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During the past few decades Acinetobacter baumannii has evolved from being a com-
mensal dweller of health-care facilities to constitute one of the most annoying pathogens
responsible for hospitalary outbreaks and it is currently considered one of the most impor-
tant nosocomial pathogens. In a prevalence study of infections in intensive care units
conducted among 75 countries of the five continents, this microorganism was found to
be the fifth most common pathogen. Two main features contribute to the success of A.
baumannii : (i) A. baumannii exhibits an outstanding ability to accumulate a great variety
of resistance mechanisms acquired by different mechanisms, either mutations or acqui-
sition of genetic elements such as plasmids, integrons, transposons, or resistant islands,
making this microorganism multi- or pan-drug-resistant and (ii) The ability to survive in the
environment during prolonged periods of time which, combined with its innate resistance
to desiccation and disinfectants, makes A. baumannii almost impossible to eradicate from
the clinical setting. In addition, its ability to produce biofilm greatly contributes to both
persistence and resistance. In this review, the pathogenesis of the infections caused by
this microorganism as well as the molecular bases of antibacterial resistance and clinical
aspects such as treatment and potential future therapeutic strategies are discussed in
depth.
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INTRODUCTION
The Acinetobacter genus comprises Gram-negative non-
fermenting coccobacilli with 25 validly named species and 9
genomic species defined by genomic DNA–DNA hybridization
(Espinal et al., 2011b). Although Acinetobacter pittii and Acine-
tobacter nosocomialis (formerly Acinetobacter genomic species 3
and gen. sp. 13TU, respectively (Nemec et al., 2011) are emerg-
ing as important pathogens and have been involved in a number
of outbreaks in intensive care units, Acinetobacter baumannii is,
undoubtedly the species showing the highest clinical relevance,
mainly in the nosocomial setting. In fact, the three clinically impor-
tant members of this group, also known as the A. baumannii (Ab)
group (Peleg et al., 2008), are phenotypically related and can-
not be differentiated by currently available identification systems.
Indeed, A. pittii and A. nosocomialis are often erroneously iden-
tified as A. baumannii by routine commercial systems (Bernards
et al., 1996). In a recent report by Espinal et al. (2011c) the use of
MALDI–TOF mass spectrometry to differentiate the three species
was analyzed, showing that A. nosocomialis was misidentified as A.
baumannii. Inclusion of specific signature profiles for A. nosocomi-
alis within the Bruker database allowed the correct identification
of this genomic species, thus, MALDI–TOF MS spectra can be
used as a fast, simple, and reliable method to identify members
of the Ab group. Two main features contribute to the success
of A. baumannii: (i) They normally exhibit multidrug resistance
(MDR), acquired by different mechanisms, either mutations or
acquisition of genetic elements such as plasmids, transposons, or

resistant islands, and (ii) The ability to survive in the environ-
ment, in which, the production of biofilm plays an important role
(discussed below). Several reviews dealing with the taxonomy, epi-
demiology, and infection of A. baumannii have been published on
recent years (Dijkshoorn et al., 2007; Peleg et al., 2008; Towner,
2009; Visca et al., 2011). The review presented here provides an
updated overview of the clinical and treatment aspects as well as
the pathogenesis of antimicrobial resistance in A. baumannii. In
addition, future potential therapeutic alternatives are discussed.

PATHOGENESIS AND VIRULENCE FACTORS OF
ACINETOBACTER BAUMANNII
Multiple bacterial virulence factors are required for the pathogen-
esis of infections caused by A. baumannii. These factors enable
microorganisms to colonize/infect the host efficiently. However,
very little information is known about the virulence factors in A.
baumannii and host responses to infection (Cerqueira and Peleg,
2011). Considering that A. baumannii is a multidrug-resistant
microorganism, identification of the virulence factors, and the
pathogenicity mechanisms could contribute to the development
of novel therapeutic alternatives for the control of Acinetobacter
infections.

MOTILITY AND ADHERENCE
Acinetobacter baumannii, has been described as non-motile
(Tomaras et al., 2003). Its name is derived from the Greek“akineto,”
which means motionless or non-motile and was given due to
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the lack of flagella (McBride, 2010). Analysis of new A. bauman-
nii genome sequences has revealed an absence of flagellar genes,
therefore swarming, which is mediated by flagella (Clemmer et al.,
2011), is unlikely in this microorganism. However, A. baumannii
spreads rapidly over surfaces probably as the result of twitching
motility, a form of surface translocation previously described in
Acinetobacter calcoaceticus (Henrichsen and Blom, 1975). Twitch-
ing motility mediated by the extension and retraction of type IV
pili is controlled by a large number of genes, some involved in
the assembly of type IV pili (pilA, pilB, pilC, pilF, pilM, pilN, pilO,
pilP, pilQ, pilZ, pilW ), twitching (pilR, pilS, pilT, pilU ), and the
pilin filament (pilA; Mattick, 2002; Jarrell and McBride, 2008).
Although there is no current experimental evidence of the actual
involvement of type IV pili in A. baumannii motility, a recent
publication by Eijkelkamp et al. (2011) has shown the presence
of several genes associated with the synthesis of type IV pili in
the genomes of fully sequenced A. baumannii strains. The authors
have also demonstrated a positive correlation between the degree
of sequence conservation of the gene encoding the pilin subunit
PilA and the twitching phenotype exhibited. Moreover, type IV pili
has also been related to twitching motility in other non-flagellated
gamma-proteobacteria (De La Fuente et al., 2007).

Twitching motility is also controlled by a range of signal trans-
duction systems, including two-component sensor-regulators and
a complex chemosensory system (Mattick, 2002). In a recent study,
Clemmer et al. (2011) found that the motility exhibited by A. bau-
mannii was partially dependent on a functional pilT gene. The loss
of this gene in the A. baumannii M2 strain resulted in a 54% reduc-
tion in motility, suggesting that twitching represents a significant
component of the overall motility in A. baumannii.

BIOFILM
Adherence to host cells represents the initial step of coloniza-
tion or infection. During colonization, bacteria may form micro-
colonies which result in a highly structured microbial com-
munity, called biofilm. Biofilm constitutes a structural com-
munity of multiple bacterial cells associated with a biotic or
abiotic surface, enclosed in a polymeric matrix (comprised
of carbohydrates, nucleic acids, proteins, and other macro-
molecules; Costerton, 1995), constituting a protective mecha-
nism to survive in harsh environments and during host infec-
tion. These bacteria become more resistant to antimicrobial
stressors, antibiotics, or cleaning than their planktonic coun-
terparts and therefore the ability to generate biofilms rep-
resents an important virulence factor (Donlan, 2002; Wrob-
lewska et al., 2008; de Breij et al., 2009; Gaddy and Actis,
2009).

Biofilm can be influenced by common factors such as nutrient
availability, bacterial appendages, bacterial surface components,
quorum sensing (QS), macromolecular secretions (Irie and Parsek,
2008; Gaddy and Actis, 2009; Bhargava et al., 2010), and complex
regulatory networks including two-component regulatory systems
and transcriptional regulators which are related to the expression
of biofilm-associated gene products in response to environmen-
tal signals (Stanley and Lazazzera, 2004). Tomaras et al. (2003)
demonstrated that the ability of A. baumannii strain ATCC 19606T

to form pili and to adhere and form biofilm on abiotic surfaces

depends on the expression of the csuE gene, which is a component
of the CsuA/BABCDE chaperone-usher complex important for the
assembly and production of pili involved in adhesion to surfaces.
Inactivation of csuE results in the abolition of pili production and
biofilm formation suggesting that CsuA/BABCDE-mediated pili
play a role in the initial steps of biofilm formation. The expression
of this operon is controlled by a two-component regulatory system
including a sensor kinase encoded by bfmS and a response regu-
lator encoded by bfmR. Inactivation of bfmR results in a loss of
expression of the csu operon and, therefore, abolition of pili pro-
duction and biofilm formation on abiotic surfaces. Additionally,
the coupling of pili to host cell receptors may induce the produc-
tion of inflammatory mediators such as chemokines and cytokines
(Sauer et al., 2000).

In addition to the CsuA/BABCDE-mediated pili, de Breij
et al. (2009) found that A. baumannii ATCC19606T produces a
CsuA/BABCDE-independent short pilus, which may be involved
in the adherence of the bacteria to biotic surfaces, such as human
respiratory cells.

For the development of mature biofilm structures, an ortholog
of a staphylococcal biofilm-associated protein (Bap) was found
in A. baumannii strain 307-0294. Transposon inactivation of this
protein involved in cell–cell interactions resulted in destabilization
of the mature biofilm on abiotic or biotic surfaces (Loehfelm et al.,
2008).

Several studies have shown that some A. baumannii strains can
adhere to human cells and form biofilm on abiotic surfaces. A. bau-
mannii survives on fingertips and inanimate objects such as glass,
plastic, and other environmental surfaces, even after exposure to
dry conditions and nutrient starvation during extended periods of
time (Jawad et al., 1996; Wendt et al., 1997; Lee et al., 2006b; de Breij
et al., 2009; Espinal et al., 2012). The survival of A. baumannii has
also been attributed to resistance of this microorganism to antimi-
crobial drugs and desiccation (Jawad et al., 1998; Tomaras et al.,
2003). Since A. baumannii can produce biofilm, the resistance phe-
notype could be attributed to the ability of A. baumannii clinical
strains to form biofilms on abiotic surfaces, particularly in strains
isolated from catheter-related urinary tract or bloodstream infec-
tions or even from a case of shunt-related meningitis (Tomaras
et al., 2003; Rodríguez-Baño et al., 2008; Gaddy and Actis, 2009).
In a recent study, Espinal et al. (2012) performed survival assays
with biofilm- and non-biofilm-forming strains on glass coverslips
in a desiccated environment. The survival times for the biofilm-
forming strains were longer than for the non-biofilm-forming
strains (36 versus 15 days, respectively, P < 0.001), demonstrat-
ing that A. baumannii strains can attach to glass coverslips and
also form biofilm, allowing their survival under dry conditions
for much longer lengths of time than non-biofilm-forming strains
and may contribute to its persistence in the hospital environment,
increasing the probability of causing nosocomial infections and
outbreaks. A few previous reports have described the ability of clin-
ical isolates of A. baumannii to attach to and form biofilms on glass
surfaces comprising an amorphous material similar to exopolysac-
charide (Vidal et al., 1996; Tomaras et al., 2003; Espinal et al., 2012).
Scanning and transmission electron microscopy (Figure 1) studies
have shown appendages and a polysaccharide layer covering the
cells only in biofilm-forming strains (Espinal et al., 2012). This
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FIGURE 1 | Scanning electron microscopy (SEM) (A–C). Transmission electron microscopy (TEM) (D–F) of an A. baumannii biofilm-forming strain in liquid
medium. Black arrow specifies appendage structures (pili or fimbriae), and white arrow the thick exopolysaccharide layer. All electron microscopy images are
derived from the work by Espinal et al. (unpublished data)

highly hydrated layer may prevent lethal desiccation and, thus,
protect against variations in humidity as well as contribute to
mechanical stability, longer survival, and antimicrobial resistance
(Sutherland, 2001; Donlan, 2002).

SURFACE POLYSACCHARIDES
Surface polysaccharide, such as capsule, is considered an impor-
tant virulence trait in Gram-negative bacteria, but its role in the
pathogenesis of A. baumannii is non-existent. Russo et al. (2010)

obtained mutants from the A. baumannii strain AB307-0294 and
identified two genes: ptk, that was predicted to be required for
capsule polymerization and encodes a putative protein tyrosine
kinase (PTK), and epsA, required for assembly and encoding a
putative polysaccharide export outer membrane protein (EpsA).
These genes are required for a capsule-positive phenotype and
describe the participation of capsule in the pathogenesis of A.
baumannii. This study demonstrated that the K1 capsule from
the A. baumannii strain AB307-0294 was necessary for optimal
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growth in human ascitic fluid and survival in human serum as
well as in a rat tissue infection model. The active protection of the
capsule allows bacterial resistance to the bactericidal activity of the
complement.

On the other hand, the potential of PtK and EpsA as drug tar-
gets was observed when the loss of PTK or EpsA resulted in a
complete and durable killing of AB307-0294 in vivo.

Other important extracellular polysaccharide is the poly-β-
(1-6)-N -acetyl glucosamine (PNAG) described as a major com-
ponent of biofilms in Staphylococcus epidermidis and S. aureus
(Kropec et al., 2005). In A. baumannii clinical isolates the
pgaABCD locus, encoding proteins for the synthesis of PNAG,
has been proved critical for biofilm development (Choi et al.,
2009). Besides the role in surface and cell-to-cell adherence, PNAG
has been described as a virulence factor that also protects bacte-
ria against innate host defenses. Although PNAG is not essential
for biofilm formation under static conditions, it is required for
maintaining the integrity of A. baumannii biofilms in dynamic
and stressful environments. Indeed, PNAG has shown a role in
the pathogenesis of A. baumannii and is a candidate vaccine
against this pathogen (Choi et al., 2009; Cerqueira and Peleg,
2011).

LPS structures containing long O-specific sugar chains (smooth
or S-type LPS) have been associated with virulence, and previous
studies have shown that nosocomial isolates of A. baumannii pro-
duce rough R- and smooth S-type LPS. The differences in the
ability of LPS from different isolates of A. baumannii to elicit
mitogenic activity could be caused by variations in the fatty acid
content of lipid A and in the O-antigens. LPS and lipid A from
Acinetobacter have exhibited lethal toxicity in mice, pyrogenicity
in rabbits, as well as complement inactivation in vitro (García et al.,
1999). Pantophlet et al. (1998) suggested an important role for the
LPS from nosocomial strains of A. baumannii as a virulence factor
in vivo and that synthesis of endotoxin could be an important fac-
tor responsible for the severity of disease observed during sepsis
by this microorganism.

Although little is known of the endotoxic potential of A. bau-
mannii LPS with respect to human cells and its ability to stimu-
late inflammatory signaling via human toll-like receptors (TLRs),
Erridge et al. (2007) investigated the biological activity of these
endotoxins in human monocytic THP-1 cells and in TLR-deficient
HEK-293 cells transfected with human TLR2 and TLR4 constructs.
The results of this study showed that endotoxins derived from
clinical isolates of A. baumannii and one Acinetobacter genomic
species 9 are potent stimulators of inflammatory signaling in
human monocyte cells and the responses to these bacteria are
dependent on TLR2 and TLR4.

These results, however, are in apparent conflict with a recently
published study by de Breij et al. (2010) that investigated the
interplay among biofilm formation, adherence, and induction
of an inflammatory response in human airway epithelial cells.
De Breij and co-workers concluded that clinically relevant A.
baumannii strains showing good adherence to human epithelial
cells elicit a poor inflammatory response, allowing Acinetobacter
strains to evade the host immune system and, therefore, explain-
ing the exceptional survival and persistence capabilities of this
microorganism.

These findings were in agreement with those reported in
Haemophilus influenzae (Bresser et al., 1997).

OUTER MEMBRANE PROTEINS
Outer membrane proteins (OMPs) of Gram-negative bacte-
ria have been related to antibiotic resistance, adaptation, and
pathogenesis in the host cells. Some OMPs of the OmpA fam-
ily have been characterized in Acinetobacter strains, and represent
one of the major OMP in the genus (Vallenet et al., 2008).

Previous studies have determined that bacterial molecules
secreted from A. baumannii are responsible for host cell death
(Lee et al., 2001). Among these molecules, OmpA from A. bau-
mannii (AbOmpA) makes up a potential virulence factor with
multiple important effects in pathogenesis and signal processing
(Perez et al., 2011). AbOmpA is the most abundant surface protein
involved in the adherence to and invasion of epithelial cells and
induces apoptosis in the early stages of A. baumannii infection
(Gaddy et al., 2009).

Acinetobacter baumannii can induce cell death (Hep-2 cells)
by means of cell surface death receptors and mitochondrial disin-
tegration. Purified AbOmpA was identified in the mitochondria,
where it induced the release of proapoptotic molecules such as
cytochrome c and apoptosis-inducing factor (AIF), which medi-
ates caspase-dependent and AIF-dependent apoptosis in epithelial
cells and degrades chromosomal DNA (Choi et al., 2005). Apop-
tosis of epithelial cells can lead to the internalization of bacteria
through the disrupted mucosal lining and, therefore, the outcome
of infections caused by this microorganism depends on apoptosis
induction in the epithelial cells (Choi et al., 2005).

AbOmpA is also implicated in resistance to complement and
biofilm formation (Gaddy and Actis, 2009; Kim et al., 2009). Some
A. baumannii strains are resistant to the killing activity of human
serum by means of genetic components that increase Acinetobac-
ter capabilities to cause bacteremia. The suggested serum-resistant
mechanism involves the inhibition of host complement C3 protein
cleavage and binding to the bacterial surface, which inhibit host
phagocytic cell recognition and result in a serum-resistance phe-
notype (Kim et al., 2009). In addition, the binding of complement
regulators to OMPs also plays a role in complement activation.
Kim et al. (2009) demonstrated that an alternative complement
pathway was responsible for the killing of A. baumannii in nor-
mal human serum. In vitro assays have indicated that factor H,
the main regulator of this pathway, bound to the surface of this
microorganism treated with normal human sera, may contribute
to the persistence and dissemination of Acinetobacter in the host.
Comparisons between A. baumannii ATCC19606T and isogenic
AbOmpA− mutants have shown that mutant strains lose adher-
ence and invasion capability in the host cells, demonstrating that
AbOmpA participates in the evasion of the complement attack by
interacting with factor H (Choi et al., 2008). In this sense,AbOmpA
is considered the main complement regulator-acquiring surface
protein (Choi et al., 2008) whereas secreted AbOmpA induces
apoptosis in epithelial cells (Choi et al., 2005). In view of these
results, AbOmpA stands out as an important virulence factor in
A. baumannii and could be used as a target in the development
of antibiotics and vaccines against this microorganism (Kim et al.,
2009).
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OUTER MEMBRANE VESICLES
In addition to OmpA, some Gram-negative bacterial species
secrete outer membrane vesicles (OMVs) during bacterial growth.
OMVs are spherical nanovesicles with a diameter between 20
and 200 nm which are composed of lipopolysaccharides, OMPs,
lipids, and DNA or RNA (Kwon et al., 2009; Jin et al., 2011).
Secreted OMVs have been shown to participate in QS, the trans-
port of virulence factors, the inhibition of phagosome-maturation
in macrophages, biofilm formation, and gene transfer (McConnell
et al., 2011b; Rumbo et al., 2011). The surface factors of OMVs
mediate adherence to host cells as well as the internalization of
vesicular components suggesting that OMVs function as a trans-
port vehicle of effector molecules into host cells (Kwon et al., 2009;
Jin et al., 2011). Kwon et al. demonstrated that A. baumannii
secretes OMVs during in vitro growth in association with some
virulence-associated proteins and immune modulators suggest-
ing that OMVs play a role in the pathogenicity of A. baumannii.
AbOmpA, mediating the adherence to and invasion of A. bauman-
nii to epithelial cells (Choi et al., 2008) was detected as a major
protein component in the OMV fraction. Packaged in OMVs,
AbOmpA induces cytotoxicity and host cell death. The results
obtained in this study revealed that AbOmpA derived from OMVs
was found in the cytoplasm of receiving cells, suggesting that
OMVs can deliver virulence factors directly to host cells in the
absence of bacteria.

Proteomic analysis of the OMVs from A. baumanii ATCC
19696T and the clinical isolate DU202 identified more than
110 proteins derived from the outer membrane, periplas-
mic space, inner membrane, cytosol, and other additional
undetermined sites. OMVs contained putative serine and Zn-
dependent proteases, phospholipases, bacterioferritin, catalase,
and a ferrichrome–iron receptor, as well as several proteins display-
ing secretion signals and pathogen-associated molecular patterns,
such as LPS and lipoproteins (Kwon et al., 2009; Jin et al., 2011).

Since OMVs contain multiple antigenic proteins from the bac-
terial outer membrane, they could be used as vaccine antigens.
Previous studies have shown that vaccination with OMVs resulted
in the recovery of antibodies against multiple bacterial antigens
displaying bactericidal activity and the ability to provide protec-
tion in animal models of infection (Schild et al., 2008). McConnell
et al. (2011b) evaluated the immune response elicited after immu-
nization with A. baumannii OMVs and found that the serum
recovered from vaccinated mice reacted against multiple proteins
present in the OMVs as well as against many proteins from the bac-
terial outer membrane. The robust and protective response elicited
by this serum suggests that OMVs might constitute a viable immu-
nization approach to control the infection and mortality caused
by A. baumannii.

Vesicles have also been shown to be involved in the transfer
of genetic material among similar bacterial species (Klieve et al.,
2005). Rumbo et al. (2011) have demonstrated that OMVs vehic-
ulate plasmids carrying carbapenem resistance genes such as the
blaOXA-24 gene, which can be readily transferred between different
strains of A. baumannii. In this respect, OMVs might be considered
as important virulence factors not only because they participate
in host–pathogen interactions but also by allowing the spread of
antibiotic resistance genes (such as those related to carbapenem

resistance) to surrounding bacteria. The genetic material con-
tained inside OMVs is protected from nucleases, thereby favoring
the exchange of genetic material. These results might point toward
a new mechanism for dissemination of resistance genes in addition
to conjugation, transformation, and transduction processes.

HYDROLYTIC ENZYMES
Additional proteins proposed as virulence factors in A. baumannii
also include Phospholipase D and Phospholipase C (Antunes et al.,
2011a).

Phospholipase D, which is important for human serum resis-
tance, epithelial cell invasion, and pathogenesis in a murine model
of pneumonia, also plays a role in the systemic dissemination of
bacterial pathogens within infected animals and is considered the
main virulence determinant in Corynebacterium pseudotubercu-
losis (McKean et al., 2007). Jacobs et al. (2010) characterized a
mutant A. baumannii strain harboring a transposon insertion
within a putative phospholipase D (PLD) encoding-gene. In this
study not only was phospholipase activity affected, but reduced A.
baumannii epithelial cell invasion (in vitro) and serum prolifera-
tion were also reported. As a consequence, a decrease in bacteremia
and colonization of visceral host organs was observed in a murine
infection model. As suggested with AbOmpA, phospholipase D is
an A. baumannii virulence factor that is required for wild-type lev-
els of pathogenicity and is also a potential target for the therapeutic
treatment of Acinetobacter infections (Jacobs et al., 2010).

Phospholipase C has also been shown to enhance the toxic-
ity of epithelial cells. Camarena et al. (2010) demonstrated that
an insertional mutant carrying a kanamycin cassette in the cod-
ing region of plc1 displayed a reduction in the cytotoxic effect
caused by A. baumannii on epithelial cells, thereby indicating that
phospholipase C is an important factor in cellular damage.

ETHANOL-INDUCED PATHOGENESIS
In A. baumannii, ethanol is assimilated as a carbon source and
enters the glyoxylate cycle which, in many pathogens, has been
related to virulence. Smith et al. (2004) observed that ethanol pro-
moted bacterial growth when A. baumannii was co-incubated with
yeast and also demonstrated that low concentrations of ethanol
stimulated Acinetobacter growth and contributed to endure salt
stress. To understand the virulence of A. baumannii in the presence
of ethanol, Camarena et al. (2010) characterized the transcrip-
tional profile of this microorganism in the presence and absence
of ethanol. They found 70 genes whose expression was affected by
the presence of ethanol in the growth medium and suggested that
virulence of A. baumannii in the presence of ethanol was due to
increased metabolic capacity and the expression of some factors
related to stress responses.

The genes that were induced by growth in the presence of
ethanol during the exponential phase encoded proteins related
to central metabolism or ethanol/acetate assimilation, such as
ethanol dehydrogenase (AIS_2098) and aldehyde dehydrogenase
(AIS_2102), genes encoding for pta (AIS_0481; phosphate acetyl-
transferase) and ackA (AIS_0482; acetate kinase), which are related
to Acetyl-CoA synthesis.

Ethanol also induced genes involved in stress response and
pathogenesis during exponential phase. Eleven genes encoded
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hypothetical proteins; five unique to A. baumannii ATCC 17978
and,among the remaining six,AIS_2195 was exclusive of the Acine-
tobacter genus and AIS_2509 was only present in A. baumannii
ATCC 17978 and the non-pathogenic A. baylyi ADP1. AIS_2509
was shown to contribute to ethanol stress survival together with
AIS_2510 (HSP70-like), which is mildly induced by ethanol.

Ethanol can also enhance the virulence of A. baumannii by
inducing heat-shock proteins such as Hsp90, GroEL, and Lon.
Furthermore, ethanol promotes the expression of plc1 (AIS_0043)
which encodes the A. baumannii phospholipase C.

Additional genes detected in stationary phase cultures grown
in the presence of ethanol include AIS_2381, which is required for
acinetobactin synthesis, and AIS_2566 and AIS_2578, encoding a
protein involved in siderophore synthesis and a siderophore recep-
tor, respectively, which are required for the iron-uptake systems.
Camarena et al. (2010) also demonstrated that ethanol induces a
stress response enhancing bacterial fitness to survive in the host.

PENICILLIN-BINDING PROTEINS
Penicillin binding proteins (PBPs) are a family of enzymes that
share a common evolutionary origin. These enzymes catalyze the
synthesis of peptidoglycan, the primary component of the bac-
terial cell wall, and are also associated with cell morphogenesis
and cell division complexes. The inhibition of PBPs causes insta-
bility in the cell wall, resulting in growth inhibition, or cell lysis
(Cayo et al., 2011). PBPs have been classified as either high- or
low-molecular mass PBPs. High-molecular mass PBPs enable pep-
tidoglycan polymerization and insertion into the preexisting cell
wall, and low-molecular mass PBPs contribute to cell separation
and peptidoglycan remodeling (Sauvage et al., 2008). Although
little is known about low-molecular mass PBPs, the putative low-
molecular-mass penicillin-binding protein 7/8 (PBP-7/8) has been
postulated to play a role in cell wall remodeling. PBP-7/8 is a
hydrolase/endopeptidase. PBP-8 is an OmpT-mediated degrada-
tion product of PBP-7, and both PBPs stabilize and enhance solu-
ble lytic transglycosylase 70 (in vitro). Although PBP-7/8 could be
non-essential for normal elongation, it has been related to modu-
lation of cell morphology and daughter cell separation. Russo et al.
(2009) also demonstrated that a PBP-7/8-deficient mutant deriva-
tive of the wild A. baumannii AB307-0394 strain contributed to the
pathogenesis of A. baumannii and participated in the growth and
survival of A. baumannii in human ascites (in vitro and in vivo) in
rat soft-tissue infection and pneumonia models. In addition, PBP-
7/8 contributed either directly or indirectly to the serum resistance
of AB307-0394.

IRON UPTAKE
Iron constitutes an important resource that it is not readily avail-
able in the human host. It is found complexed with iron-binding
molecules such as heme, lactoferrin, and transferrin. A common
alternative to more conventional human host defenses against bac-
terial infections involves the reduction of free extracellular iron
concentration by means of iron-binding proteins. However, bacte-
ria are able to survive and multiply under iron-limiting conditions
found both in natural and host environments by exploiting a
number of strategies for high-affinity iron acquisition, including
production of ferric iron chelators (siderophores) that are released

outside cells, uptake of exogenous chelators, such as heme and het-
erologous siderophores, and acquisition of ferrous iron (Dorsey
et al., 2003a; Vallenet et al., 2008; Antunes et al., 2011a).

SIDEROPHORES
Siderophores are low-molecular-mass high-affinity iron chelat-
ing compounds classified according to their chemical structures
(Dorsey et al., 2003a), as in catechols, high-affinity iron chelat-
ing molecules containing catecholate groups which are part of the
iron-binding site.

The A. baumannii 8399 isolate, recovered during a nosoco-
mial outbreak, was shown to contain a high-affinity iron-uptake
system which included a catechol siderophore capable of scaveng-
ing iron from the high-affinity iron-binding proteins present in
the human host (Dorsey et al., 2003b). The latter property was
associated with the finding of dhb genes in the genome of A. bau-
mannii 8399. Genetic complementation assays have proven that
dhbA, dhbB, and dhbE genes encode active proteins that restore
enterobactin biosynthesis and iron uptake when introduced in
Escherichia coli mutants. These results demonstrated that A. bau-
mannii 8399 harbors all the genetic determinants required for the
biosynthesis of the catechol siderophore detected in iron-limited
culture supernatants of this microorganism.

Acinetobacter baumannii 8399 also contains genes encoding
proteins that are highly related to iron-transport proteins: OM73,
an iron-regulated OMP detected in iron-starved A. baumannii
8399 cells; the P45 protein, the expression of which is regulated by
both iron and Fur and could have a possible role in the secretion of
the catechol siderophore produced by A. baumannii 8399; and the
P114 protein, which may also participate in siderophore secretion
in conjunction with the P45 protein (Dorsey et al., 2003b).

The mixed catechol-hydroxamate compound known as acine-
tobactin, (structurally similar to anguibactin and vibriobactin
produced by Vibrio cholerae), was the first siderophore to be
described in A. baumannii. Acinetobactin is produced by A. bau-
mannii ATCC 19606T and some clinical isolates (Yamamoto et al.,
1994) but is absent in the non-clinical isolate SDF (Antunes et al.,
2011b).

A comparison between the complete genomes derived from
AYE, SDF, and ACICU clinical strains has demonstrated that
AYE and ACICU express independent siderophore-mediated iron
acquisition systems together with acinetobactin and hemin iron-
capturing systems. Iron acquisition in the SDF strain, however,
depends on the expression of a hemin system rather than on
the expression of biosynthesis and transport functions for a par-
ticular siderophore. Several associated ABC transporters proba-
bly involved in the translocation of heme/hemoglobin from the
periplasm to the cytosol have also been detected in this strain
(Zimbler et al., 2009; Antunes et al., 2011a).

Furthermore, some A. baumannii-producing acinetobactin
strains utilize 30% iron-saturated transferrin and 15% iron-
saturated lactoferrin as the sole sources of iron for growth by
scavenging iron bound to these proteins. None of these strains
use heme or hemoglobin as an iron source. Insertional analysis
has demonstrated that inactivation of bauA and basD, encoding
for acinetobactin transport and biosynthesis functions, respec-
tively, affects the ability of isogenic derivatives to grow under
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iron-limiting conditions (Mihara et al., 2004; Zimbler et al., 2009).
These findings suggest that A. baumannii is a versatile pathogen
with the ability to acquire iron and survive under iron-limiting
conditions and highlights the role of acinetobactin-mediated iron
acquisition mechanisms in the pathogenesis of A. baumannii
infections (Mihara et al., 2004; Zimbler et al., 2009).

The ferric-siderophore complex is transported inside bacte-
rial cells with the aid of specific outer-membrane receptors,
periplasmic proteins, and inner-membrane-associated proteins,
such as the iron-regulated outer membrane proteins system
(IROMPs; Dorsey et al., 2003b; Mihara et al., 2004; Vallenet et al.,
2008). In Gram-negative bacteria, these receptors are localized
on the outer membrane, where internalization of siderophores
or heme is associated with dissipation of the proton gradient
on the inner membrane and is mediated by the TonB pro-
tein complex in the periplasmic space. The TonBExbBD energy-
transducing system is required for hemin utilization in many
bacteria. Once internalized, the ferric-siderophore complexes are
reduced to release iron by an enzyme with ferric reductase activ-
ity (Vallenet et al., 2008; Zimbler et al., 2009; Antunes et al.,
2011b).

In addition to the previously mentioned acinetobactin
siderophore, Antunes et al. (2011b) have described two
siderophore synthesis/transport gene clusters, which include genes
for putative hydroxylase and acetyltransferase enzymes, suggestive
of the synthesis of hydroxamate-type siderophores. One of these
clusters was only present in the ATCC 17978, while the other was
present in the ACICU,ATCC 17978,AYE,AB0057,AB307-294, and
ATCC 19606T A. baumannii strains, but not in the non-human
SDF isolate.

Another alternative mechanism for bacterial iron assimilation
involves the direct uptake of iron by the Feo system, a homolog
of the E. coli feoB. This system, found in ACICU, ATCC 17978,
AYE, AB0057, AB307-294, ATCC 19606T, and SDF strains, con-
sists of the cytosolic FeoA protein, the inner membrane Fe(II)
permease FeoB, and the putative transcriptional repressor FeoC
(Antunes et al., 2011b). The expression of the proteins implied
in iron acquisition systems, including siderophore biosynthetic
enzymes, depends on the transcriptional regulation of the global
iron-binding repressor protein Fur, for ferric uptake regulator
(Mihara et al., 2004; Vallenet et al., 2008), which acts as a transcrip-
tion repressor of genes involved in the siderophore/heme(globin)
systems. A bioinformatic search for Fur-binding sites revealed that
putative Fur boxes were present in the intergenic regions of the
abovementioned gene clusters, demonstrating the participation of
these clusters in iron capture.

QUORUM SENSING
Bacteria elaborate chemical signals excreted from the cells to per-
form intercellular communication and environmental adaptation.
This ability of bacteria to monitor cell density before expressing a
phenotype is known as“quorum sensing”(Whitehead et al., 2001).
QS is a widespread regulatory mechanism among Gram-negative
bacteria and often takes place with the aid of acyl-homoserine
lactone (AHL)-like signal molecules produced by the LuxI family
of AHL synthases (Sarkar and Chakraborty, 2008; González et al.,
2009). Modulation of the physiological processes controlled by

acyl HSLs and, non-acyl HSL-mediated systems occurs in a cell
density- and growth phase-dependent manner. AHLs-mediated
QS has been linked with the production of virulence factors, motil-
ity, nodulation, plasmid transfer, antibiotic production, bioemul-
san production, bioluminescence, and biofilm formation (White-
head et al., 2001; Vallenet et al., 2008). These autoinducers bind to
transcriptional regulatory proteins and activate or regulate gene
expression in the organism (Bhargava et al., 2010). In a previous
study, González et al. (2001) detected QS signal molecules capa-
ble of activating AHL biosensors in A. baylyi ADP1 cultures and
in culture supernatants of some clinical Acinetobacter strains. A
common AHL system of Gram-negative bacteria is mediated by
two proteins: LuxI proteins which interact with the LuxR pro-
tein. This complex binds to a specific promoter sequence known
as lux-box, which regulates the expression of QS target genes. In
Acinetobacter, the lux-box is found upstream from the putative
ATG of abaI, representing a binding site for AbaR. AbaI protein
belongs to the LuxI family of autoinducer synthases, producing
N -(3-hydroxydodecanoyl)-l-HSL (3-hydroxy-C(12)-HSL) as the
primary signal and performing the function of signal transduction
and QS. The AbaR protein, which is an autoinducer receptor in A.
baumannii, interacts with AHL and controls gene expression (Niu
et al., 2008).

Acinetobacter quorum signals have been shown to vary in vir-
ulent and non-virulent strains, thus differentiation between them
on the basis of QS is difficult. On the other hand, communi-
cation among bacteria with respect to cell density is related to
maturation of biofilm. It was observed that mutations in abaI
led to a reduction in biofilm production compared with the iso-
genic parental strain but the original phenotype could be restored
when a exogenous Acinetobacter AHL was added to the mutant
(Niu et al., 2008; Bhargava et al., 2010). Thus, QS signal molecules
influence biofilm formation which represents an important viru-
lence factor related to the survival and antibiotic resistance of A.
baumannii (Gaddy and Actis, 2009; Bhargava et al., 2010). Kang
and Park (2010a) evaluated the effect of QS signals on hexadecane
biodegradation and biofilm formation in the Acinetobacter spp.
strain DR1, and found phenotypic changes in the strain associated
with three putative QS signals that strongly indicated their relation
in biofilm formation. Particularly, C12-AHL, which was a major QS
signal and controlled the biofilm formation in A. baumannii M2
previously described by Niu et al. (2008). The poor biodegradabil-
ity of hydrocarbons was one of the significant changes observed
when QS signals where eliminated, and consequently resulted in
alterations of bacterial hydrophobicity, cellular motility by fim-
briae or pili, biofilm formation, and other environmental factors
(Clemmer et al., 2011). Thus, in the DR1 strain, the QS system
and putative AHLs directly regulated the biofilm formation and
growth on hydrocarbons. In another study, Kang and Park (2010b)
described a trade-off between antibiotic resistance and biological
fitness (Kang and Park, 2010b). The biological fitness of the Acine-
tobacter strain DR1 was influenced by the in situ acquisition of
antibiotic resistance, probably attributable to the reduced abil-
ity to produce QS signals, lack of motility, and reduced substrate
utilization.

As a concluding remark, it has been hypothesized that inter-
ference with bacterial virulence and/or cell-to-cell signaling
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pathways, such as interruption of QS signals, known as quorum
quenching (QQ; Chan et al., 2011), represents an important target
for pathogenesis inhibition and development of novel therapeutics
for the treatment of bacterial infections (Whitehead et al., 2001;
Bhargava et al., 2010; Rasko and Sperandio, 2010).

PUTATIVE ALIEN ISLANDS
New insights into the pathogenesis of A. baumannii has demon-
strated that mutagenesis and genomic sequencing can uncover
and evaluate many virulence factors for a better understand-
ing of the pathogenicity of this bacterium. Smith et al. (2007)
performed a genomic analysis between A. baumannii and A.
baylyi and found 55.74% homology at the protein level. One
of the most interesting differences between both was the pres-
ence of 28 putative alien islands (pAs) in A. baumannii (Smith
et al., 2007). These islands were found to contain the major-
ity of the drug resistance and virulence factors, many acquired
from their environment, indicating their role in the pathogenicity
of A. baumannii. Some of these islands contained genes asso-
ciated with pathogenesis, encoding heavy metal resistance, iron
uptake and metabolism, fimbrial genes, autoinducer processing,
and cell envelope biogenesis. Other pAs contained hypothetical
genes and mobile elements that remain uncharacterized. Thus,
gene shuffling mutagenesis revealed that pAs might (Camarena
et al., 2010) play an important role in the pathogenesis of A.
baumannii.

ANTIMICROBIAL RESISTANCE
While other human pathogens stand out due to their virulence
and pathogenicity, A. baumannii is not known to be particularly
virulent or to produce diffusible toxins or cytolysins, and only a
few virulence factors have been described to date (Vallenet et al.,
2008). There is, however, one feature at which this microorganism
excels, and that is antimicrobial resistance. Indeed, A. baumannii
has an outstanding ability to accumulate different resistance mech-
anisms which, together with its innate resistance to desiccation,
contribute to the survival and persistence of A. baumannii under
selective environmental pressure, making this microorganism a
phenomenal nosocomial pathogen.

Acinetobacter baumannii has become resistant to almost all
commonly used antimicrobial agents, including aminoglycosides,
quinolones and broad-spectrum β-lactams, and multidrug or pan-
drug-resistant strains are becoming a frequent problem in the
clinical setting (Livermore et al., 2008; Rossolini and Mantengoli,
2008; Morgan et al., 2009; Table 1).

Overall, antimicrobial resistance can be achieved by means
of two main mechanisms: acquisition of novel genetic informa-
tion through horizontal gene transfer and genetic modification of
endogenous genes.

Acquisition of novel genetic determinants in A. baumannii
takes place by the combined effect of mobile genetic elements
(insertion sequences, IS and transposons), integrons, and transfer-
able plasmids, while the genetic modification of endogenous genes
implies either spontaneous mutations that modify drug targets or
the insertion/deletion of mobile elements that alter the expres-
sion of endogenous resistance mechanisms or modify membrane
permeability.

β-LACTAMS
The mechanisms involved in resistance to β-lactams in A. bau-
mannii typically include: (i) enzymatic mechanisms or production
of β-lactam hydrolyzing enzymes (β-lactamases) and (ii) non-
enzymatic mechanisms that involve modification of membrane
permeability by either the loss of or decrease in the expression
of OMPs or an increased expression of efflux pumps as well as
sequence variation of PBPs.

ENZYMATIC MECHANISMS
The main mechanism of resistance to β-lactam antibiotics in A.
baumannii lies in the production of β-lactamases encoded either
chromosomally or in plasmids. The common genome of A. bau-
mannii possesses two intrinsic β-lactam hydrolyzing enzymes;
a non-inducible cephalosporinase (AmpC; Bou and Martinez-
Beltran, 2000b) and a class D oxacillinase (OXA-51/69 variants;
Brown et al., 2005).

Chromosomal cephalosporinases (AmpC)
AmpC enzymes are class C β-lactamases responsible for resistance
to all penicillins and extended-spectrum cephalosporins, except
cefepime, as well as to β-lactam-β-lactamase inhibitor combina-
tions (Drawz et al., 2010). Several allelic variants of the AmpC
enzyme have been reported and a new designation for this fam-
ily of cephalosporinases has been defined (Acinetobacter-derived
cephalosporinases, or ADC). According to sequence similarities as
well as preferred substrates, AmpCs found within Acinetobacter
have been classified in up to 56 different ADC types, with more
than 25 variants being found in A. baumannii (Hujer et al., 2005;
Zhao and Hu,2012). Being non-inducible, the basal expression lev-
els of AmpC enzymes from A. baumannii do not significantly alter
susceptibility to β-lactams, although the presence of an upstream
IS element (known as ISAbaI ) promotes increased expression of
blaampC and resistance to expanded-spectrum cephalosporins but
not to cefepime and carbapenems. Expression of blaampC is appar-
ently driven by promoter sequences within the ISAbaI element
(Héritier et al., 2006).

Oxacillinases
Ambler Class D enzymes, also known as oxacillinases (OXA;
Ambler, 1980), are distinguished by their ability to hydrolyze
cloxacillin and oxacillin, and some also oxyimino-β-lactams, but
not carbapenems and might be inhibited by clavulanic acid. The
oxacillinase enzymes present in Acinetobacter spp., however, con-
stitute an atypical subgroup of OXA enzymes since they present
carbapenem-hydrolyzing activities (they hydrolyze imipenem and
meropenem but not extended-spectrum cephalosporins and aztre-
onam) and, therefore, are also termed as carbapenem-hydrolyzing
class D β-lactamases (CHDLs; Poirel and Nordmann, 2006a) and
have their own group (2df) in the updated functional classification
of β-lactamases recently published by Bush and Jacoby (2010). In
A. baumannii, five phylogenetic subgroups of class D β-lactamases
have currently been identified: the naturally occurring OXA-51/69
and four clusters of acquired CHDLs (OXA-23, OXA-24/40, OXA-
58, and OXA-143), each with a variety of enzymes that represent
different sequence substitutions.

Similar to blaampC, basal expression of the naturally occur-
ring OXA-51 oxacillinase in A. baumannii only allows for
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Table 1 | Antimicrobial resistance mechanisms in A. baumannii .

Antimicrobial Resistance mechanism Class/

family

Protein Described in

association with

Selected reference

β-Lactams Chromosomal

cephalosporinase

Class C AmpC IS Hujer et al. (2005)

Carbapenem-hydrolyzing

class D β-lactamases

Class D OXA-51-like IS Turton et al. (2006)
OXA-23-like IS, Tn, AbaR Corvec et al. (2007), Adams et al. (2008)

OXA-24/40-like XerC/XerD Merino et al. (2010)

OXA-58-like IS, Tn Poirel and Nordmann (2006b)

OXA-143-like Higgins et al. (2009)

Metallo-β-lactamases Class B IMP Integron Cornaglia et al. (2011)

VIM Integron Cornaglia et al. (2011)

SIM-1 Integron Cornaglia et al. (2011)

NDM IS, Tn Espinal et al. (2011a), Pfeifer et al. (2011)

Minor relevance

β-lactamases

Class A TEM AbaR Adams et al. (2008), Shakil and Khan (2010)
SHV Naas et al. (2007)

SCO-1 Poirel et al. (2007)

CARB IS, Tn, integron Potron et al. (2009), Ramírez et al. (2010b)

PER IS, Tn, integron Poirel et al. (2005a), Bonnin et al. (2011b)

VEB IS, integron, AbaR Fournier et al. (2006), Poirel et al. (2009)

CTX-M Tn Potron et al. (2011)

GES Integron Moubareck et al. (2009)

KPC Robledo et al. (2010)

Class D OXA-2, 10, 20, 37 Integron, AbaR Navia et al. (2002), Fournier et al. (2006),

Adams et al. (2008)

Decreased permeability CarO IS Ravasi et al. (2011)

47 kDa OMP Quale et al. (2003)

44 kDa OMP Quale et al. (2003)

37 kDa OMP Quale et al. (2003)

33–36 kDa OMP del Mar Tomas et al. (2005)

22–33 kDa OMP Bou et al. (2000a)

HMP-AB Gribun et al. (2003)

43 kDa OMP Fernández-Cuenca et al. (2011)

Efflux pump RND AdeABC IS Magnet et al. (2001)

AdeIJK Damier-Piolle et al. (2008)

Modified penicillin-binding

proteins

PBP Cayo et al. (2011)

Aminoglycosides Aminoglycoside-modifying

enzymes

Acetyltransferases IS, Tn, Integron,

AbaR

Cho et al. (2009)
Nucleotidyltransferases Cho et al. (2009)

Phosphotransferases Cho et al. (2009)

Target binding site

modification

16S rRNA methylases IS, Tn Doi et al. (2007)

Efflux RND AdeABC IS Magnet et al. (2001)

MATE AbeM Su et al. (2005)

Quinolones Target site mutations GyrA/ParC Hamouda and Amyes (2004)

Efflux pump RND AdeABC IS Magnet et al. (2001)

AdeIJK Damier-Piolle et al. (2008)

AdeFGH Coyne et al. (2010b)

MATE AbeM Su et al. (2005)

SMR AbeS Srinivasan et al. (2009a)

Chloramphenicol Efflux pump RND AdeABC IS Magnet et al. (2001)

AdeIJK Damier-Piolle et al. (2008)

AdeFGH Coyne et al. (2010b)

(Continued)
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Table 1 | Continued

Antimicrobial Resistance mechanism Class/

family

Protein Described in

association with

Selected reference

MFS CmlA AbaR Fournier et al. (2006), Vila et al. (2007)

CraA Roca et al. (2009)

MATE AbeM Su et al., 2005

SMR AbeS Srinivasan et al. (2009a)

Tetracyclines Efflux pump MFS TetA IS, Tn, AbaR Ribera et al. (2003a), Fournier et al. (2006)

TetB Vila et al. (2007)

Ribosomal protection TetM Ribera et al. (2003b)

Tigecycline Efflux pump RND AdeABC IS Magnet et al. (2001)

AdeIJK Damier-Piolle et al. (2008)

Polymyxins Lipid A modification PmrCAB Arroyo et al. (2011), Beceiro et al. (2011)

Loss of lipopolysaccharide LpxABC IS Moffatt et al. (2011)

Porin loss Fernández-Reyes et al. (2009)

IS, Insertion sequence;Tn, transposon; AbaR, resistance island; RND, resistance–nodulation–cell division family; MFS, major facilitator superfamily; MATE, multidrug

and toxic compound extrusion family; SMR, small multidrug resistance family.

weak hydrolysis of β-lactamic substrates, mainly penicillins and
carbapenems (they are not active against expanded-spectrum
cephalosporins; Héritier et al., 2005a) unless ISAbaI or ISAba9 ele-
ments are located upstream from blaOXA-51-like genes to increase
their expression (Turton et al., 2006; Figueiredo et al., 2009). Over
68 different OXA-51 sequence variants are classified as Class D
enzymes (Zhao and Hu, 2012).

Originally named ARI-1, the acquired OXA-23 enzyme shares
56% identity at the protein level with OXA-51/69 and was initially
identified in a plasmid from an A. baumannii isolate in Scotland,
constituting the first oxacillinase with carbapenemase activity to
be reported (Paton et al., 1993). Since then, the blaOXA-23 gene
has been identified all over the world, both in the chromosome
or in plasmids, and it is apparently exclusive of the Acinetobacter
genus, with a Proteus mirabilis isolate from France being the sole
exception (Bonnet et al., 2002). OXA-27, OXA-49, and OXA-73
are also included within this cluster (Afzal-Shah et al., 2001; see
also http://www.lahey.org/studies/).

The second cluster of acquired class D enzymes is named after
the OXA-24/40 enzyme (OXA-24 and OXA-40 were initially iden-
tified as different enzymes but re-sequencing has shown that they
are indeed indistinguishable; see http://www.lahey.org/studies/),
which was originally isolated from the chromosome of a
carbapenem-resistant A. baumannii isolate from Spain (Bou et al.,
2000c). This class also includes the OXA-25, OXA-26, and OXA-
72 (Afzal-Shah et al., 2001; Wang et al., 2007) enzymes and shares
roughly 63 and 60% amino acid identity with the OXA-51/69 and
OXA-23 clusters, respectively. Although the OXA-26 enzyme has
been identified in Belgium (Afzal-Shah et al., 2001), the OXA-72
in isolates from Asia (Wang et al., 2007; Lee et al., 2009a; Lu et al.,
2009) and more recently also from Croatia (Goic-Barisic et al.,
2011), and the blaOXA-40 gene has also been found in the United
States (Lolans et al., 2006; Qi et al., 2008), the blaOXA-40-like genes
seem to be highly prevalent in Spain and Portugal (Quinteira et al.,
2007; Ruiz et al., 2007) and they can also be found either in the
chromosome or be plasmid-borne.

The third cluster of acquired CHDLs is represented by OXA-58,
identified in A. baumannii by Poirel et al. (2005b), sharing 59%
amino acid identity with OXA-51/69 and less than 50% amino
acid identity with OXA-23 and OXA-24/40. The blaOXA-58 gene
has only been found in Acinetobacter spp. so far, and it has been
detected in A. junii in Romania and Australia (Marqué et al., 2005;
Peleg et al., 2006), in A. pittii and Acinetobacter phenon 6/ct 13TU
in Spain (Martí et al., 2008a,b), in A. nosocomialis in Taiwan (Lin
et al., 2010), and Wang et al. (2007) also reported the first identi-
fication of a blaOXA-58-like gene in Acinetobacter genomic species
14TU in China.

The blaOXA-58 gene is usually plasmid-encoded, which most
likely accounts for its wide distribution throughout the world,
although it is especially prevalent in Italy and Greece (D’Arezzo
et al., 2009; Papa et al., 2009; Donnarumma et al., 2010; Di
Popolo et al., 2011; Gogou et al., 2011), where carbapenem-
resistant A. baumannii strains producing OXA-58 have caused
several outbreaks in intensive care and pediatric units (Poirel et al.,
2006; Pournaras et al., 2006; Tsakris et al., 2008). OXA-96 (Koh
et al., 2007b) and OXA-97 (Poirel et al., 2008b) constitute point-
mutation derivatives of OXA-58 included within the same cluster
and with similar hydrolytic properties.

The fourth cluster of acquired CHDLs present in A. baumannii
was identified more recently upon the isolation of a novel OXA-
143 enzyme recovered from an A. baumannii clinical isolate in
Brazil (Higgins et al., 2009). At the protein level, this enzyme is
88, 63, and 52% identical to OXA-24/40, OXA-23, and OXA-58
respectively, but exhibits a similar substrate profile to that of other
CHDLs from A. baumannii.

Overall, the level of carbapenem-hydrolysis by CHDLs is con-
siderably low, with imipenem being the preferred substrate over
meropenem, thereby raising a debate as to the exact contribu-
tion of these enzymes to carbapenem resistance (Queenan and
Bush, 2007). Héritier et al. (2005b) addressed this issue by study-
ing changes in susceptibility to carbapenems using either knock-
out mutants or transformation experiments with both natural
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and recombinant plasmids containing blaOXA-23, blaOXA-40, and
blaOXA-58 in different hosts and genetic backgrounds. These exper-
iments demonstrated that acquired CHDLs significantly con-
tribute to the resistant phenotype, with OXA-40 and especially
OXA-23 showing a significantly greater impact on resistance than
OXA-58. In addition, they also noticed that CHDLs expressed
from natural plasmids originated greater levels of carbapenem
resistance than those expressed in recombinant vectors, point-
ing out the importance of IS elements to enhance the expres-
sion of acquired class D oxacillinases in A. baumannii (Héritier
et al., 2005b). The role of mobile genetic elements in the expres-
sion and transfer of resistance determinants will be discussed
further on.

Metallo-β-lactamases
Since their introduction back in 1985, carbapenems have probably
been (and still are) the most important antimicrobial agents for the
treatment of infections caused by multidrug-resistant A. bauman-
nii. During the last decades, however, resistance to carbapenems is
increasing worldwide (Gopalakrishnan and Sureshkumar, 2010;
Davies et al., 2011; Gogou et al., 2011; Lee et al., 2011a) and
carbapenem-resistant A. baumannii strains are commonly resis-
tant to all other classes of antibiotics as well, showing intermediate
susceptibility to rifampicin and only being susceptible to tigecy-
cline and colistin, although resistance to both antimicrobials has
also recently been reported (Al-Sweih et al., 2011; Taneja et al.,
2011).

There is another class of acquired β-lactamases in A. bauman-
nii which, together with Ambler class D enzymes, contributes
to the carbapenem-resistant phenotype, the Ambler class B of
metallo-β-lactamases or MBLs. This group of enzymes differs
from other β-lactamases in its broad substrate profile (they are
capable of hydrolyzing all β-lactams except the monobactam aztre-
onam), potential for horizontal transfer and the fact that they
are zinc-dependent metalloproteins inhibited by EDTA but not
by carbapenem or β-lactamase inhibitors such as clavulanic acid,
tazobactam, and sulbactam (Bush and Jacoby, 2010).

Although MBLs are not as much widespread as class D enzymes
in A. baumannii, they display a significantly higher hydrolytic
activity toward carbapenems (100- to 1,000-fold; Poirel and Nord-
mann, 2006a). Of the several groups of MBLs described to date,
only IMP, VIM, SIM, and the novel NDM have been found in
A. baumannii and, with the exception of NDM, they are typically
identified within class 1 integrons containing an array of resistance
gene cassettes as well, usually including some aminoglycoside-
resistance determinants (Riccio et al., 2000; Houang et al., 2003;
Zarrilli et al., 2004; Lee et al., 2005; Tsakris et al., 2006). The impor-
tance of integrons and their contribution to the MDR phenotype
will be further expanded later in this review.

IMP metallo-β-lactamases (named for being active on
imipenem) were first described in Japan from a Pseudomonas
aeruginosa isolate in 1990 (Watanabe et al., 1991). After that initial
isolation, IMP enzymes have been reported worldwide in sev-
eral Gram-negative bacteria, including A. baumannii (Queenan
and Bush, 2007). So far there are up to 33 different IMP variants
(according to http://www.lahey.org/studies/) but only 8 (IMP-1, -
2, -4, -5, -6, -8, -11, and -19) have been identified in A. baumannii,

mostly in Asia but also in Europe and parts of South America
(Riccio et al., 2000; Chu et al., 2001; Da Silva et al., 2002; Towner
et al., 2002; Gales et al., 2003; Lee et al., 2003, 2008; Yamamoto
et al., 2011). Enzymes belonging to the IMP type have broad sub-
strate specificity and are especially active against cephalosporins
and carbapenems.

The first VIM enzyme (VIM-1) was initially described in 1999
from a P. aeruginosa isolate in the Italian location of Verona (hence,
Veronese imipenemase; Lauretti et al., 1999) but the first VIM
enzyme (VIM-2) in A. baumannii was not described until a few
years later (Yum et al., 2002). VIM MBLs display <40% amino
acid identity with IMP enzymes and share a similar substrate pro-
file, albeit with a higher affinity toward carbapenems (Docquier
et al., 2003). During the past decade several VIM variants (VIM-1,
-2, -3, -4, and -11) have been identified in A. baumannii isolates,
mainly in European and Asian countries (Yum et al., 2002; Lee
et al., 2003, 2008; Tsakris et al., 2006; Wroblewska et al., 2007;
Figueiredo et al., 2008) but also in clinical isolates of the closely
related A. nosocomialis and A. pittii (Espinal et al., 2011b).

SIM-1 was originally found in A. baumannii in a tertiary
care hospital in Seoul, Korea (hence, Seoul imipenemase), and
so far this isolate contains the only blaSIM-1 gene reported in
this microorganism (Lee et al., 2005). SIM-1 exhibits 64–69%
amino acid identity with IMP enzymes and, similar to IMP
and VIM, it is capable of hydrolyzing penicillins, narrow-, and
expanded-spectrum cephalosporins as well as carbapenems.

More recently, a novel class B metallo-β-lactamase enzyme has
been reported. This enzyme was first identified in Klebsiella pneu-
moniae and E. coli clinical isolates recovered in Sweden from a
traveler returning from India and has, hence, been termed NDM-
1 for New Delhi metallo-β-lactamase (Yong et al., 2009). Similar
to other MBL enzymes, NDM-1 confers resistance to all β-lactams
except aztreonam. After its initial isolation, several reports have
identified blaNDM genes in Enterobacteriaceae worldwide due to
their plasmidic localization that allows for rapid transfer and dis-
semination (Nordmann et al., 2011, 2012; Poirel et al., 2011a).
In 2010 the blaNDM-1 gene was first identified in an intensive
care unit in India from an A. baumannii isolate that also con-
tained the blaOXA-23 gene and armA (Karthikeyan et al., 2010),
a gene encoding a 16S rRNA methylase conferring resistance
to aminoglycosides (Yamane et al., 2005). The chromosomal or
plasmidic location of this gene, however, was not clear. Kaase
et al. (2011) identified the first NDM variant in an A. bauman-
nii isolate from Egypt, NDM-2, which differed from NDM-1 by
a single amino acid substitution but shared an identical spec-
trum of hydrolysis. Although not fully demonstrated, blaNDM-2

was thought to be chromosomally located. Several reports have
subsequently described NDM enzymes in A. baumannii isolates
from China, Germany, and Israel (Chen et al., 2011; Espinal et al.,
2011a; Pfeifer et al., 2011) but also in an Acinetobacter lwoffii isolate
from China (Hu et al., 2011). Interestingly, while the blaNDM-1 and
blaNDM-2 from Germany (Pfeifer et al., 2011) and Israel (Espinal
et al., 2011a), respectively, were found on the chromosome of A.
baumannii, the blaNDM-1 from Chinese isolates were located on
several plasmids ranging from 30 to 50 kb in size (Chen et al.,
2011) and as was the blaNDM-1 gene found in A. lwoffii of Chinese
origin.
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Minor relevance β-lactamases
Additional β-lactamase enzymes belonging to the Ambler class A
have also been described in A. baumannii but they are generally
regarded of minor relevance since the prevalence of these enzymes
as well as their specific contribution to the resistant phenotype is
usually hindered by the presence of more prevalent mechanisms
such as the intrinsic AmpC cephalosporinase or the naturally
occurring OXA-51, among others (Poirel and Nordmann, 2006a).

Narrow-spectrum serine β-lactamases such as TEM-1, SCO-
1, CARB-2, -4, and -8 as well as OXA-20, OXA-21, and OXA-
37 have all been detected in A. baumannii (Vila et al., 1997a;
Navia et al., 2002; Mammeri et al., 2003; Zarrilli et al., 2004;
Koh et al., 2007b; Poirel et al., 2007; Wang et al., 2007; Ramírez
et al., 2010b), but some other extended-spectrum β-lactamases
and serine-carbapenemases are also present.

PER-1 was the first ESBL enzyme identified in A. baumannii
(Vahaboglu et al., 1997) but also PER-2 and -7 (Pasterán et al.,
2006; Bonnin et al., 2011b), VEB-1 (Poirel et al., 2003), TEM
variants TEM-92, -116, and -150 (Naiemi et al., 2005; Endimi-
ani et al., 2007; Shakil and Khan, 2010), GES-11, -12, and -14
(Bogaerts et al., 2010), the atypical expended-spectrum carbenicil-
linase CARB-10 (Potron et al., 2009), capable of hydrolyzing fourth
generation cephalosporins but not ceftazidime or cefotaxime, at
least three different SHV-type ESBLs (SHV-2, -5, and -12; Naiemi
et al., 2005; Naas et al., 2007) as well as three different types of the
plasmid-mediated CTX-M enzymes (CTX-M-2, -15, -43; Nagano
et al., 2004; Celenza et al., 2006; Shakil and Khan, 2010) have been
reported so far in this microorganism.

Interestingly, while PER and VEB are usually regarded as
second-class β-lactamases in Enterobacteriaceae (Naas et al.,
2008), they are more commonly found in A. baumannii and
seem to be emerging in certain geographic regions where they are
responsible for nosocomial outbreaks (Vahaboglu et al., 1997; Naas
et al., 2006a,b). On the other hand, CTX-M variants, especially
CTX-M-15, are widely disseminated among Enterobacteriaceae
worldwide (Canton and Coque, 2006) but, until recently, were
rare in A. baumannii. Recent reports seem to indicate an increase
in A. baumannii strains bearing CTX-M variants within the Asia-
Pacific region, most likely associated with transposon-mediated
mobilization events (Nagano et al., 2004; Shakil and Khan, 2010;
Potron et al., 2011).

It is worth mentioning that 10 KPC enzymes, including a novel
variant, KPC-10, have also recently been identified among isolates
belonging to the A. calcoaceticus–A. baumannii complex in Puerto
Rico, although identification to the species level was not conclusive
(Robledo et al., 2010).

NON-ENZYMATIC MECHANISMS
Membrane permeability
Resistance to β-lactams by means of non-enzymatic mechanisms
includes any alteration in the permeability of bacterial membranes
that either prevents the entry of antimicrobial agents or promotes
their efflux. Very little is known about the OMPs of A. baumannii,
but several studies have highlighted the relevance of such pro-
teins in resistance to β-lactams. In 2002, Viale and co-workers
demonstrated that the loss of a 29-kDa protein, named CarO,
was associated with carbapenem resistance in A. baumannii in

the absence of any known carbapenemase (Limansky et al., 2002).
The loss of CarO in several carbapenem-resistant A. baumannii
isolates was due to the presence of distinct insertion elements that
disrupted the carO gene (Mussi et al., 2005). Structural studies on
this protein, however, showed that although CarO presented some
pore-forming properties, it did not contain any specific binding
site for carbapenems and was rather a non-specific channel (Siroy
et al., 2005). Several other investigations have also identified a
variety of OMP proteins mainly involved in carbapenem resis-
tance upon OMP-loss or reduced expression, including a set of
endemic carbapenem-resistant A. baumannii isolates from New
York presenting reduced expression of 47-, 44-, and 37-kDa OMPs
together with an increased expression of the class C cephalospori-
nase (Quale et al., 2003); an A. baumannii isolate in Spain that had
lost a 33- to 36-kDa OMP associated with carbapenem resistance
(del Mar Tomas et al., 2005); and, also similar to what has already
been described in Enterobacteriaceae (Kitchel et al., 2010; Pitart
et al., 2011), the combined effect of reduced expression of 22- and
33-kDa OMPs and an acquired carbapenemase enzyme (OXA-23;
Bou et al., 2000a).

Proteomic studies have also highlighted some OMPs that might
have a relevant role in the resistant phenotype to β-lactams, such as
the heat-modifiable HMP-AB, which constitutes the major OMP
of A. baumannii and resembles the OmpA protein from Enter-
obacteriaceae (Gribun et al., 2003), OmpW (Siroy et al., 2006;
Vila et al., 2007), and a 43-kDa protein similar to OprD from P.
aeruginosa (Dupont et al., 2005).

More recently, Fernández-Cuenca et al. investigated the vir-
ulence phenotype of a pan-drug-resistant A. baumannii clinical
isolate and found an association between attenuated virulence and
the decreased expression of genes encoding CarO and OprD-like
porins. Attenuated virulence in this work was attributed to a higher
biological cost when losing certain OMPs (Fernández-Cuenca
et al., 2011).

The role of efflux proteins in the antibiotic susceptibility pro-
file of A. baumannii will be discussed in more detail within the
following pages, however, it should be mentioned that the contri-
bution to β-lactam resistance of the three resistance–nodulation–
cell division (RND) efflux pumps identified so far in A. bau-
mannii (AdeABC, AdeIJK, and AdeFGH) has not been exten-
sively studied. Disruption of either adeABC or adeIJK has been
shown to cause 4- and 12-fold decreases in the MICs of cefo-
taxime and cefepime, respectively, with that of imipenem remain-
ing unchanged. AdeFGH, on the other hand, does not seem to
affect susceptibility to β-lactams (Magnet et al., 2001; Damier-
Piolle et al., 2008; Coyne et al., 2010b). Interestingly, Wong et al.
(2009) showed that disruption of adeB in three A. baumannii
strains significantly altered susceptibility to meropenem but not
to imipenem and, more recently, Roca et al. (2011) characterized
an AdeABC-type efflux pump in an isolate of the closely related
A. nosocomialis which was able to extrude monobactams, third-
generation cephalosporins, cefoxitin, and meropenem but, again,
not imipenem.

Overall, β-lactam extrusion by means of efflux systems leads to
small increases in the MIC, and high-level resistance can only be
achieved in combination with additional resistance mechanisms
(Héritier et al., 2005a).
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Penicillin-binding proteins
Another non-enzymatic mechanism of resistance to β-lactams
involves changes in the affinity or expression levels of PBPs. Sev-
eral reports have identified differences in the expression patterns of
PBPs between carbapenem-susceptible and carbapenem-resistant
A. baumannii strains. In some of these strains, carbapenem resis-
tance has been associated with the overexpression of PBP types
with low affinity for carbapenem in the absence of any other
known resistance mechanism (Gehrlein et al., 1991; Urban et al.,
1995) but also with the reduced expression of PBP types together
with the production of several β-lactamases or the loss of a 22.5-
kDa OMP (Fernández-Cuenca et al., 2003; Cayo et al., 2011).
Overall, the contribution of PBP variants to carbapenem resistance
is marginal unless associated with β-lactamases, overexpression of
efflux pumps or decreased expression of OMPs, and the mecha-
nisms leading to altered expression levels of these proteins have
yet to be elucidated (Yun et al., 2011).

AMINOGLYCOSIDES
Resistance to aminoglycosides in A. baumannii can be achieved by
means of efflux proteins extruding these compounds (reviewed
below) or by the expression of aminoglycoside-modifying
enzymes (AMEs), specifically acetyltransferases, nucleotidyltrans-
ferases, and phosphotransferases (Cho et al., 2009). Activity of
AMEs results in the modification of hydroxyl or amino groups
present within aminoglycosides that decrease their affinity for the
target site (Smith and Baker, 2002). AMEs can be located in either
the bacterial chromosome or in plasmids and are usually associated
with class 1 integrons and resistance islands where two or more
aminoglycoside-resistance genes often occur in combination (Cho
et al., 2009). Nemec et al. showed that more than 95% out of 106
European multidrug-resistant A. baumannii isolates contained at
least one aminoglycoside-resistance gene and 84% contained a
combination of two to five different genes with more than 12 dis-
tinct combinations. Seventy-eight percent of the strains contained
class 1 integrons as well, highlighting the major role of horizon-
tal gene transfer in the dissemination of AMEs in A. baumannii
(Nemec et al., 2004).

More recently, 16S rRNA methylation mediated by armA has
also been described in A. baumannii, conferring high-level resis-
tance to all clinically relevant aminoglycosides, such as gentamicin,
tobramycin, and amikacin (Doi and Arakawa, 2007). armA has
been found in China, Korea, and the United States (Lee et al.,
2006a; Doi et al., 2007; Yu et al., 2007), and it is also commonly
found in combination with the blaOXA-23 gene (Kim et al., 2008;
Karthikeyan et al., 2010).

QUINOLONES
The mechanisms of fluoroquinolone resistance in A. baumannii
parallel those of other Gram-negative bacteria and are mainly
achieved by point mutations originating amino acid substitutions
within the quinolone-resistance determining regions (QRDR) of
DNA gyrase and DNA topoisomerase IV (Fàbrega et al., 2009).
Mutations in both gyrA and parC have been described in A.
baumannii with the most common substitutions being Ser83 to
Leu83 for gyrA and Ser80 to Leu80 in parC (Vila et al., 1995,
1997b; Seward and Towner, 1998; Spence and Towner, 2003;

Wisplinghoff et al., 2003; Hamouda and Amyes, 2004; Higgins
et al., 2004; Valentine et al., 2008). It is worth mentioning that
mutations in parC are always accompanied by a concurrent muta-
tion in gyrA, probably suggesting that DNA gyrase is the preferred
target for fluoroquinolones in A. baumannii (Vila et al., 1995,
1997b; Hamouda and Amyes, 2004).

Several efflux pumps in A. baumannii are also involved in flu-
oroquinolone resistance and their specific contribution will be
discussed later. Interestingly, plasmid-mediated fluoroquinolone
resistance mechanisms such as qnr, aac(6′)-Ib-cr, or qepA (Fàbrega
et al., 2009) have not yet been described in A. baumannii (Yin et al.,
2008; Srinivasan et al., 2009b).

POLYMYXINS
To date, most multidrug A. baumannii strains still remain sus-
ceptible to polymyxins, prompting an increased use of these
compounds despite previous concerns regarding toxicity issues
(Falagas and Kasiakou, 2005). Polymyxin E (Colistin), acts by
modifying the negative charges of the outer membranes of Gram-
negative bacteria, ultimately leading to the disruption of the bac-
terial membrane. There is very little information regarding the
mechanisms of colistin resistance in A. baumannii, but it appears
that colistin resistance might be multifactorial. By comparing the
proteomes of colistin-susceptible versus colistin-resistant A. bau-
mannii isolates Fernández-Reyes et al. (2009) were able to identify
the differential expression of 35 proteins, including OMPs, chap-
erons, protein biosynthesis factors, and metabolic enzymes. Other
studies, however, have focused on modifications in the bacterial
lipopolysaccharide. It has been shown that mutations causing an
up-regulated expression of the pmrA and pmrB genes lead to col-
istin resistance in A. baumannii (Adams et al., 2009). pmrA and
pmrB constitute a two-component regulatory system that governs
the expression of pmrC, encoding a phosphoethanolamine trans-
ferase enzyme involved in lipid A modification. Up-regulation of
pmrA and pmrB also causes the overexpression of pmrC and the
addition of phosphoethanolamine to the lipid A, which impairs
the self-promoted uptake of colistin across the outer membrane
(Arroyo et al., 2011; Beceiro et al., 2011).

On the other hand, Moffatt et al. (2010) demonstrated that
colistin resistance could also be achieved by the complete loss of
lipopolysaccharide production due to mutations affecting several
genes involved in lipid A biosynthesis (lpxA, lpxC, or lpxD). Muta-
tions in these genes ranged from single point mutations to large
deletions or even the presence of an insertion element, ISAba11,
truncating either lpxA or lpxC (Moffatt et al., 2011). Interestingly,
Moffatt et al. observed that colistin-resistant mutants lacking LPS
had a 32- to 256-fold increase in susceptibility to other classes
of antibiotics. The authors attributed this observation to a direct
consequence of LPS loss causing an increased permeability of the
outer membrane.

Interestingly, some reports seem to indicate that colistin resis-
tance in A. baumannii is associated with lower bacterial fitness
in vivo as well as decreased virulence, suggesting that colistin usage
for the treatment of A. baumannii infections might constitute a
safe and effective strategy (López-Rojas et al., 2011b). Nevertheless,
reduced bacterial fitness in colistin-resistant A. baumannii strains
does not always occur as acquisition of compensatory mutations
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might contribute to maintain the virulence of resistant isolates
(López-Rojas et al., 2011c; Rolain et al., 2011).

EFFLUX
Antimicrobial efflux is yet another important mechanism of resis-
tance in A. baumannii. In general, efflux constitutes a resistance
mechanism that involves the extrusion of antimicrobial agents (as
well as other compounds) from the inner side of bacterial mem-
branes to the external environment by means of specific proteins
typically named efflux pumps. Although only a few efflux sys-
tems have been described in this microorganism, their importance
should not be taken lightly since most are capable of pumping
out several antimicrobial agents and, therefore, contribute to the
greatly feared multidrug-resistant phenotype of nosocomial A.
baumannii.

Efflux pumps in bacteria are classified into up to five distinct
families according to amino acid sequence similarities, energy
source, number of components, number of transmembrane-
spanning regions and types of substrates: (i) The adenosine
triphosphate (ATP)-binding cassette (ABC) superfamily, (ii) the
multidrug and toxic compound extrusion (MATE) family, (iii) the
small multidrug resistance (SMR) family, (iv) the major facilitator
superfamily (MFS), and (v) the RND family (Piddock, 2006).

The RND family usually plays a predominant role in MDR
in Gram-negative bacteria and species of Acinetobacter are not
an exception (Li and Nikaido, 2009). Members of this fam-
ily consist of a tripartite system including a transporter protein
embedded within the inner membrane, an OMP channel, and a
membrane fusion protein linking the other two (Magnet et al.,
2001). The first RND pump to be identified in A. bauman-
nii was named AdeABC, with AdeB constituting the multidrug
transporter protein, AdeC being the OMP and AdeA the periplas-
mic linking protein (Magnet et al., 2001). The adeABC genes
are also preceded by two additional genes in inverted orienta-
tion, adeSR, which encode a two-component regulatory system
apparently involved in controlling adeABC expression (Marchand
et al., 2004). Expression of AdeABC confers decreased suscepti-
bility to a wide variety of antimicrobials such as kanamycin, gen-
tamicin, tobramycin, netilmicin, amikacin, erythromycin, tetra-
cycline, chloramphenicol, trimethoprim, sparfloxacin, ofloxacin,
perfloxacin, norfloxacin, ethidium bromide and, more recently,
tigecycline (Ruzin et al., 2007) and meropenem (Koh et al., 2007a).
Not all A. baumannii isolates seem to carry this system, though:
Huys et al. (2005a) detected the adeB gene in 49 out of 51 (96%)
highly related A. baumannii strains, Chu et al. (2006) found adeB
in 39 out of 56 (70%) A. baumannii isolates from Hong Kong,
Nemec et al. (2007) in roughly 83% of 116 isolates tested and
Courvalin and co-workers identified the adeB gene in 24 out of
27 A. baumannii strains (88%; Damier-Piolle et al., 2008), alto-
gether indicating that although AdeABC might not be intrinsic
to A. baumannii, it is indeed highly widespread among clinical
isolates. Interestingly, the adeSRABC genes have recently been
identified in one isolate of the closely related A. nosocomialis
together with two additional RND pumps not found in A. bau-
mannii (Roca et al., 2011). Very little is known about the resistance
mechanisms in this particular microorganism but A. nosocomi-
alis has appeared as a recent emergent pathogen with a great

potential to cause disease and acquire a multidrug-resistant phe-
notype (Espinal et al., 2011b). Hence, the presence of three major
efflux systems in an emerging multidrug-resistant pathogen is
alarming.

Some studies also seem to suggest a correlation between the
presence of this efflux system and the resistant phenotype of A.
baumannii clinical isolates, since AdeABC is commonly associated
with class 1 integron genes in resistant strains but missing in highly
susceptible isolates (Fournier et al., 2006; Lin et al., 2009).

The second RND efflux system (AdeIJK) described in A. bau-
mannii was reported in the same clinical isolate that led to
the identification of AdeABC (Damier-Piolle et al., 2008). Over-
expression of this pump either in E. coli or A. baumannii is
apparently toxic, suggesting the presence of a tight regulation
mechanism to maintain its expression levels low. No adjacent
regulatory genes, however, have been found in the vicinity of
adeIJK.

Inactivation of AdeIJK by allelic replacement showed decreased
resistance to substrates similar to those of the AdeABC pump, and
a double mutant (ΔadeABC/ΔadeIJK ) displayed even lower MICs
of chloramphenicol, tetracyclines, erythromycin, clindamycin, flu-
oroquinolones, and tigecycline than each of the single mutants,
thus indicating both a cumulative effect of the pumps as well
as overlapping substrate profiles, which is, nevertheless, interest-
ing from a clinical point of view. However, opposed to AdeABC,
AdeIJK did not seem capable of extruding ethidium bromide or
azithromycin, despite the latter being a preferred substrate for
AdeABC (Damier-Piolle et al., 2008). Unfortunately, extrusion
of aminoglycosides could not be tested in this system since the
allelic replacement mutants incorporated either kanamycin or
apramycin resistance cassettes.

AdeIJK has so far been detected in all the A. baumannii strains
tested (Damier-Piolle et al., 2008) and is therefore considered to
have a more predominant role in the intrinsic low-level resistant
phenotype of A. baumannii. The AdeIJK efflux transporter seems
highly specific to A. baumannii and has not yet been described in
other species of the Acinetobacter genus. It is worth mentioning,
however, that adeIJK and adeXYZ (an RND efflux pump described
in A. pittii and A. nosocomialis; Chu et al., 2006; Roca et al., 2011)
are extremely alike, sharing 93% identity at the nucleotide level and
99% similarity at the protein level. Similarity percentages obtained
when comparing already described adeJ sequences from different
A. baumannii strains also provide similar figures which might sug-
gest that they actually constitute the same efflux system that has
been described twice in different genomic species and has been
given different names.

Coyne et al. (2010a) reported a third RND-type efflux pump
(AdeFGH) within a derivative mutant (ΔadeABC/ΔadeIJK ) from
the same A. baumannii strain in which AdeABC and AdeIJK
had been characterized. Expression of AdeFGH was responsible
for high-level resistance to chloramphenicol, clindamycin, fluo-
roquinolones, and trimethoprim as well as decreased susceptibil-
ity to tetracycline–tigecycline and sulfonamides, but β-lactams,
erythromycin, and rifampin remained unchanged (Coyne et al.,
2010b). Once again, substrate specificity toward aminoglyco-
sides could not be assessed due to the presence of the respective
kanamycin and apramycin resistance cassettes.
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A small ORF encoding a putative LysR-type transcriptional reg-
ulator, named adeL, was also identified in inverted orientation
upstream from adeFGH and mutations within the adeL gene
have been associated with the overexpression of this efflux system
(Coyne et al., 2010b).

As for the presence of efflux pumps included within the remain-
ing families of efflux transporters in A. baumannii, there is even
less information than that available for the RND family.

Roca et al. (2009) identified the MFS efflux pump CraA, for
chloramphenicol resistance Acinetobacter, in an A. baumannii clin-
ical isolate from Spain. This protein was similar in sequence and
secondary structure to the MdfA efflux pump from E. coli but dif-
fered in its substrate profile. CraA was shown to be highly specific
for chloramphenicol and has, so far, been found in all the A. bau-
mannii strains tested and might be responsible for the intrinsic
resistance of A. baumannii to this antimicrobial agent.

More recently, Rajamohan et al. described a second MFS efflux
pump, AmvA, mainly involved in the extrusion of dyes, disinfec-
tants, and detergents and also erythromycin, although only causing
a fourfold decrease in the MIC of this antibiotic. AmvA is also
present in all A. baumannii strains studied so far (Rajamohan
et al., 2010).

The third type of MFS efflux pumps present in A. baumannii is
made of the acquired tetracycline efflux systems (Tet) that are part
of plasmids, transposons, or resistance islands (see below). TetA
and TetB constitute the most prevalent Tet efflux pumps in A. bau-
mannii with TetA conferring resistance to tetracycline and TetB to
both tetracycline and minocycline (Vila et al., 2007), although
the tet(M) gene, involved in tetracycline ribosomal protection,
has also been identified in one clinical isolate of A. baumannii
(Ribera et al., 2003b). tet(A), together with the gene encoding its
transcriptional regulator, tetR, is located in a Tn1721-like trans-
poson that, in turn, might be part of a larger resistance island
(Ribera et al., 2003a; Fournier et al., 2006). On the other hand,
tet (B) is located in small plasmids ranging from 5- to 9-kDa
(Srinivasan et al., 2009b). Prevalence studies seemed to indicate
that tet (B) is more commonly found in multidrug-resistant A.
baumannii clinical isolates, with at least 50% of the strains con-
taining this determinant (Guardabassi et al., 2000; Huys et al.,
2005b; Martí et al., 2006; Mak et al., 2009; Srinivasan et al.,
2009b).

The only efflux pump of the MATE family described so far
in A. baumannii, AbeM, was identified in Su et al. (2005) and it
was shown to extrude aminoglycosides, fluoroquinolones, chlo-
ramphenicol, trimethoprim, ethidium bromide and several dyes.
Although AbeM has also been found in all A. baumannii strains
studied to date, the role of this pump in antimicrobial resistance
remains unclear since substrate-profiling studies carried out in E.
coli did not fins any correlation between antibiotic resistance and
overexpression of this pump.

AbeS is yet another efflux pump identified in A. baumannii
that confers low-level resistance to several antimicrobial agents,
including chloramphenicol, fluoroquinolones, erythromycin, and
novobiocin, as well as resistance to dyes and detergents, but it is not
present in all fully sequenced A. baumannii genomes. AbeS belongs
to the SMR family and retains a certain degree of similarity with
the EmrE system of E. coli (Srinivasan et al., 2009a).

GENOME PLASTICITY
As already mentioned, probably one of the most intriguing char-
acteristics of A. baumannii is its capacity to acquire, retain, and
disseminate multiple resistance mechanisms which, combined
with its ability to survive desiccation as well as most disinfectants,
accounts for the prolonged survival of A. baumannii strains in the
clinical setting and makes this microorganism almost impossible
to eradicate.

Acquisition and dissemination of antimicrobial resistance
determinants in A. baumannii are achieved by combining resis-
tance genes with an array of mobile elements that mediate the
exchange of genetic material and rearrange bacterial genomes, giv-
ing rise to multiple genetic combinations and providing an endless
source of genetic adaptability.

Such an array includes IS, transposons, integrons, plasmids and,
ultimately, resistance islands.

INSERTION SEQUENCES
Insertion sequences indeed have a predominant role in the acquisi-
tion of resistance within A. baumannii. They are generally defined
as the smallest mobile DNA elements (<2.5 kb), carrying only
the genetic information required for their mobilization. In prac-
tical terms IS are constituted by a pair of short inverted-repeat
sequences (IR) bracketing one or perhaps two ORFs encod-
ing a transposase, the enzyme involved in the transposition or
“jumping” of the IS element.

More than 30 different types of ISs have been reported in Acine-
tobacter spp. (Siguier et al., 2006) being ISAbaI and ISAba125 the
most prevalent ISs in this microorganism (Adams et al., 2010). The
genome of the A. baumannii AYE strain has been shown to contain
up to 21 copies of ISAbaI (Vallenet et al., 2008) but this IS has also
been identified in additional A. baumannii isolates from around
the world (Goic-Barisic et al., 2009; Andriamanantena et al., 2010;
Culebras et al., 2010; Higgins et al., 2010; Koo et al., 2010; Adams-
Haduch et al., 2011; Karunasagar et al., 2011; Kusradze et al., 2011;
Nigro et al., 2011b; Zhou et al., 2011).

As a consequence of IS mobilization these genetic elements can
contribute to resistance in three different ways:

(i) Insertion of an IS immediately upstream from a given ORF
might provide additional promoters to enhance transcrip-
tional levels of genes that are otherwise poorly expressed.
In this respect, ISAbaI is commonly found upstream from
blaampC and blaOXA-51-like genes in A. baumannii, being
responsible for ceftazidime and carbapenem resistance,
respectively, in isolates lacking additional resistance mech-
anisms (Héritier et al., 2006; Turton et al., 2006). In addi-
tion, ISAbaI, ISAba2, ISAba3, ISAba4, ISAba10, ISAba16,
ISAba125, ISAba825, and IS18 have also been found upstream
from blaOXA-23 and blaOXA-58 (Poirel and Nordmann, 2006b;
Bertini et al., 2007; Corvec et al., 2007; Giannouli et al., 2009;
Lee et al., 2011b; Ravasi et al., 2011; Lopes et al., 2012) and
ISAba9 has been described upstream from both blaOXA-51 and
the gene encoding CARB-10 (Figueiredo et al., 2009; Potron
et al., 2009).

CHDLs however, are not the only β-lactamases whose
expression is enhanced by the presence of upstream ISs, both
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blaPER-1 and blaPER-2 contain a novel IS element, ISPa12,
that has been shown to up-regulate their expression (Poirel
et al., 2005a; Pasterán et al., 2006). Similarly, expression of
blaPER-7 is also driven by a promoter sequence located within
an upstream ISCR1 element (Bonnin et al., 2011b).

(ii) IS elements can also contribute to resistance by inserting
within certain ORFs and disrupting their coding sequences.
Insertional inactivation leading to resistance has been asso-
ciated with the disruption of transcriptional regulators, such
as the insertion of ISAba1 within the adeS gene leading to
overexpression of the AdeABC efflux pump, but also with
the disruption of genes involved in membrane permeability,
such as ISAba10, ISAba10, ISAba825, and ISAba125 inser-
tion within the carO gene leading to carbapenem resistance
(Lu et al., 2009; Lee et al., 2011b; Ravasi et al., 2011) or the
insertion of ISAba11 within the lpxA or lpxC genes causing
loss of lipopolysaccharide production and colistin resistance
(Moffatt et al., 2011).

(iii) Without any doubt, however, the major contribution of ISs to
the development of pan-resistant A. baumannii strains lies in
their ability to mobilize gene cassettes, either within the bacte-
rial chromosome or between the chromosome and plasmids,
allowing for a rapid dissemination of such cassettes not only
among different A. baumannii strains but also among iso-
lates belonging to different taxonomic genera (Roberts et al.,
2008).

Insertion sequences-mediated mobilization might take place when
two IS elements bracket a gene cassette, usually containing antimi-
crobial resistance genes, and the terminal IR from each IS coop-
erate to displace the intervening DNA sequence, thereby forming
a compound transposon (Roberts et al., 2008). Bear in mind that
ISs involved in compound transposons can still provide promoter
sequences for the transcriptional expression of the genes they
carry.

A single IS can also mediate the mobilization of flanking DNA
by a rare mechanism known as “one-ended” transposition that
combines one authentic end together with a surrogate end dis-
playing a certain degree of similarity and located nearby (Motsch
et al., 1985). In addition, ISs belonging to the IS91 family (which
includes ISCR1 and ISCR2) are able to transpose by means of
a rolling-circle replication mechanism (Toleman et al., 2006) and
mobilization of DNA elements adjacent to ISs can also be achieved
due to homologous recombination between two ISs, although this
mechanism feeds on the copy number of ISs.

In A. baumannii, mobilization of the blaOXA-23 gene is mediated
either by two copies of ISAba1 in inverted or direct orientation
and generating a compound transposon designated Tn2006 or
Tn2009, respectively (Corvec et al., 2007; Adams et al., 2008; Zhou
et al., 2011); by a single copy of ISAba1 forming a transposon-
like structure named Tn2008 (Adams-Haduch et al., 2008); or
by a similar structure comprising a single ISAba4 copy forming
another transposon-like structure named Tn2007 (Corvec et al.,
2007).

Of note, the chromosome of the non-pathogenic and environ-
mental Acinetobacter radioresistens was recently identified as the
original source of the acquired blaOXA-23 gene of A. baumannii,

and other OXA-23 variants have also been found in other A.
radioresistens isolates (Poirel et al., 2008a), suggesting that the
diversity of structures surrounding the blaOXA-23 gene might have
arisen from independent transposition events from the chromo-
some of commensal A. radioresistens strains to transferable plas-
mids that have subsequently been mobilized into A. baumannii.

The plasmid-encoded blaOXA-58 gene is also commonly brack-
eted by distinct combinations of IS elements that usually contain
ISAba3 downstream from blaOXA-58 and differ in the presence of
ISs in the 5′ flanking end. Specifically, ISAba3 seems to be more
prevalent, but ISAba825, ISAba1, ISAba2, IS18, and IS26 can also be
present (Poirel and Nordmann, 2006b; Bertini et al., 2007; Gian-
nouli et al., 2009). The role of such upstream ISs in providing
additional promoters has been clearly demonstrated, but their role
in the genetic mobilization of blaOXA-58 is not yet clear. Apparently,
each of these IS elements shows a distinct geographic distribu-
tion and since the blaOXA-58 is usually plasmid-borne they might
have been acquired through horizontal gene transfer and homol-
ogous recombination (Poirel and Nordmann, 2006b; Giannouli
et al., 2009). Of note, the blaOXA-58 gene flanked by two ISAba3
elements has also been identified in plasmids recovered from A.
pittii isolates but, then again, this probably reflects the inter-genus
transferability of these plasmids rather than transposon-mediated
acquisition (Evans et al., 2010; Huang et al., 2010).

Additional resistance determinants thought to have been mobi-
lized by means of IS-mediated transfer include the ESBLs blaPER-1,
bracketed by ISPa12 and ISPa13 and forming a compound trans-
poson named Tn1213 (Poirel et al., 2005a), blaPER-7 and blaVEB-1

mobilized by the upstream ISCR1 and ISCR2, respectively, by
means of rolling-circle transposition (Poirel et al., 2009; Bonnin
et al., 2011b), and also CARB-10, whose transfer is apparently
due to a one-ended transposition event from an upstream ISAba9
(Potron et al., 2009).

More recently, Potron et al. (2011) characterized a novel com-
pound transposon in the chromosome of A. baumannii isolates
from Haiti containing the blaCTX-M-15 gene flanked by ISEcp1 and a
truncated IS26, reflecting a transfer event from Enterobacteriaceae.

Among MBLs, the blaNDM sequences from Enterobacteriaceae
have been shown to contain different ISs upstream from the
blaNDM-1 gene, although the role of these ISs in the expression
of NDM is not clear and they are most likely involved in the
genetic mobilization of the resistance gene (Yong et al., 2009; Poirel
et al., 2010; Ho et al., 2011). Sequence analysis of some of these
blaNDM genes from Enterobacteriaceae identified a fragment of
variable length containing the right-end repeat from the inser-
tion sequence ISAba125 in-between the blaNDM-1 gene and the
corresponding IS element as a remnant of ISAba125 insertion,
and the IS element ISEc33 from E. coli strain 271 is bracketed
by the sequence upstream from the ISAba125 right-end (Poirel
et al., 2011b; Solé et al., 2011). ISAba125 belongs to the IS30
family and, until recently, had only been found in A. bauman-
nii, either chromosomally or on a plasmid upstream from the
blaOXA-58 gene (Mussi et al., 2005; Evans et al., 2010) but never
linked to blaNDM genes. Interestingly, Solé et al. recently identified
a complete ISAba125 copy upstream from a blaNDM-1 gene in E.
coli and both Pfeifer et al. (2011) and Espinal et al. (2011a) have
also found blaNDM-1 and blaNDM-2 sequences in A. baumannii
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bracketed between two copies of ISAba125, thereby defining a
novel transposon. In view of these results, it has been postulated
that some of the blaNDM sequences found in Enterobacteriaceae
might have originated from Acinetobacter by means of ISAba125-
mediated mobilization (Solé et al., 2011). ISAba125 has also been
found flanking the aminoglycoside-resistance gene aphA6 and
constituting the compound transposon TnaphA6 (Nigro et al.,
2011a).

Insertion sequences are also involved in the mobilization of the
tet(A) and tetR genes, encoding the tetracycline efflux pump and
its transcriptional regulator, respectively, and commonly found
within a Tn1721-like transposon that might also be present in
multiple copies within the bacterial chromosome (Ribera et al.,
2003a; Fournier et al., 2006).

It is worth mentioning that conserved inverted repeats homol-
ogous to binding sites acting as targets for the XerC and
XerD recombinases, usually involved in site-specific recombi-
nation mechanisms, have been described flanking blaOXA-24/40

genes in different plasmids recovered from A. baumannii isolates
(D’Andrea et al., 2009; Merino et al., 2010; Acosta et al., 2011; Tian
et al., 2011). In view of these results, XerC/XerD recombinases
have been postulated as a novel mechanism driving mobilization
of the blaOXA-24/40 gene (Merino et al., 2010).

Conjugative plasmids are also known to play a central role in
the intra- and inter-species transfer of resistance determinants.
However, although some resistance genes such as blaOXA-58 and
blaOXA-23 are commonly plasmid-borne in Acinetobacter spp., a
recent study of plasmid replicons in A. baumannii suggested that
replicon types within this microorganism do not correspond to
those circulating among Enterobacteriaceae, which might provide
a plausible explanation for the observation that prevalent plasmid-
encoded resistance mechanisms identified among Gram-negative
bacteria (ESBLs, KPC, etc.) are rarely present in Acinetobacter
spp. while this genus seems to contain its own type (CHDLs) of
plasmid-borne carbapenemases (Bertini et al., 2010).

INTEGRONS
Integrons constitute another important vehicle for the spread and
accumulation of resistance genes in A. baumannii, and several
studies have demonstrated a positive correlation in A. baumannii
between the carriage of integrons and the degree of MDR (Huang
et al., 2008; Lee et al., 2009b). Integrons are genetic elements that
mediate the integration of gene cassettes by a site-specific recombi-
national mechanism and direct their coordinated expression. All
integrons bear three key elements: a specific recombination site
(attI ), a gene encoding an integrase (intI ) and a common pro-
moter region (P1–P2) oriented toward the site of integration. The
integrase recombinates discrete units of circular DNA known as
gene cassettes (often carrying resistance genes) into the attI site
allowing the coordinated expression of the genes in the cassette
from the common promoter (Mazel, 2006).

Although integrons are not mobile by themselves (but gene
cassettes can readily be exchanged to other integrons), they can
be spread to different chromosomal locations, plasmids or even
other microorganisms by means of IS-mediated transposition
or homologous recombination (Mazel, 2006). There are several
classes of integrons mainly classified according to the sequence of

the encoded integrases, which show 40–58% identity. Class 1 inte-
grons displaying a wide variety of gene cassettes are commonly
found in A. baumannii, and typically encode aminoglycoside-
resistance genes as well as genes conferring resistance to antiseptics
and sulfonamides (Nemec et al., 2004; Zhao and Hu, 2011). Other
resistance determinants associated with class 1 integrons in A. bau-
mannii include blaIMP, blaVIM, and blaSIM MBL types (Lee et al.,
2003, 2005, 2008; Yamamoto et al., 2011) as well as some Ambler
class A β-lactamases such as CARB, GES, PER, VEB, and narrow-
spectrum OXA-types (Vila et al., 1997a; Navia et al., 2002; Poirel
et al., 2003; Zarrilli et al., 2004; Naas et al., 2006a; Moubareck et al.,
2009; Potron et al., 2009; Bonnin et al., 2011a).

Class 2 integrons, which are embedded within the Tn7 trans-
poson, display a narrower diversity of gene cassettes and those
described in A. baumannii have been shown to contain several
resistance determinants such as aadB, catB2, dfrA1, sat2, and
aadA1, conferring resistance to aminoglycosides, chlorampheni-
col, trimethoprim, streptothricin, and streptomycin, respectively
(Ramírez et al., 2010a). More recently, Ramírez et al. reported an A.
baumannii isolate carrying blaCARB-4 in a class 2 integron together
with 6 additional resistance determinants comprising four fami-
lies of antibiotics. This novel integron constitutes the longest class
2 integron described so far and also represents the only example
of a β-lactamase gene encoded within such a class (Ramírez et al.,
2010b).

RESISTANCE ISLANDS
In addition to the huge diversity of resistance mechanisms dis-
played by A. baumannii isolates, this microorganism is also able
to accumulate multiple resistance determinants in what has been
termed as “resistance islands.” Resistance islands are specific
regions of the genome that harbor large clusters of horizontally
transferred genetic DNA including a great deal of antimicrobial
resistance genes. Such regions provide a “safe haven” for mobile
elements since insertion at this site is not likely to cause any dam-
age to the host cell. They are often inserted at the same locus on the
A. baumannii chromosome and are assembled by discrete genes
or gene packages usually associated with mobile elements (IS and
Tn), integrons, or both.

The first resistance island described in A. baumannii was found
in the multidrug-resistant A. baumannii AYE strain and was
hence termed AbaR1. AbaR1 comprised an 86 kb region integrated
within the comM gene and contained up to 45 antibiotic and heavy
metal resistance genes. Interestingly, AbaR1 was flanked at both
ends by 5 bp perfect direct repeats (DR) and included two ORFs
near the 3′ comM end annotated as putative transposition genes,
thereby suggesting acquisition by means of a transposition event.

At the time of this review, more than 22 resistance islands have
been described (Fournier et al., 2006; Adams et al., 2008, 2010;
Iacono et al., 2008; Post and Hall, 2009; Krizova and Nemec, 2010;
Post et al., 2010; Rose, 2010; Krizova et al., 2011; Nigro et al., 2011b;
Zhou et al., 2011) and, with only three exceptions (Adams et al.,
2008; Rose, 2010), all have been found inserted within the comM
gene (Table 2).

Shaikh et al. (2009) studied a collection of 50 multidrug-
resistant A. baumannii isolates and found that 82% contained a
truncated comM gene. Deeper sequence analysis of 10 such isolates
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Table 2 | Resistance Islands in A. baumannii .

AbaR-type Size

(kb)

Strain EC comM

Insertion

Reference

AbaR1 86 AYE I + Fournier et al. (2006)

AbaR2 17 ACICU II + Iacono et al. (2008)

AbaR3 63 AB0057 I + Adams et al. (2008)

AbaR4 18 AB0057 I − Adams et al. (2008)

AbaR5 56 3208 I + Post and Hall (2009)

AbaR6 27 D2 I + Post et al. (2010)

AbaR7 20 A92 I + Post et al. (2010)

AbaR8 29 D13 I +
AbaR9 39 AB056 I + Adams et al. (2010)

AbaR10 30 AB058 I + Adams et al. (2010)

AbaR11 20 NIPH470 I + Krizova et al. (2011)

AbaR12 38 LUH 6013 I + Krizova et al. (2011)

AbaR13 45 LUH6015 I + Krizova et al. (2011)

AbaR14 21 LUH5881 I + Krizova et al. (2011)

AbaR15 55 LUH6125 I + Krizova et al. (2011)

AbaR16 39 LUH7140 I + Krizova et al. (2011)

AbaR17 58 LUH8592 I + Krizova et al. (2011)

AbaR18 52 NIPH2713 I + Krizova et al. (2011)

AbaR19 30 NIPH2554 I + Krizova et al. (2011)

AbaR21 64 RUH875 I + Nigro et al. (2011b)

AbaR22 39 MDR-ZJ06 II + Zhou et al. (2011)

n.a. n.f. A473 I − Rose (2010)

n.a. n.f. A473 I − Rose (2010)

EC, European clone lineage; n.a., not assigned; n.f., not found.

identified AbaR-like sequences in 8, thus confirming that the comM
is likely a preferred integration site for this sort of genetic structures
(Shaikh et al., 2009).

In addition, all AbaR sequences identified in A. baumannii iso-
lates belonging to the European Clone I (EC I) lineage seem to
have a common genetic structure. They share a 16.3-kb backbone
transposon,designated Tn6019, containing two ORFs annotated as
putative transposition genes, an arsenate resistance operon (arsH-
BRC), a putative sulfate permease gene (sup), and a universal stress
protein gene (uspA) that, in turn, is disrupted by a second com-
pound transposon formed by two copies of a cadmium and zinc
resistance transposon (Tn6018) bracketing a multiple antibiotic
resistance region (MARR). The MARR region contains most of
the variability found among all AbaRs, with only a few excep-
tions displaying additional differences within the left-hand copy
of Tn6018 and the Tn6019 backbone region (Post et al., 2010;
Figure 2).

Although AbaR1 is so far the largest resistance island described
in A. baumannii (Fournier et al., 2006), there is general agreement
that AbaR5 to AbaR21 are all derivatives of AbaR3 that have orig-
inated as a result of either deletions mediated by one of the three
IS26 elements present within AbaR3, deletions caused by a single
homologous recombination event or arisen due to integron shuf-
fling (Krizova et al., 2011; Nigro et al., 2011b). AbaR1 displays the
same general structure as AbaR3 but contains an additional 29 kb
region consisting of a very complex class 1 integron that might
have been incorporated into AbaR3.

FIGURE 2 | Schematic overview of the conserved AbaR structure found

in A. baumannii isolates belonging to the European clone I lineage and

that of AbaR22, isolated from strain MDR-ZJ06 belonging to the

European clone II lineage (Zhou et al., 2011).

Interestingly, some AbaR-related structures found in A. bau-
mannii isolates belonging to the EC II lineage present some
noticeable differences compared to AbaRs from EC I. Several EC
II isolates have been shown to contain a Tn6019-related trans-
poson (termed Tn6021) as well as some genes present in AbaR1
but they also possess an intact uspA gene and, therefore, lack the
Tn6018 compound transposon and the MARR region (Post et al.,
2010; Zhou et al., 2011; Bonnin et al., 2012). These differences
reinforce the delineation of A. baumannii isolates in different
European clones since AbaRs structures seem to have appeared
independently in each of these isolates (Figure 2).

Krizova et al. have recently suggested that the origin of AbaRs
in strains of the EC I might lie in the antibiotic regimes admin-
istered in Europe during the 1970s and 1980s, since AbaRs seem
to provide resistance to antimicrobials mostly used during that
period, thereby facilitating the survival and spread of AbaRs-
bearing strains. The subsequent modification of the treatment of
choice might have then diminished the selective pressure on such
determinants and accounted for the truncated AbaR3-derivatives
in the current population of A. baumannii clinical isolates (Krizova
et al., 2011).

The combination of IS, Tn, integrons, conjugative plasmids,
and resistance islands accounts for the extreme genomic plasticity
of A. baumannii and partly explains the successful emergence of
this microorganism as a dreadful nosocomial human pathogen.
Recent studies comparing the whole genome sequence of closely
related A. baumannii isolates have demonstrated a unique genetic
repertoire in terms of IS, plasmids, and AbaRs even in A. bauman-
nii isolates belonging to the same sequence type (ST; Adams et al.,
2010; Di Nocera et al., 2011; Snitkin et al., 2011).

CLINICAL IMPORTANCE AND TREATMENT OPTIONS
Acinetobacter baumannii is currently considered one of the most
important nosocomial pathogens. In a prevalence study of infec-
tions in intensive care units conducted among 75 countries of the
5 continents, this microorganism was found to be the fifth most
common pathogen, although with a high variability among the
different countries (Vincent et al., 2009). Different surveillance
studies have found this pathogen to be the fifth cause of pneumo-
nia, after P. aeruginosa, in hospitalized patients, mainly in intensive
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care units (Jones, 2010). In addition, these microorganisms are also
frequently reported to cause other nosocomial infections such as
bacteremia and urinary tract and surgical infections. In fact, A.
baumannii was found to be third most frequent cause of nosoco-
mial bloodstream infection in a large multicenter study with an
estimation of 34% of all patients and 43% in patients in intensive
care units (Wisplinghoff et al., 2004).

With respect to the treatment of A. baumannii infections it
is important to take into account the resistant profile involved
to thereby consider the different treatment options available. As
mentioned above, A. baumannii is currently resistant to multiple
antibacterial agents, including carbapenems and, occasionally, col-
istin. Therefore, in many cases, optimal treatment for nosocomial
infections caused by this microorganism is sometimes not avail-
able. A decade ago sulbactam, which has intrinsic activity against
A. baumannii and shows in vivo efficacy in a murine model of
pneumoniae, was used to treat infections caused by carbapenem-
resistant clinical isolates (Rodríguez-Hernández et al., 2001; Levin
et al., 2003). However, nowadays the percentage of resistance to
sulbactam has reached such a high level that its use as antimi-
crobial agent against infections caused by A. baumannii has been
invalidated

Rifampicin has demonstrated consistent results related to
in vivo efficacy in experimental models of infection and in some
open studies of human infections, especially when combined with
colistin. These studies suggest that the possible use of rifampicin
for the treatment of multidrug-resistant A. baumannii infections
should be analyzed in well-designed clinical trials (Pachón-Ibáñez
et al., 2006; Pachón-Ibánez et al., 2010). Bassetti et al. (2008)
studied the use of colistin in combination with rifampin in crit-
ically ill patients with pneumonia (19 patients) and bacteremia
(10 patients) caused by A. baumannii resistant to all antibiotics
except colistin in medical and surgical intensive care units. Clin-
ical and microbiological response was observed in 22 of 29 cases
(76%), suggesting that the combination of colistin and rifampicin
appears to be an effective and safe therapy for severe infections
due to multidrug-resistant A. baumannii.

There is some heterogenicity concerning the clinical data to
determine the utility of tigecycline in the treatment of nosoco-
mial infections caused by A. baumannii. The possible development
of resistance during treatment with tigecycline suggests that it
should only be used in combined regimens with other antimicro-
bials. Two studies have reported the combination of tigecycline
with other antimicrobial agents. Principe et al. (2009) found
that tigecycline showed synergism with levofloxacin, amikacin,
imipenem, and colistin, whereas antagonism was observed for
the tigecycline/piperacillin–tazobactam combination. Consider-
ing all antimicrobials in combination with tigecycline, checker-
board analysis showed 5.9% synergy, 85.7% indifference, and 8.3%
antagonism. Tigecycline showed synergism with levofloxacin (four
strains; 16.6%), amikacin (two strains; 8.3%), imipenem (two
strains; 8.3%), and colistin (two strains; 8.3%). Synergism was
detected only among tigecycline non-susceptible strains. Time-kill
assays confirmed the synergistic interaction between tigecycline
and levofloxacin, amikacin, imipenem, and colistin in five out
of seven selected isolates. Ozbek and Senturk (2010) isolated
six meropenem-resistant A. baumannii strains in which synergy

of tigecycline/colistin and tigecycline/levofloxacin was observed
using checkerboard analysis in just one strain each.

Other combinations have recently been described in the sci-
entific literature. Liang et al. isolated 14 extensive drug-resistant
A. baumannii strains from patients admitted to the intensive
care units of a Chinese hospital. Most of the strains were
resistant to all antimicrobials except colistin and minocycline,
and the combinatory results by killing curves showed a syn-
ergistic effect between colistin/meropenem, colistin/rifampicin
meropenem/minocycline and colistin/minocycline. It is worth
mentioning that the combination of meropenem/minocycline
could be a possible alternative when colistin is not available as
in China (Liang et al., 2011). In a recent study the combina-
tion of teicoplanin/colistin was investigated against multidrug-
resistant A. baumannii isolates (resistant to third-generation
cephalosporins, quinolones, and aminoglycosides), with checker-
board analysis showing synergy between the two antibiotics. Bacte-
ricidal activity was shown in the first 4 h for both colistin alone and
in combination with teicoplanin, however regrowth was observed
when colistin was used alone (Wareham et al., 2011). Although
the mechanism of action of colistin is not completely known, it is
thought to act in the bacterial membrane by disrupting it (Lam
et al., 1986). Therefore, the use of colistin in combination with
antibiotics such as teicoplanin or vancomycin which are effec-
tive against Gram-positive microorganisms (Gordon et al., 2010),
likely helps glycopeptides to reach the target.

Of particular concern are infections caused by pan-drug-
resistant A. baumannii isolates, which are steadily increasing in
various regions worldwide. There is an urgent need for new ther-
apeutic strategies since isolates resistant to all antibacterial agents,
including colistin, have been reported (Park et al., 2009) and this
scenario will likely progress in association with the increased use
of this antibiotic.

FUTURE POTENTIAL THERAPEUTIC ALTERNATIVES
The emergence of bacteria resistant to most of the antibiotics
available has lead to the appearance of different terms concerning
resistance. Only a short time ago, experts in the topic homog-
enized all these terms, in the case of A. baumannii, MDR may
be referred when the strain is non-susceptible to ≥1 antimicrobial
agent in ≥3 antimicrobial categories; an increase in resistance now
refers to extensive drug resistance (XDR) when non-susceptible
to ≥1 antimicrobial agents in all but ≤2 categories (i.e., bacterial
isolates remain susceptible to only one or two categories), and pan-
drug resistance (PDR) is considered when the microorganism is
non-susceptible to all the antimicrobial agents in all antimicrobial
categories (Magiorakos et al., 2012).

In regard to future potential therapeutic alternatives, the per-
spectives are not good, at least within the next decade (Payne et al.,
2007). Nonetheless there are two main options for the design of
new drugs to treat infections caused by PDR-resistant A. bau-
mannii. The first is related to knowledge of the biochemical bases
of resistance and has been used to design rational strategy to
counteract resistance. This strategy can follow two approaches:
(i) Modification of the basic structure of the antibacterial agent,
circumventing antibacterial resistant mechanisms, and (ii) Devel-
opment of compounds inhibiting the mechanisms of resistance
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for an antibacterial agent, whereby the concomitant administra-
tion of the antibacterial agent plus the inhibitor, as a co-drug,
potentiates this activity (Li and Heide, 2005). Some studies have
used this strategy to develop drugs active against MDR A. bauman-
nii. A derivative of ciprofloxacin (UB-8902) showed good activity
against A. baumannii strains carrying a mutation in the gyrA gene,
with a MIC50 of 4 mg/L (range <0.06–8 mg/L) in comparison with
ciprofloxacin displaying a MIC50 of 64 mg/L (Vila et al., 2006).
Further in vivo studies using this new quinolone have also been
performed in a murine pneumonia model, showing that UB-8902
presented bactericidal activity against A. baumannii strains resis-
tant to ciprofloxacin. Moreover, this quinolone was effective at
reducing mortality with a dose lower than the toxic dose in a
model of peritoneal sepsis (López-Rojas et al., 2011a). BAL30072
is a new monocyclic β-lactam belonging to the sulbactam class
of antibiotics active against MDR A. baumannii. BAL30072 pos-
sesses a dihydropyrimidinone siderophore in its side chain and has
shown better activity than meropenem in five MDR A. baumannii
strains, with increased activity when a combination of the two was
used (Russo et al., 2011).

The second option is to design a new compound involving
antimicrobial peptides (AMPs) as the principal candidates. The
use of AMPs as antibiotics has several advantages and disadvan-
tages, the main disadvantage being the instability of the compound
against proteases present in the blood and serum. Several methods
may be used to overcome this issue although these may sometimes
not be easy to apply due to a possible loss of the effectiveness of
peptides upon changes in their structure. d-Amino acids, stable
to proteases (Chen et al., 2006; Friedman, 2010) may be used as
well as both methylation and fluorination of specific amino acids
(Meng and Kumar, 2007; Fernández-Reyes et al., 2010). Another
option, albeit sometimes less effective in terms of activity due to
the loss of one positive charge which is important for the interac-
tion with membranes, is cyclation (Molhoek et al., 2011). On the
other hand, the advantages of AMPs are that they are a less spe-
cific target and, compared to antibiotics, acquisition of resistance
is difficult (Marr et al., 2006).

Braunstein et al. (2004) used a gentamicin-resistant A. bau-
mannii strain to test an AMP containing 33% of d-amino acids
that showed better activity (5.6–11.2 mg/L) and greater stability to
hemolysis (0–100% at 180 mg/L) than the l-amino acid form. The
same effect was seen by Jiang et al. in which a totally synthetic d-
amino acid AMP was tested against 550 clinical isolates involving
74% of MDR strains. Although no resistance profile was reported
in the article, the AMP showed good values for both MIC50 and
MIC90 (Jiang et al., 2011).

In another study using strains resistant to ciprofloxacin, the
MIC50 and MIC90 values of pexiganan, an analog of magainin,
were 2 and 8 mg/L, respectively (Ge et al., 1999). In another analog,
but in this case a short version of the peptide of human lactoferrin,
11 residues from the N-terminal were studied. The A. baumannii
strains used were resistant or intermediate to 16 and 19 out of 20
antimicrobial agents, including imipenem and meropenem. This
peptide was tested in vivo and a reduction of 3–4 log CFU/ml was
observed in an experimental infection in mice. However at pep-
tide concentration ranging from 49.5 to 98.9 mg/L, this effect was

not seen in the control. In addition the effect of this peptide was
very rapid, achieving the minimal number of CFU in 5–15 min
(Dijkshoorn et al., 2004). Other peptides present in the human
body such as β-defensin 3 have been tested against A. baumannii.
This AMPs belongs to the cysteine-rich peptides, and a bactericidal
effect was achieved in vitro after 1.5 h using 4 mg/L of the peptide
against MDR A. baumannii (Maisetta et al., 2006).

The origin of the peptides tested so far is different, some being
totally synthetic, some isolated from humans or others from ani-
mals. In the case of animals, amphibians are a large source of
peptides as in the case of the study published by Mangoni et al.
(2008) in which most of the peptides were isolated from frogs
and showed good MIC values against MDR A. baumannii. The
same strategy was used in the report published by Conlon et al.
(2009) however the MIC values were higher compared to the other
peptides. Other peptides isolated from toad skin secretions were
also tested against XDR strains obtaining values from 112.8 to
2.8 mg/L (Conlon et al., 2010). The A3-APO peptide is shown to
be more effective and less toxic against A. baumannii than colistin,
however this has only been observed in vivo and the effect could
not be shown in vitro, suggesting that this peptide may prevent
inflammation at the site of the infection (Ostorhazi et al., 2010,
2011).

Different AMPs have been tested against A. baumannii, however
the peptide constituted by the mixture of cecropin A and melittin
(Andreu et al., 1992) has been extensively studied. The first hybrid
tested against MDR A. baumannii was cecropin A(1-8)melittin(1-
18), or CA(1-8)M(1-18). This hybrid was tested under different
experimental conditions, with all showing a lower MIC compared
to polymixin B (Saugar et al., 2002). The next hybrid tested was
CA(1-7)M(2-9) and, compared to the original peptides cecropin
A and melittin as well as to other antibiotics, the MIC of this
hybrid peptide was 0.25–8 mg/L, being the lowest value com-
pared to other hybrid peptides. In addition, this hybrid peptide
also showed synergy with co-amoxiclav, ceftazidime, piperacillin,
and imipenem (Giacometti et al., 2003). Synergy of other AMPs
and currently used antibiotics has also been studied by Gia-
cometti et al. (2000), observing synergy of magainin II with co-
amoxiclav, aztreonam, chloramphenicol, ceftazidime, piperacillin,
and meropenem. CA(1-7)M(2-9) was also tested against PDR
A. baumannii strains, Similar to other hybrids, CA(1-8)M(1-18),
Oct-CA(1-7)M(2-9), and CA(1-7)M(5-9), the MIC values ranged
from 2 to 8 mg/L compared to 4 to 64 mg/L for colistin. In addition,
the hybrids showed bactericidal activity at 4 × MIC (Rodríguez-
Hernández et al., 2006). Several commercial peptides have also
been tested against colistin-resistant A. baumannii strains. Most
did not show any activity, although indolicidin and particularly
mastoparan showed MIC values of 2 and 1 mg/L, respectively,
compared to the colistin MIC of 256 mg/L. Moreover, a bacte-
ricidal effect was found for mastoparan along all the killing curve
for 8 × MIC (Vila-Farrés et al., 2012).

Although AMPs and AMPs in combination with antibiotics are
potential future therapeutic alternatives against PDR A. bauman-
nii clinical isolates, another therapeutic alternative might involve
the use of vaccines, specifically those administered through OMVs
(McConnell et al., 2011a,b).
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CONCLUSION
Over the past few decades A. baumannii has emerged as one of
the most successful nosocomial pathogens throughout the world.
This is partly due to its intrinsic aptitude to persist in the hospital
setting and acquire multiple resistance mechanisms, but also to its
capacity to cause acute infections especially in severely ill patients.
While we know a great deal about the mechanisms responsible
for antimicrobial resistance in this microorganism we see our-
selves unable to stop it. Pan-drug strains resistant even to colistin
have already been reported and we are running out of options
to deal with this novel menace. On the other hand, there is lit-
tle knowledge regarding the mechanisms driving the pathogenesis
of A. baumannii and there is much to learn on this issue. Novel
therapeutic strategies are urgently needed and while research on

novel antimicrobial agents does not seem very promising, the quest
for novel drugs interfering with A. baumannii pathogenicity and
not just bacterial growth opens up as a novel and challenging
alternative.
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