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Thermococcus kodakarensis (T. kodakarensis) has emerged as a premier model system
for studies of archaeal biochemistry, genetics, and hyperthermophily. This prominence is
derived largely from the natural competence of T. kodakarensis and the comprehensive,
rapid, and facile techniques available for manipulation of theT. kodakarensis genome.These
genetic capacities are complemented by robust planktonic growth, simple selections, and
screens, defined in vitro transcription and translation systems, replicative expression plas-
mids, in vivo reporter constructs, and an ever-expanding knowledge of the regulatory
mechanisms underlying T. kodakarensis metabolism. Here we review the existing tech-
niques for genetic and biochemical manipulation of T. kodakarensis. We also introduce a
universal platform to generate the first comprehensive deletion and epitope/affinity tagged
archaeal strain libraries.
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INTRODUCTION
Archaea are prevalent in many extreme environments but are also
found in vast numbers in mesophilic marine and terrestrial envi-
ronments where they contribute substantially to carbon, phospho-
rous, sulfur, and nitrogen cycles (Jarrell et al., 2011, references cited
therein). Their importance in these global cycles is newly appre-
ciated and demands a more complete understanding of archaeal
encoded biochemistries and metabolic pathways. Advances have
been limited due in large part to the difficulties associated with cul-
tivating many archaea in the laboratory and the severe bottleneck
resultant from the lack of genetic systems for most archaea. The
dearth of genetic resources not only restricts our understanding
of archaea in their natural environments, but also constrains the
utility of this Domain for biomedical, biochemical, and industrial
applications. This knowledge gap is perhaps most poignant for
the hyperthermophilic archaea wherein the commercial utility of
thermostable enzymes has been long recognized (Fujiwara et al.,
1998; Hashimoto et al., 2001; Imanaka et al., 2001; Izumi et al.,
2001; Hotta et al., 2002; Imanaka and Atomi, 2002; Cho et al.,
2007; Griffiths et al., 2007; Blumer-Schuette et al., 2008; De Ste-
fano et al., 2008; Bae et al., 2009; Kelly et al., 2009; Gaidamaviciute
et al., 2010).

Within just the past decade, the recalcitrance of the archaea
has dramatically declined due to advances in genetic techniques
for select model organisms, and our understanding of archaeal
physiology has resultantly exponentially increased (Tumbula and
Whitman, 1999; Rother and Metcalf, 2005; Albers and Driessen,
2008; Santangelo et al., 2010; Leigh et al., 2011; Lipscomb et al.,
2011). Essentially all barriers have been removed, and arguably the
most complete set of genetic techniques has been developed for the
globally abundant Thermococcales (Endoh et al., 2008; Santangelo
and Reeve, 2010b; Bridger et al., 2011; Farkas et al., 2011; Takemasa
et al., 2011). The model organism Thermococcus kodakarensis (T.
kodakarensis; formally Pyrococcus kodakaraensis or T. kodakaraen-
sis; Morikawa et al., 1994; Atomi et al., 2004b), for which the most

complete suite of genetic techniques is available, is the subject of
this review.

New avenues, based on advances in T. kodakarensis genetics,
permit direct characterization of innumerable archaeal enzymes
and their chemistries (Atomi et al., 2001, 2004a; Shiraki et al., 2003;
Fukuda et al., 2004, 2008; Rashid et al., 2004; Sato et al., 2004, 2007;
Imanaka et al., 2006; Murakami et al., 2006; Orita et al., 2006; Kanai
et al., 2007, 2010, 2011; Danno et al., 2008; Fujiwara et al., 2008;
Louvel et al., 2009; Yokooji et al., 2009; Borges et al., 2010; Kobori
et al., 2010; Morimoto et al., 2010; Matsubara et al., 2011), pro-
vide industrially relevant alternative biofuel platforms(Kanai et al.,
2005, 2011; Chou et al., 2008; Kim et al., 2010; Atomi et al., 2011;
Santangelo et al., 2011; Bae et al., 2012; Davidova et al., 2012),
unlock the largely untapped reservoir of archaeal encoded natural
products (Atomi, 2005; Kim and Peeples, 2006; Littlechild, 2011;
Matsumi et al., 2011; Sato and Atomi, 2011), and offer the oppor-
tunity to dissect eukaryotic-like information processing systems
composed of minimal components (Yamamoto et al., 2003; San-
tangelo and Reeve, 2006, 2010a; Kanai et al., 2007; Santangelo et al.,
2007, 2008a, 2009; Hirata et al., 2008; Dev et al., 2009; Yamaji et al.,
2009; Fujikane et al., 2010; Li et al., 2010, 2011; Ishino et al., 2011;
Nunoura et al., 2011; Pan et al., 2011; Santangelo and Artsimovitch,
2011).

Thermococcus kodakarensis is a marine, anaerobic, het-
erotrophic, hyperthermophilic (85˚C), planktonic euryarchaeon,
and thrives in medium supplemented with peptides, starch, or
chitin, using S˚ or H+ as a terminal electron acceptor, generating
H2S or H2, respectively. T. kodakarensis grows rapidly (doubling
rate ∼40 min in rich media) to high cell densities and produces
defined colonies on solid media, allowing overnight selections
reliant on prototrophic markers (i.e., tryptophan, arginine, uracil,
or agmatine) or antibiotic resistance (i.e., mevinolin, simvastatin)
on defined or rich plates. Counter-selective procedures have been
developed that facilitate repetitive modification of T. kodakarensis’
small 2.08 Mb genome (52% GC; Fukui et al., 2005) that readily
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incorporates exogenous DNA via homologous recombination
with high efficiency (Sato et al., 2003). T. kodakarensis is natu-
rally competent, requires no special techniques for transformation,
accepts linear and circular DNAs, and via homologous recom-
bination through short sequences of complementarity yields
transformants at a frequency of ∼1 in 107 cells plated (∼100
transformants/109 cells/μg of transforming DNA). T. kodakaren-
sis can support maintenance of autonomously replicating plas-
mids that provide ectopic expression platforms (Santangelo et al.,
2008b), and a strong knowledge base of transcription regulation
allows selective expression of native or introduced genes.

This multitude of selective markers and genetic techniques
allow for essentially limitless genomic alterations including gene
deletion, gene insertion, gene modification (allelic modifications
as well as addition of affinity and epitope tags), promoter exchange,
reporter gene expression, and any combination therein. Simple
preservation techniques permit long-term frozen strain storage
and the pace of strain construction is now limited only by molec-
ular biology considerations. Here we briefly review existing genetic
techniques available for T. kodakarensis and present a universally
applicable platform and strategy developed to generate the first
comprehensive archaeal strain collections.

GENETIC TECHNIQUES ALLOWING MODIFICATION OF THE
T. KODAKARENSIS GENOME
Protocols for T. kodakarensis growth and genetic manipulation, as
well as the underlying basis of each selection have recently been
reviewed (Santangelo and Reeve, 2010b) and here we instead focus
on the advantages and limitations of each technique and selective
system. Table 1 provides an overview of the genetic selections avail-
able and highlights the utility and limitations of each system. Each
selective marker can be deployed as a single expression cassette,

allowing the marker to be incorporated into and retained within
the genome while coincidently modifying the genome in some
manner, for example to generate a strain deleted for a specific gene
(Figure 1). With the exception of the uracil-based marker (see
below), use of any marker in isolation necessarily eliminates reuse
of the same marker for any subsequent modification of the same
genome. Individual markers have been employed consecutively to
produce strains with multiple modifications, with each modifica-
tion resulting in an additional marker retained in the genome of
the final strain. More often, counter-selective pressures applied to
recover the marker through a recombination based excision from
the genome, allowing for markerless and repetitive modifications
to be made to a single genome. Such counter-selective strategies are
available for the uracil and 6-methyl purine (6MP) based mark-
ers, but only the uracil marker is functional for both positive- and
counter-selection in isolation. The 6MP-based marker provides no
useful positive selection, but can be paired with any of the pos-
itive selection cassettes to provide a two-gene cassette capable of
positive selection into and counter-selective excision from the T.
kodakarensis genome (Figure 2).

Regardless of the modification, all genetic manipulations are
directed to specific loci through homology between the donor
DNA and the T. kodakarensis chromosome, and recombination is
efficient with ∼200 or more base pairs (bp) of sequence homol-
ogy (Figures 1 and 2). Smaller regions of complementarity are
also functional, but constraints of this manner are atypical of most
transformations. Donor DNAs are most commonly circular DNAs
that cannot autonomously replicate in T. kodakarensis, although
linear DNA is also suitable for transformation. Expression cas-
settes containing a single selectable marker are most commonly
flanked by sequences with homology to the locus of choice and
transformants resultant from double-homologous recombination

Table 1 | Selective markers available for modification ofThermococcus kodakarensis.

Selectable

marker

Gene(s) Gene function Strain (required

genotype)

Advantages Limitations/disadvantages Reference

Uracil TK2276 Orotidine-5′-phosphate

decarboxylase

KU216 (ΔpyrF ),

KUW1 (ΔpyrF, ΔtrpE )

Easily paired with

5-FOA-based

counter-selection for

markerless modifications

Uracil contamination yields

high backgrounds; limited to

minimal media; limited host

range

Sato et al.

(2003, 2005)

Tryptophan TK0254 Large subunit of

anthranilate synthase

KW128 (ΔpyrF ;

ΔtrpE::pyrF )

Rigid selection requiring

no media additions

Limited to minimal media;

limited host range

Sato et al.

(2005)

Arginine/

citrulline

PF0207,

PF0208

Argininosuccinate

synthase,

argininosuccinate lyase

Any strain No strain restrictions Limited to minimal media;

requires supplementation

with citrulline

Santangelo

and Reeve

(2010b)

Agmatine TK0149 Pyruvoyl-dependent

arginine decarboxylase

TS559 (ΔpyrF ;

ΔtrpE::pyrF,

ΔTK0664, ΔTK0149)

Provides selective

pressure in rich media

Limited host range Santangelo

and Reeve

(2010b)

Simvastatin/

mevinolin

PF1848 HMG-CoA reductase Any strain Provides selective

pressure in rich media;

no strain restrictions

Spontaneous Sim/Mev

resistance provides a high

background

Matsumi et al.

(2007),

Santangelo

et al. (2007)

6-methyl

purine

TK0664 Hypoxanthine guanine

phosphoribosyl-

transferase

TS517 (ΔpyrF;

ΔtrpE::pyrF,

ΔTK0664)

Provides

counter-selective

pressure

Provides no positive

selection; counter-selection

requires minimal media

Santangelo

et al. (2011)
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into the T. kodakarensis genome are identified via diagnostic PCRs.
Recombination of an entire circular donor DNA molecule into
the genome via only a single homologous crossover does result
in transformants that survive selective pressures, but under most
circumstances such transformants are non-desirable and easily
identified via diagnostic PCRs.

FIGURE 1 | Integration of a selection cassette into theThermococcus

kodakarensis genome provides a mechanism for genomic

modification. A general scheme for integration of a selectable marker
cassette (gene providing positive selection, gray; promoter, bent arrow) into
the genome of a recipient strain. The resultant genome of the transformant
results from two homologous recombination events (dashed lines)
between flanking regions contained in both the donor DNA and targeted
genomic locus. For simplicity, a single gene replacement of a target locus
(yellow) by the selectable marker is shown, although different genomic
alterations including allelic exchanges, promoter alterations, and additions
of epitopes can similarly be introduced using the same technique. Each
marker inTable 1, with the exception of 6MP, can be employed to generate
strains that retain the marker at or near the modified locus.

PROTOTROPHIC SELECTIONS
ARGININE/CITRULLINE-BASED SELECTION
In contrast to several members of the Thermococcales, T.
kodakarensis is an arginine auxotroph (Fukui et al., 2005). Intro-
duction and expression of two genes from P. furiosus, PF0207
and PF0208 that encode argininosuccinate synthase and argini-
nosuccinate lyase respectively, to the T. kodakarensis genome,
or on a replicative plasmid (see below), were shown to pro-
vide any T. kodakarensis strain the capacity to combine cit-
rulline and aspartate to form arginine, and thus provide argi-
nine prototrophy. T. kodakarensis makes abundant aspartate,
but cultures must be supplemented with citrulline for intro-
duction of the exogenous P. furiosus genes to confer argi-
nine prototrophy; citrulline supplementation in the absence of
PF0207/PF0208 expression is insufficient to impart arginine
prototrophy.

Arginine/citrulline-based selections are rigid, with no sponta-
neous arginine-prototrophic colony formation. Initial selection is
limited to growth on minimal media (19 amino acids plus cit-
rulline), but once confirmed, strains can be passage and plated
on rich media without concern for retention of the marker;
spontaneous excision has not been reported for any marker
employed for T. kodakarensis genetic manipulations. The great-
est advantage of arginine/citrulline-based selections is the lack of
any genotypic strain requirements. This flexibility is unmatched
by the other available prototrophic markers, and although the
arginine/citrulline-based selection has only recently been devel-
oped, it is compatible with all other selections. The only potential
disadvantage is the necessity to supplement defined media with
citrulline, however addition is not of significant concern based on

FIGURE 2 | Markerless-modification of theThermococcus kodakarensis

genome via sequential positive selection and subsequent

counter-selection. Donor DNA, a hypothetical target locus in the recipient
genome, the resultant intermediate, and final genomes are shown. The
scheme diagrammed generates an intermediate strain wherein both the
selectable (gray) and counter-selectable marker (TK0664; orange) are flanked
by a direct repeat (cyan), and the intermediate strain is deleted for the target
gene. Alternative donor DNAs can result in intermediate strains that retain the

target gene, necessitating excision of the selectable markers in addition to
the target gene to via recombination between direct repeats to generate the
desired final markerless-deletion strain. The same protocol can be used with
the uracil (pyrF ) cassette that will serve as both the positive and
counter-selective marker. Any combination of a positive selection cassette
(Table 1) and TK0664-based 6MP counter-selection can be employed in a
two-gene mechanism to introduce markerless modifications to the T.
kodakarensis genome.
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cost, availability, or stability, nor is addition of citrulline necessary
for growth in rich media.

TRYPTOPHAN-BASED SELECTION
Only specific strains of T. kodakarensis are amenable to
tryptophan-based selection, although these strains are widely
available and selections based on tryptophan have been employed
in the most diverse T. kodakarensis strain constructions (Sato
et al., 2003, 2005; Imanaka et al., 2006). Most reported tryptophan
auxotrophic strains are non-reverting as the result of an inser-
tion in TK0254 (trpE), encoding the large subunit of anthrani-
late synthase. Tryptophan selection, like arginine/citrulline-based
selections is rigid, and no spontaneous tryptophan-prototrophic
colonies have been recovered in the absence of donor DNA. Ini-
tial selections are still limited to defined media, but in contrast to
arginine/citrulline-based selections, the tryptophan-based selec-
tion does not require medium supplementation. Integration of
the trpE cassette is similarly stable and does not require selective
pressure once established, allowing growth of confirmed strains in
rich media without concern for loss of the marker.

AGMATINE-BASED SELECTION
Polyamines serve as essential counter-ions in all Domains and
are typically derived from the precursor agmatine (Morimoto
et al., 2010). Agmatine is decarboxylated arginine, and although T.
kodakarensis is an arginine auxotroph, it does encode a pyruvoyl-
dependent arginine decarboxylase (TK0149; Fukuda et al., 2008).
Deletion or inactivation of TK0149 results in the agmatine-
dependent growth, allowing selections in specific strains wherein
TK0149 was previously deleted (Santangelo and Reeve, 2010b).
The major advantage of agmatine-based selections, despite their
limited host range, is that agmatine auxotrophy is lethal even in
rich media, thus initial selections to agmatine prototrophy can be
performed on rich media. This pronounced difference from uracil-
, arginine/citrulline-, or tryptophan-based prototrophic selections
provides a means for selection of transformants overnight in con-
trast to the 3–4 days typically required for colony formation on
defined media.

Agmatine-based selections are as rigid as those for tryptophan
or arginine/citrulline, but do require strains deleted for TK0149
as well as supplementation of these strains with agmatine prior to
transformation. These concerns are minor as agmatine is inexpen-
sive and widely available. The selective pressure provided by the
agmatine-marker is particularly useful for retention of replicative
plasmids in rich media (see below).

URACIL-BASED SELECTION AND 5-FOA-BASED COUNTER-SELECTION
The first reported selections (Sato et al., 2003, 2005) that were
established into useful genetic techniques were based on spon-
taneous resistance to 5-fluoro-orotic acid (5-FOAR), a cytotoxic
pyrimidine analog. 5-FOAR strains were isolated and shown to
contain mutations disrupting the sequence of, or limiting the
expression of TK2138 or TK2276 (pyrE or pyrF, respectively), con-
sistent with the conserved roles of pyrE and pyrF in pyrimidine
metabolism (Sato et al., 2003). Strains containing non-reverting
mutations of pyrF serve as the host for donor DNAs that intro-
duce targeted gene disruptions at remote loci while restoring pyrF
expression, and thus uracil prototrophy, from this same location.

Uracil-dependent techniques are limited to defined media,
and while uracil auxotrophy/prototrophy is still used to iso-
late transformants, many media components contain trace or
greater amounts of uracil that routinely complicate isolation of
mutants using this method. The technology is retained in large
part due to its simplicity, and perhaps more importantly, the
ability to counter-select against pyrF function, allowing repetitive
manipulation of the genome via an initial selection and sequent
counter-selection (pop-in/pop-out) mechanism (Figure 2). By
integrating a pyrF cassette while at the same time introducing
duplicate sequences flanking pyrF, researchers can develop so-
called intermediate strains with the desired phenotype. Exposure
of this intermediate strain to 5-FOA most commonly results in 5-
FOAR colonies resultant from recombination between the direct
repeats flanking pyrF, and thus excision of the marker from the
chromosome while the desired modification is retained in the
genome. The excision event produces restored uracil auxotro-
phy, allowing reuse of the uracil marker to generate a second,
third, fourth, etc., genomic alteration. Proper planning allows
for exquisite precision during initial integration and subsequent
excision, permitting markerless deletions, or alternative genomic
modifications.

ANTIBIOTIC-BASED SELECTIONS
Few antibiotics/antimicrobials have demonstrated efficacy against
archaea, and of those, only a few are stable enough at high temper-
ature to be employed for use with hyperthermophiles. Antibiotic
selections remain highly desirable as they are typically robust,
effective on many media, and provide continued selective pressure
when transformants are transferred to liquid media. A class of
statins, developed to inhibit cholesterol biosynthesis and typified
by simvastatin (Sim) and mevinolin (Mev), is effective in the low
μM range at limiting T. kodakarensis growth (Matsumi et al., 2007;
Santangelo et al., 2008a). Archaeal strains spontaneously resis-
tant to Sim/Mev (Sim/MevR) were shown to have mutations that
mapped to the locus encoding 3-hydroxy-3-methylglutaryl-CoA
reductase (HMG-CoA reductase), and these mutations gener-
ally lead to overexpression of HMG-CoA reductase (Lam and
Doolittle, 1992). It was hypothesized and subsequently shown that
increased expression of, rather than modifications to, HMG-CoA
reductase provided a level of resistance to Sim/Mev. Selections
based on the introduction of an additional and highly expressed
copy of HMG-CoA reductase, provided to generally increase the
in vivo levels of HMG-CoA reductase soon followed, with the
HMG-CoA reductase from P. furiosus employed to limit unwanted
recombination between the native T. kodakarensis HMG-CoA
reductase and the introduced copy of HMG-CoA reductase.

Selections based on Sim/MevR are advantageous in that they are
not limited to a select genotype and provide selective pressure in all
media allowing rapid selection on rich media. However, Sim/Mev-
based selections are disreputably weak and are cost prohibitive on a
large scale. Spontaneous Sim/MevR colonies are readily recovered,
and this incidence presents real and significant challenges when
working with slow growing strains that may be overwhelmed in
liquid culture by spontaneous Sim/MevR cells. Plasmid mainte-
nance based on Sim/MevR is possible, with the noted caveats of
spontaneous resistance.
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TWO-GENE SELECTION/COUNTER-SELECTION
MODIFICATION OF THE T. KODAKARENSIS CHROMOSOME
The uracil-based selection and 5-FOA-based counter-selection are
advantageous for generating strains with markerless modifications
to the T. kodakarensis chromosome and for repeated manipulation
of the same chromosome at multiple loci, but is hamstrung by the
lack of rigidity in generating uracil free media. The uracil conta-
mination of most commercially available medium components is
sufficient to support weak growth of ΔpyrF strains over the course
of several days.

To circumvent these concerns, a more rigid selection/counter-
selection procedure was developed based on the sensitivity of
all T. kodakarensis strains to the cytotoxic compound 6-methyl
purine (6MP). T. kodakarensis encodes a complete purine biosyn-
thetic pathway, but like many organisms also encodes a purine-
scavenging pathway to recycle purines and nucleotides from the
environment. 6MP is a nucleotide base analog that, once imported
and converted to a modified nucleotide- or deoxynucleotide-
triphosphate and incorporated into macromolecules, overwhelms
DNA repair pathways and inhibits the information processing

machinery. Spontaneous 6MPR T. kodakarensis strains were iso-
lated, and the mutations resulting in 6MPR were mapped.
All mutations were at the TK0664 locus, and it was subse-
quently shown that inactivation or deletion of TK0664, encod-
ing a hypoxanthine guanine phosphoribosyltransferase, con-
ferred 6MPR.

A 6MP-based counter-selection against TK0664 was estab-
lished, but required pairing with an initial prototrophic or
antibiotic-based positive selection to generate initial transfor-
mants. Combining any of the selection cassettes with a cassette
encoding TK0664 provides a two-gene based selection/counter-
selection procedure (Figure 2) that functionally mimics the single
pyrF-based uracil prototrophy selection, 5-FOA counter-selection
protocol. The limitations of this two-gene system include the
necessity to introduce two expression cassettes during initial
strain construction, the reasonable expense of 6MP, the very lim-
ited host range, and the requirement of a different host strain
for each gene pair. These complications are largely outweighed
by the efficiency of the system compared to the uracil-based
selection/counter-selection, but are still laborious.

FIGURE 3 | Replicative vectors provide platforms for exogenous and

ectopic expression inThermococcus kodakarensis. T.k-E. coli shuttle
vectors are the result of merging the entire Thermococcus
nautilus-derived pTN1 sequence with a common E. coli plasmid

(pCR2.1-Topo; Invitrogen). The marker additions provide the means to
select T. kodakarensis transformants on any media, and the expression
cassette provides a mechanism to ectopically express any gene of choice
in T. kodakarensis.
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REPLICATIVE EXPRESSION VECTORS
Thermococcus kodakarensis does not naturally contain any extra-
chromosomal elements, but T. kodakarensis does support repli-
cation of plasmids derived from other Thermococcales. T. nau-
tilus was shown to contain three distinct plasmids (Soler et al.,
2007), and the smallest of these, pTN1, was converted into an
E. coli-T. kodakarensis shuttle vector (Figure 3; Santangelo et al.,
2008b). Variants of this vector carrying most combinations of
selective markers are available, and necessarily retain at least one
marker (Sim/Mev or agmatine) that exerts selective pressure in
rich media.

When these vectors are used to express essential genes, the chro-
mosomal locus for the same gene can be modified or deleted,
and viability may then be dependent on retention of the plas-
mid. Replicative vectors also permit protein expression under
native conditions, at controlled levels, and allow T. kodakaren-
sis to serve as a host of exogenous gene expression (Santan-
gelo et al., 2008b, 2010; Takemasa et al., 2011). The latter may
impart novel capacities to T. kodakarensis, or fulfill industrial
needs for thermostable protein expression. These shuttle vec-
tors can be easily modified in E. coli to introduce sequences
encoding epitopes and affinity tags that facilitate downstream
purification of the encoded products. Finally, collections of

plasmids, for example, a plasmid library containing randomly
mutagenized variants of a gene, can be quickly produced in
E. coli and the efficiency of T. kodakarensis transformation
supports introduction of this library for use in screens and
selections.

A UNIVERSAL PLATFORM FOR CONSTRUCTION OF
COMPREHENSIVE STRAIN COLLECTIONS
The existing genetic techniques for T. kodakarensis were recently
combined into a universally applicable strategy to generate the first
comprehensive strain libraries for any archaeon. Two T. kodakaren-
sis strain libraries, one wherein each non-essential gene is individ-
ually deleted, and a second wherein each protein-encoding gene
is modified to encode an epitope and affinity tagged isoform, are
under construction. We outline some details of the streamlined
procedure for construction of the library vectors and associated
strains (Figures 4–6). This platform can be adapted to generate
any T. kodakarensis strain of choice and provides an alternative
to the often laborious molecular biology manipulations that are
required to generate standard vectors for integration into, and
subsequent excision from, the T. kodakarensis genome. The use of
single crossover integrations provides for the possibility of excision
of the plasmid to restore the TS559 genome without modification,

FIGURE 4 | Construction of foundation plasmids by a

ligation-independent technique. (Left) Each target gene as well as
∼500–700 bp of both upstream and downstream adjacent DNA is amplified
from T. kodakarensis chromosomal DNA with a pair of primers that introduce
unique 13 bp terminal extensions to the amplicon. Incubation of the purified
amplicon with T4 DNA polymerase (DNAP) and only dGTP leads to a 3′-5′

exonuclease recession of the 3′ ends to produce non-complementary 12-nt
sticky ends. (Right) pTS700 is linearized through a unique SwaI site,
producing 3′ ends that are similarly recessed with T4 DNAP and dCTP to yield
sticky ends complementary to the sticky ends of each amplicon permitting

directional cloning of the amplicon in a ligase-independent reaction.
Amplicons for each T. kodakarensis gene, regardless of gene orientation, gene
length, or sequence can be cloned in an identical manner to yield foundation
plasmids (A-plasmids). The TATA-box of PhmtB is boxed and the site of
transcription initiation marked with a bent arrow; the Shine–Dalgarno
sequence (SD) is underlined; the SwaI recognition sequence is shown in gray;
the selectable and counter-selectable expression cassettes, TK0149 and
TK0664, are shown in pink and orange, respectively; the plasmid origin of
replication (oriC ) and E. coli resistance cassette (bla) are shown in gray. The
color scheme is conserved in Figures 4–7.
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FIGURE 5 | Construction of deletion- and affinity-plasmids from

the foundation plasmids. A-plasmids serve as templates for PCR
(QuikChange; Agilent) wherein essentially the entire plasmid is
replicated to generate B,C-plasmids respectively. B-plasmids result
from primer pairs that are complementary, both upstream and
downstream, of the target gene (yellow), whereas C-plasmids result

from primer pairs that introduce 45 additional nucleotides, encoding
both a His6 and HA epitope tag, in-frame and immediately prior to the
normal stop codon of the target gene. A simplified diagram of the
plasmids is used for clarity only and each plasmid retains all the
components highlighted in Figure 4. The larger green arrow depicts the
sequence encoding the His6-HA tag.

as would be necessary when targeting an essential gene. Continued
recovery of only the restored TS559 genome provides a statistical
measure that can be applied to determine essentiality of individual
genes.

The collections are all based on a single T. kodakarensis strain
and vector, but the technologies employed are nearly identical
to the platforms described above. pTS700 provides the vehi-
cle for introduction of donor DNA complementary to the T.
kodakarensis genome and carries the selectable and counter-
selectable markers facilitating the most rapid and rigid integra-
tion into and excision from the T. kodakarensis genome, but will
not autonomously replicate in T. kodakarensis (Figure 4). The
host strain, TS559, has the complementary genotype (ΔpyrF ;
ΔtrpE::pyrF, ΔTK0664, ΔTK0149) for the selectable markers car-
ried on pTS700. The strain libraries so constructed are marker-
less, and as such the resultant strains are isogenic while impor-
tantly permitting continued modification of the strains using
the library of vectors so established. The strains are compat-
ible with every replicative vector, further increasing their util-
ity for complex genetic manipulations and their use in selec-
tions and screens to isolate strain variants of choice. The use
of a single platform provides for economical and rapid con-
struction of the necessary vectors to generate ∼4,600 unique
strains.

Construction begins with amplification of a target gene (shown
in yellow, Figure 4) with ∼500–700 bp of flanking DNA. This

amplicon is cloned via a ligation-independent mechanism into
pTS700 generating the initial vector termed an “A” plasmid.
The ligation-independent mechanism permits all amplicons to
be cloned using the same procedure, thus simplifying con-
struction of ∼2,300 A-plasmids, one for each T. kodakarensis
protein-encoding gene. Each A-plasmid serves as a foundation
plasmid, from which additional vectors of choice can be gen-
erated. Two plasmid variants, termed “B-” and “C-plasmids,”
are typically generated from the A-plasmid that respectively
provide the donor DNAs to generate the deletion and epi-
tope/affinity tagged T. kodakarensis strains for each protein-
encoding gene. A-plasmids can undergo additional or combi-
natorial modifications for construction of more unique strains
(i.e., “Q-plasmids” contain modified promoters; “M-plasmids”
contain allelic modifications), but for this review we concen-
trate on construction of the deletion and epitope/affinity tagged
libraries.

B-plasmids are constructed in a single-step PCR-based pro-
cedure wherein the original target gene (yellow) is deleted from
the plasmid, while leaving the flanking DNA that will target inte-
gration of the entire B-plasmid to the TS559 genome (Figure 5).
Two separate initial integration events are possible for incorpora-
tion of the entire B-plasmid to the genome, and each generates an
intermediate strain that, when 6MP-based counter-selective pres-
sure is applied, can undergo an internal recombination event to
either restore the original genome or produce a strain containing
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FIGURE 6 | Use of deletion plasmids (B-plasmids) to generate

markerless knockouts in the genome ofThermococcus

kodakarensis. A hypothetical region of the genome of T. kodakarensis
strain TS559 is shown at top, with the left and right panels depicting the
two possible integration events yielding agmatine-prototrophic

intermediate strains from the diagramed B-plasmid. Both intermediate
strains #1 and #2 contain direct repeats flanking the target locus, and
dependent on recombination responsible for excision upon
counter-selection with 6MP, either the original TS559 genome can be
restored or the desired deletion genome generated.

a genome with the desired, targeted deletion (Figure 6). The ratio
of WT versus desired deletion recovered 6MPR strains provides a
statistical measure identifying essential genes; failure to recover a
strain with the desired deletion from a large number of 6MPR final
strains implies essentiality.

C-plasmids are similar constructed from A-plasmids via a
PCR-based procedure that introduces the 45 bp encoding the
His6 and 9-amino acid hemagglutinin (HA; YPYDVPDYA) tag
to the target gene, whilst retaining the entire original ampli-
con of the foundation plasmid (Figures 5 and 7). Both the
His6 and HA-tags have been used successful to facilitate protein
identification and ease protein purification with minimal back-
ground. C-plasmids can similarly integrate and excise from the
genome to generate the desired tagged strain or restore the TS559
genome.

The donor plasmids also contain the constitutively expressed
PhmtB promoter immediately upstream of the site wherein the ini-
tial amplicon is cloned to generate the A-plasmid. PhmtB provides
an expression platform for genes that may become separated from
their promoter, as would be common for an integration event that
disrupts an operon.

CONCLUSION
The genetic techniques and tools for T. kodakarensis provide a
potent arsenal of mechanisms to precisely and repetitively mod-
ify the chromosome, as well as ectopically introduce and express
exogenous or modified genes in vivo. The selectable markers and
host strains developed to date provide the means for essentially any
modification in any strain background. Although not the subject
of this review, the developed reporter constructs (Santangelo et al.,
2008a, 2010) and in vitro transcription (Santangelo et al., 2007)
and translation systems (Endoh et al., 2006, 2007; Yamaji et al.,
2009) using T. kodakarensis components provide complementary
in vivo and in vitro platforms to dissect regulation of transcription
and translation regulatory mechanisms.

The possibility of generating comprehensive strain libraries is
now a reality, and a common platform is in place to speed con-
struction of such libraries and provide the community the first
comprehensive strain collections with the most isogenic back-
ground possible. Furthering their value, the plasmid and strain
libraries so constructed retain value for additional strain modifi-
cation, including strains containing multiple deletions or multiple
genes with tagged isoforms. More specific and imaginative variants
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FIGURE 7 | Use of epitope/affinity tag plasmids (C-plasmids) to generate

markerlessly tagged-strains ofThermococcus kodakarensis. A
hypothetical region of the genome of T. kodakarensis strain TS559 is shown at
top, with the left and right panels depicting the two possible integration
events yielding agmatine-prototrophic intermediate strains from the

diagramed C-plasmid. Both intermediate strains #1 and #2 contain direct
repeats flanking the target locus, and dependent on recombination
responsible for excision upon counter-selection with 6MP, either the original
TS559 genome can be restored or the desired tag- and epitope-containing
genome generated.

are quickly feasible through minor modification of the foundation
plasmids for each protein-encoding gene; for example, strains with
promoter alterations and allelic modifications can now be com-
bined with select deletions, and these modifications can be made in
backgrounds wherein other protein-encoding genes are tagged or
modified. This depth of genetic flexibility will permit entire path-
ways to be introduced into, or deleted from, the T. kodakarensis
genome, and provides a mechanism to probe biochemical path-
ways using complementation and screens and selections to isolate
mutants with desired phenotypes.

The toolkit for T. kodakarensis genetics is impressive, but still
incomplete. Specifically, transduction would further speed strain
construction, but is not yet possible. The isolation of the first
virus capable of replication in T. kodakarensis (Gorlas et al., 2012)
may facilitate development of a transduction method. Replicative
expression vectors currently all share the same origin (pTN1-
based; Soler et al., 2007), and the development of additional shuttle
vectors with complementary origins of replication derived from
plasmids newly identified in Thermococcal species (Gonnet et al.,
2011; Soler et al., 2011) would permit addition of several plas-
mids to the cell at once, or allow plasmid shuffle experiments as

may be required when analyzing the function of essential genes.
Constructs and promoters allowing easily regulated in vivo expres-
sion would be a welcome addition, providing a simply mechanism
to turn gene expression off and on to monitor the effects of
loss or gain of function on phenotype under dynamic condi-
tions. Transformation efficiency should be improved, and insights
may be garnered from the recently developed genetic system for
the closely related organism P. furiosus wherein transformation
efficiency is several orders of magnitude greater than that of T.
kodakarensis (Lipscomb et al., 2011). These endeavors, as well as
the ability to currently probe the form and function of each T.
kodakarensis encoded gene, will undoubtedly continue to add to
our knowledge and understanding of archaeal physiology, provide
the basis for new technologies and production of commercial-
relevant products, and underlie the basic research exploiting the
component-simplified information processing machinery shared
by archaea and eukaryotes.
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