putative znuABC sys-
tem (Figure 4). The sequence for this protein is located in branch
3b of the phylogenetic tree and is highlighted in Figure 6. Several
other closely related sequences from the same organism (includ-
ing some plasmid-encoded sequences) are present in all three
branches, but none of these occurs in a zinc-related genomic
context. The two models are shown in Figure 8. Beside a His-
rich loop between the two domains that also contains two Asp
and a Cys residue, there are no further recognizable metal sites
in BOCDJ7_ACAML1. In contrast, BOCCJ8_ACAMI1 has a much
shorter loop comprising only two His and several Asp and Glu
residues that might bind a metal. Other branch 1b members also
contain this short loop, but so do some representatives from the
other sub-branches. The model also displays two further potential
metal sites composed of D132, H135, and H139, and E210, D212,
and E300, as identified using the CHED server, but only D132
and H135 are conserved within the branch, questioning the sig-
nificance of these sites. The quest for the true metal-binding sites
and the mode of action of the zinc-related COG0523 proteins
remains open.

INTRACELLULAR HANDLING: METALLOTHIONEINS (BmtAs)
Metallothioneins, small proteins with a high content of cysteine
with the capability to bind multiple metal ions in metal-sulfur

www.frontiersin.org

April 2012 | Volume 3 | Article 142 | 11


http://www.frontiersin.org
http://www.frontiersin.org/Microbiological_Chemistry/archive

Barnett et al.

Zinc homeostasis in cyanobacteria

©
5
P 3 $ b
(o] ¥ o~ © o
2 LSeh 832 Soo
3 TS P8 5y BF Sk
L Qmw::“i’gmo‘?hﬁ'\@y o
23z 5 =N S T “‘ﬁ“%’\"\?g
005 Q=2 ook LT S 838 S S
B2 A X s TIN TSIV IL »
-0%?6: o5 <O 0>—OV§Q>~ SAL "-’o & 2
3a 2282 58 S o0 & KO A‘%?Q/\\«q’c;; &
ce2 22 BN GBS (A o e
4. % S22 25 ol S5 S SR QRO Rt o
70,7, Bo 38 e Gty SHSAY I ORI ©
NG 2% 02 i 528 IR IO 282 At
SO e SN & R SRR e N
,P/ZO%O&G?/ aeS 2o RIS AR Ry
070,77 % 3 L O =
e 30,‘,70/0; = IE < E R
NI r B |E = O
121, C 75 B8 S
Qay Me;{g? 2
1180z, |8’ VY
quBDGB’fK(gBOBX 4N QAT &
OlQ8DEHST A
f”BBHstlgsHYZB 688
Q31PNGIQ31p, /132
tr|Q5N4Ja{Q5N45\?§9YW/Mm
tr1Q3ALTe|Q3A1 T6
tr|Q3AJ Ba!?gg\dggzsz £
1r|Q7USB2|
\:{Q%\B%&%\%é?{g &
Ol
OO QTR Y
\\‘\01\‘01\1\'5\%0\%\)2 &\ N
WP o @gf’v\"” v 9 GLOVI1-449
WO N o RN A8 1xQU1 SYNP2/1-318
AP @0‘5\%&& Y BOCIX3 ACAM1/2-321
) )
N
\«?f’os\&rp\“;«*"@
QY O‘b:? “zq‘;z
O Q‘b§ AN
'&\{\0 ,9\‘”«4 ?,&\A’LQQJ(%
S
s LEer 2
F LS8 LN
FIL '%"’61’0@%\3 )
e ‘7¢&® 22
2
L% % 1b
ENA
%
&l
A A °f§%m1§l
ARV PRGN g 9/7 Qz7y
2 AD 05k 759 SYNp
W%\\Lad:so\‘; 3 B 5 %400%%?3% . SYX/1-364
W 0T Q= 196,18 5ROy K63 g N9/,
DA N ) § e ’234'(6‘ '904/43/7(1 )’/\,{9@ 55
\.\“"§ \\ﬁg’x YOO XS % LS LS My, X35 s,
NS IORRI Dm = R, Koy Wy, 3%
o AN Soyahg R F 001,525 W
) N R p 3,
FEISHTLS, 22F £ Sy Ko By Y&
N < 2 = [ ),
SSS85222 0% o &2 ok, %
Cra29s6 g o BRI%R, 0
SRE10% 2 T2 2
s588 [ R
2 SR RN
2 CH2e®
® 259 %
s & 7 &
3° %
0.2
FIGURE 6 | Phylogenetic tree for COG0523 family members. The rectangular tree including bootstrap statistics can be found Figure S4 in
phylogenetic tree for cyanobacterial COG0523 family members was Supplementary Material. The sequence of E. coli YjiA, the only COG0523
generated in MEGAb using the maximum likelihood method with the JJT member for which an experimentally determined structure is available, was
substitution model. Bootstrap values are the result of 1000 replications. also included in the tree. Entries with a genomic context linked to zinc
Sequences are labeled with UniProt accession numbers; the actual homeostasis are highlighted in purple (also see Table 1). Sub-branches are
sequences are documented Figure S3 in Supplementary Material, and a labeled and discussed in the main text.

clusters, were initially reported as cadmium-binding proteins in
the livers and kidneys of mammals (Kigi, 1991). In the five

decades since their discovery (Margoshes and Vallee, 1957), genes
encoding metallothioneins have been identified in virtually all
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FIGURE 7 | Examples of the six sub-groups of COG0523 family
members. All four homologs from Prochlorococcus marinus
CCMP1375 are shown, as well as two sequences from Acaryochloris
marina, structural models of which are shown in Figure 8. A further A.
marina representative from branch 2b and the potentially Zurregulated
representative from Trichodesmium erythracum (locus tag Tery_4617,
see text) have also been added. The sequences are labeled with their

AIASiTLVIDLDALESQRO
ALSLGSPVEDVKALEEQRKL

location in the phylogenetic tree (see Figure 6). The first three rows
correspond to the GTPase domain. This is followed by a highly variable
section. Group 1a is characterized by ca. 150 aa long inserts with no His
residues. Inserts of medium length are found for some representatives
of group 3. Very short linkers between the N-terminal GTPase domain
and the C-terminal domain (which is relatively well-conserved again) are
found in all three major groups.

phyla, and numerous studies regarding their biophysical prop-
erties (Blindauer and Leszczyszyn, 2010) and biological func-
tions (Davis and Cousins, 2000; Cobbett and Goldsbrough, 2002;
Klaassen et al., 2009) have been carried out. It has become clear
that their main function is not restricted to cadmium detoxifi-
cation nor to responses to other chemical and physical stresses.
At least for vertebrates, it is now accepted that they also play a
more general and essential role in zinc homeostasis (Maret, 2009;
Colvin et al., 2010), and that they constitute an important link
between cellular redox state and zinc signaling networks (Maret,
2011).

The presence of metallothionein-like proteins in bacteria (for
recent reviews see (Blindauer, 2009, 2011) was first indicated
in 1979, namely in the marine cyanobacterium Synechococcus

RRIMP N1 (Olafson et al., 1979). So-called “pseudo-thioneins”
were also discovered in cadmium-adapted Pseudomonas putida
(Higham et al., 1984). The first gene for a bacterial metalloth-
ionein, smtA, was isolated from Synechococcus sp. PCC 7942
(Robinson et al.,, 1990), and was shown to be regulated by
the zinc-sensing transcriptional repressor SmtB. Phenotypically,
smtA knock-out mutants are hypersensitive to Zn*t, and to
a lesser extent to Cd?T, with no effect on tolerance to other
metal ions (Turner et al., 1993), even though smtA transcription
is stimulated not only by Zn?>* (which is by far the strongest
inducer) and Cd**t, but also Hg2+, Cu?t, Co?*, Cr3, and
Ni?* (Huckle et al., 1993). Moreover, SmtA expressed in E. coli
was shown to bind not only zinc and cadmium, but also cop-
per and mercury (Shi et al., 1992). Considering that SmtB is

www.frontiersin.org

April 2012 | Volume 3 | Article 142 | 13


http://www.frontiersin.org
http://www.frontiersin.org/Microbiological_Chemistry/archive

Barnett et al.

Zinc homeostasis in cyanobacteria

\/
short loop D132, H135, H139

FIGURE 8 | Structural models for zinc-related COG0523 proteins from
Acaryochloris marina. (A) BOCCJ8_ACAM1 (AM1_3031). (B)
BOCDJ7_ACAM1 (AM1_3070). The N-terminal GTPase domains are shown on
the right hand side, the C-terminal extension that distinguishes COG0523
members from other metal-related G3E GTPases is shown on the left hand

His-rich loop

side. The cysteines forming CCXC motifs in the GTPase domain are also
shown; their location in a B-strand makes their involvement in metal-binding
unlikely in these structures, as their sulfurs are too far apart. C69 and H34 in
BOCCJ8_ACAM1 are within >4 A of each other, but no other potential
metal-binding residues are nearby.

clearly a Zn®>*-responsive metal sensor (Turner et al., 1996), the
documented responses to other metal ions may be mediated
indirectly, by displacement of Zn from proteins by these metal
ions.

As soon as the protein sequence of what was later to be called
SmtA was available, it was clear that apart from the high cysteine
content, there was very little sequence similarity between previ-
ously characterized metallothioneins and their bacterial counter-
parts (Olafson et al., 1988). However, it should be made clear
that this statement is essentially true for all MTs from different
phyla (Blindauer and Leszczyszyn, 2010). For example, in the ani-
mal kingdom, the sequences from MTs from nematodes, snails,
earthworms, and vertebrates are so divergent that it is not pos-
sible to demonstrate a clear evolutionary relationship. To some
extent, this is due to their small size, their low level of complex-
ity, and the absence of a defined protein fold. The latter feature is
also reflected in the fact that the folding of MTs is dominated by
the formation of the metal-sulfur clusters, and unless the “cor-
rect” complement of metal ions is bound, MTs do not adopt
well-defined conformations.

In that sense, bacterial metallothioneins of the BmtA type
are an exception — they contain a clearly identifiable zinc finger
fold (Blindauer et al., 2001, 2002; Blindauer and Sadler, 2005;
Figure 9A), and it has been demonstrated experimentally that the
constituents of this fold (residues 7-38) form an ordered, folded
structure, even if only one Zn?* ion is bound to SmtA (Leszczyszyn
etal.,2007a). Another “special feature” that is becoming less excep-
tional as more and more MTs from other phyla are being studied,
is the presence of aromatic residues, including histidines, the latter
often with a direct involvement in metal-binding (Blindauer et al.,
2007; Leszczyszyn et al., 2007b; Blindauer, 2008a; Peroza et al.,
2009; Zeitoun-Ghandour et al., 2010).

The high abundance of cysteine residues are the cause of the
high thermodynamic stability of MT complexes with soft! metal
ions such as Cu™ and Cd**, and these tend to bind more strongly
to MTs than Zn?*, which is classified as a borderline metal ion. It
should however be noted that thermodynamic stability is not nec-
essarily a criterion to determine which metal ions are handled by a
particular MT (or indeed a particular protein) in vivo. If the metal-
lated protein has not been obtained in its natively metallated form
from the natural source, it is important to take into account infor-
mation on which metal ion(s) induce(s) MT gene transcription
most strongly, whether the protein confers tolerance against a par-
ticular metal ion, and also on how well-folded the protein is in the
presence of different metal ions. Bofill et al. (2009) have compiled
large amounts of biophysical data on recombinantly expressed
MTs from a variety of species, and have suggested that there are
clear Cu-MTs and Zn/Cd-MTs, as well as MTs between these two
extremes with less well-defined metal preferences.

SmtA is thought to be a prototypical Zn-MT. To some extent,
this is indeed also reflected in the in vitro properties of the
protein: the zinc finger site and fold require a four-coordinate
metal ion — which excludes Cu™ as it prefers trigonal or linear
coordination modes with thiolate ligands. In addition, the two
His-containing metal sites augment the relative affinity for Zn**
compared to Cd>™, although this is certainly not their sole pur-
pose (Blindauer et al., 2007). Nevertheless, SmtA folds equally
well in the presence of four Zn (Blindauer et al., 2001) or four
Cd (Blindauer et al., 2008) ions, or any mixture thereof, a fea-
ture that greatly facilitated the determination of its 3D structure.

IThe terms “soft” and “borderline” refer to Pearson’s HSAB principle: Pearson
(1990).
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----MTTVTQMKCACSSCLCVVSLTEAI EKNGQY¥CSNACEDGHPNGT -GC-GHAGCGCHN -~

Syn. sp. PCC_7942
Oscillatoria sp. PCC6505
Lyngbya sp.

Crocosphaera watsonii
Microcoleus chthonoplastes
Syn. sp. WH8109

Syn. sp. WH5701_11034
Syn. sp. WH5701_11219
Syn. sp. CC9605_1444124
Syn. sp. CC9605_1955631
Syn. sp. CC9605_2391607

FIGURE 9 | Structural features of bacterial metallothioneins. (A)
NMR solution structure of Zn,SmtA. Residues important for the zinc
finger fold and metal ligands are highlighted. (B) Selected primary
sequences of BmtAs from marine cyanobacteria. The level of
conservation is different for different metal sites. Site A, the zinc finger
site, is fully conserved, as it is required for structural stability.

----MSAVTQMKCACESCLCVVSLENATIKKDGKP¥CSEAC]
--MSTATMTQMKCACPSCLCIVNISDAVANNGQY¥CCDACENGQPNCP-GC-SHDGCNCQA -~
----MTTATQT QCACDSCACMVSTDSAVQKDGKY¥CSDAC
—————— MAAAAPCACPRCTCEVQSSQALVRDGQSECSDAC
—————————— MQCACPGCHCTVKPDSPFRVGALLECSVVCEKGHPNGE-PCH--ASCGCECHG
MITTLEKPTALQCACPGCHCTVKTDTAFRSGTLLECSDAC
————— MAPAN-PCACPRCTCEVQASQVVVRDGQSECSEAC
————— MPIANQKCACEPCSCSVYPEKAVQKD-KIN¥CSQPC@DGHAGEE-QCC--SSCDCC- -~
—————— MTTNHPCACEPCGCCVNPEKAIEKEGKI¥CSQPCDGHAGDE-QCC--SSCSC-—-—

32 36 40 49 54

GHPNGS-GC-GHTGCTCGS--

GHPNGA-GC-GHSGCECHA--
GHPNHE-PCHGSGSCGCACAE

GHPNGE-PCH--AGCGCECHG
GHPNHE-PCHGSGSCGCTCAE

Conservation is also high for residues Y31 and A37; these mediate a
CH-r interaction between B hairpin and a-helix. The least conserved site
is site C, which is also the “business end” of BmtAs, i.e., the site that (in
SmtA) releases zinc most readily (Leszczyszyn et al., 2007a). It is
envisaged that the high variability of this site may allow to fine-tune the
metal-binding and -release properties of different SmtAs.

Although no in-depth study of SmtA (or any other BmtA) loaded
with copper ions has so far been carried out, recombinant expres-
sion of SmtA in the presence of added copper yielded samples
with only ca. 1.5 copper ions bound, whereas contents of Cd*™,
Hg?*, and Zn?* varied between ca. 4 and 6 when the respec-
tive metal ion was added to the culture medium (Shi et al.,
1992).

An analysis of the genomes of all marine cyanobacteria reveals
that 14 out of 33 sequenced genomes contain one or more genes for
a BmtA (Table 1; Figures 9B). The BmtA sequences were retrieved
using a protein vs. DNA TBLASTN search with the Synechococcus
sp. PCC 7942 sequence as query and the six-frame translations of
the genomic nucleotide databases. This is necessary to ensure that
all BmtAs are captured, as due to their small size, BmtA ORFs are
easy to overlook. This is illustrated by the fact that bmtA genes
are not annotated in the genomes of Microcoleus, Cyanobium, and
Crocosphaera watsonii, all of which are in their “Draft” stage, but

they have also been overlooked in the finished genome and plasmid
sequences of Acaryochloris marina.

In a select few genomes (Synechococcus sp. PCC 7002, Oscil-
latoria sp. PCC 6506, and the genome as well as pREB2 and
PREB6 plasmids of Acaryochloris marina) BmtAs occur in a clus-
ter together with SmtB. On the latter two plasmids, a COG0523
homolog is also nearby. In the Synechococcus sp. WH5701 genome,
both BmtAs are annotated, and WH5701_11219 (the latter num-
ber refers to the first base of the start codon) is located near a
CsbD-like protein, thought to be involved in the general stress
response, a Cd/Co/HG/Pg/Zn-transporting ATPase, and the per-
mease and ATPase components of an ABC transporter, but since
no periplasmic component is present in the vicinity, the specificity
for this transporter cannot be predicted.

Several of the benthic strains also have SmtB homologs, for
example Microcoleus chthonoplastes and Lyngbya (in a cluster with
ZiaA), and Nodularia spumigena (intriguingly in a gene cluster
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with an ABC transporter), but even though several open-ocean
and coastal marine Synechococcus (WH8102, WH8109, WH7803,
CC9311, CC9605) have genes for BmtA, there are no identifiable
SmtB or other known zinc excess sensors present. Therefore, it
remains unclear how the expression of these metallothionein genes
is regulated, although the discovery of two Zur boxes upstream of
BmtA in Synechococcus sp. WHB8102 gives rise to the suggestion
that this strain might use its metallothionein in response to zinc
limitation rather than excess.

We note that although the prototype smtA clearly responds
most strongly to zingc, and the SmtA protein can be considered a
“zinc-metallothionein,” this may not necessarily hold true for all
homologs from marine strains. Since the concentrations of Cd**
can be significant in various natural seawaters, the marine BmtAs
may also help with dealing with this metal ion — potentially both
for preventing toxicity as well as in preparation for utilization as
a cofactor. Cd also has a nutrient-like profile in stratified marine
waters, and there are several precedents where marine phytoplank-
ton have been found to utilize Cd instead of Zn (Lane et al., 2005).
If this was also common in marine cyanobacteria, BmtAs may
be part of this utilization network. Furthermore, it can also be
envisaged that some BmtAs may play a role in defense against
oxidative stress, as shown for metallothioneins from other species
(Zeitoun-Ghandour et al., 2011).

Finally, it should be highlighted that cyanobacteria are not
the only marine microorganisms with metallothioneins. Several
y-proteobacteria of the genus Nitrosococcus also harbor bmtA
genes in their genomes, and additional bmtA sequences can also
be retrieved from marine metagenomes (Blindauer, 2008b), sug-
gesting that many more marine bacterial species utilize these
proteins.

CONCLUSION

At the time of writing this report (December 2011), there were 64
cyanobacterial genomes available, 35 of them from marine species.
Genome annotation must, ultimately, be based on experimental
evidence, and we have seen that there is a persistent shortfall of
reliable information regarding function of predicted proteins. This
is a general problem, witnessed by the large number of hypothetical
proteins even in finished genomes, but even in the case of well-
defined protein families, annotations regarding metal specificity
have to be approached with caution. Our discussions emphasize
that sequence similarity alone does not hold the key to determine
metal specificity, but we believe that, amongst other approaches,
the generation of more sound data at the protein level is central to
refine our ideas about how metal homeostasis works.

With this caveat in mind, we are highlighting in the following
some salient points from our analyses. The ubiquitous presence
of bona-fide Zur and ZnuABC systems — both thought to be
involved in responding to a lack of cellular zinc — in all strains we
have studied suggests that these cyanobacteria are at the very least
capable of utilizing zinc. The identification of putative Zur boxes
in several genomes we and others have inspected also suggests
that zinc levels are an integral part of the metabolic network of
marine cyanobacteria. Nevertheless, an absolute requirement for
zinc has not been demonstrated experimentally for any cyanobac-
terium — in the few instances where this has been studied, only

small reductions in growth rates were observed. This may indicate
that marine cyanobacteria have either very low zinc requirements,
or extremely efficient uptake mechanisms, or both, enabling them
to thrive at extremely low free zinc concentrations. It would hence
be interesting to study whether cyanobacteria that are growing at
such extremely low zinc concentrations actually contain any zinc,
and if so, what the ratio of bio-accumulation is.

Genes for zinc excess sensors appear to be absent from the
genomes of open-ocean strains (Blindauer, 2008b), but other
strains including Microcoleus chthonoplastes, Synechococcus sp.
PCC 7002, and Oscillatoria sp. PCC 6506 have clear SmtB
homologs. Although the coastal strain Synechococcus sp. CC9311
does not appear to have SmtB, it not only has four BmtA homologs,
but also a putative CzrA efflux pump that is thought to be able to
transport zinc (and cobalt). Together with at least one ZnuABC
system and a putative ZIP transporter for uptake, as well as at least
one zinc-related COG0523 protein, this strain is expected to cope
well with both zinc excess and scarcity.

The suggestion that metallothioneins in marine Synechococcus
(e.g., WH8102) may be under the control of Zur is exciting. Whilst
this finding may at first seem counterintuitive, it suggests that, also
in (some) bacteria, metallothioneins are not just devices to combat
metal toxicity, but may play a more central role in essential zinc
homeostasis. This hypothesis has been raised before (Robinson
etal., 2001; Blindauer, 2009), and this newly identified association
between Zur and BmtA provides support.

METHODS

Sequences of Fur-family proteins were retrieved from cyanobacte-
rial genomes using BLAST (Altschul et al., 1997). Briefly, GenBank
files were retrieved for each genome and all protein sequences were
extracted using BioPerl (Stajich et al., 2002) and a custom BLAST
database was created for each genome. Fur-like proteins were
identified using the three Fur-like proteins previously identified
in Synechococcus sp. CC9311 as queries (accessions YP_730377.1,
YP_732019.1, and YP_730926.1) with an e value cutoff <1075,
Any duplications were removed and amino acid sequences were
aligned using cLusTaLw (Larkin et al., 2007). The Fur amino acid
sequence from Escherichia coli and Synechocystis sp. PCC 6803,
along with Zur from Streptomyces coelicolor, Mycobacterium tuber-
culosis, and Synechocystis sp. PCC 6803 were extracted from the
Protein Data Bank”. Phylogenetic analysis was carried out in MEGA
version 5 (Tamura et al., 2011).

Sequences for COGO0523 family proteins were collected by
searching the fully sequenced and annotated cyanobacterial pro-
teomes plus all sequences from Oscillatoria sp. PCC 6506, Lyngbya
sp. PCC 8106, Microcoleus chthonoplastes sp. PCC 7420, Nodu-
laria spumigena sp. CCY9414, Crocosphaera watsonii WH 8501,
and Trichodesmium erythraeum IMS101 from UniProt with the
Pfam PF07683 Hidden Markov Model using HMMER4 with stan-
dard cutoffs. The collated sequences were filtered for fragments
and aligned in yaALviEw and MuUscLE v.3.8 (Edgar, 2004), and were
manually adjusted where necessary.
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Gene Ortholog Neighborhood analyses were performed using
the respective resource on the Integrated Microbial Genome Server
(Markowitz et al., 2010).

Comparative modeling was carried out using Modeller ver-
sion 9.7 (Eswar et al., 2008). A dimeric assembly of Streptomyces
coelicolor Zur was generated from the two B chains in the orig-
inal pdb file (3MWM; Shin et al., 2011) using PISA3 (Krissinel
and Henrick, 2007). This dimeric structure was used as a tem-
plate for modeling the putative Zur from Prochlorococcus marinus
CCMP1375 (locus tag Pro1502). Template and model sequences
were aligned manually. Sidechains and improper dihedrals were
optimized with scwrt 3.0 (Wang et al., 2008). Inspection of ini-
tial models and sequence alignments suggested that Cys98 may
be a zinc ligand; this residue is highly conserved in all putative
Zur sequences from cyanobacteria (See Figure S2 in Supplemen-
tary Material). Hydrogens, Zn ions, and metal-ligand bonds were
added in MOE v. 2004.03. Energy minimization of the final
model was performed in MOE using a customized Amber94
force-field. Final structures were validated using the WHATIE
server?. Structural images (Figures 2, 8, and 9) were generated
with moLmoL v.2K.2 (Koradi et al., 1996). A similar strategy was

applied for modeling two putatively zinc-binding representatives
of the COG0523 family based on the E. coli protein as a tem-
plate (pdb-entry 1NIJ). The target template sequence alignment
made use of the HHPRED (Soding et al., 2005) fold recognition
server.
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