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Anatoxin-a (ANTX) is a neurotoxin produced by several freshwater cyanobacteria and impli-
cated in lethal poisonings of domesticated animals and wildlife. The factors leading to its
production in nature and in culture are not well understood. Resource availability may influ-
ence its cellular production as suggested by the carbon-nutrient hypothesis, which links the
amount of secondary metabolites produced by plants or microbes to the relative abundance
of nutrients. We tested the effects of nitrogen supply (as 1, 5, and 100% N of standard
cyanobacterial medium corresponding to 15, 75, and 1500 mg L−1 of NaNO3 respectively)
on ANTX production and release in a toxic strain of the planktonic cyanobacterium Aph-
anizomenon issatschenkoi (Nostocales). We hypothesized that nitrogen deficiency might
constrain the production of ANTX. However, the total concentration and more significantly
the cellular content of anatoxin-a peaked (max. 146 μg/L and 1683 μg g−1 dry weight) at
intermediate levels of nitrogen supply when N-deficiency was evident based on phyco-
cyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular
production of anatoxin-a may be stimulated by moderate nitrogen stress. Maximal cellular
contents of other cyanotoxins have recently been reported under severe stress conditions
in another Nostocales species.
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INTRODUCTION
Many cyanobacteria are capable of producing compounds that
are toxic to other organisms. The cyanotoxins have been classi-
fied into four main groups according to their mode of action. In
addition to the hepatoxins, cytotoxins, and gastrointestinal toxins,
there are several types of neurotoxins (Codd et al., 2005). A potent
neurotoxin synthesized by freshwater cyanobacteria is anatoxin-a
(ANTX), likely one of the smallest toxic alkaloids described to date
(LD50 of 0.2 mg/kg IP in mice, Carmichael et al., 1979). Prior to
its chemical identification, ANTX was labeled the Very Fast Death
Factor due to its ability to induce death within 4 min following
intraperitonial injection in mice. ANTX has now been detected
in lakes and rivers throughout the world (e.g., Codd et al., 2005;
Cadel-Six et al., 2007; Wood et al., 2007; Aráoz et al., 2008), and,
in some cases, at concentrations leading to lethal poisonings of
livestock, domestic animals, and wildlife.

The factors regulating ANTX production, whether in the field
or in the laboratory, are not well understood (Osswald et al.,
2007). The toxin has been studied less that the more commonly
encountered microcystins associated with freshwater cyanobacte-
rial blooms (a Web of Science search since 1995 yields about a
quarter of the number of papers on ANTX relative to the number
of papers on microcystins). ANTX production is strain specific
with cellular contents ranging up to 13,000 μg/g dry weight in
Anabaena (reviewed by Osswald et al., 2007). The optimal tem-
perature for production appears to lie between 19.8 and 22.0˚C
and is maximal during the exponential phase of growth in batch
cultures.

Several hypotheses have been proposed to explain why toxins
more generally are produced by cyanobacteria. They may be pro-
duced as a defense mechanism against grazers or other organisms
in order to gain ecological advantage. Or they may be involved
in cell signaling processes (Wiegand and Pflugmacher, 2005).
Cyanotoxins including ANTX have been labeled as secondary
metabolites as they do not appear to be involved in primary metab-
olism (Carmichael, 1992). In this regard, an increase in demand
for resources at the cellular level would in theory lead to a decrease
in ANTX production.

The availability of nutrients may play a role in the production
of secondary metabolites, including nitrogen containing alka-
loids such as ANTX, as suggested by the carbon-nutrient bal-
ance hypothesis (Hamilton et al., 2001). This hypothesis links
the amount of secondary metabolites produced by plants to the
relative abundance of nutrients. Recently, the production and
composition of microcystins (MC) was investigated in relation to
nitrogen to carbon supply ratios (N:C) in the freshwater cyanobac-
terium Microcystis aeruginosa (van de Waal et al., 2009). Consistent
with the carbon-nutrient balance hypothesis, a high N:C ratio in
the external media and within the cells led to higher concentrations
of microcystins (and of the nitrogen-rich MC variant MC-RR) in
comparison to lower N:C ratios. Despite the fact that less than
1% of the total cellular nitrogen was invested in microcystins, the
availability of inorganic nitrogen appeared to influence secondary
metabolite concentrations and composition. Nitrogen availabil-
ity may also play an analogous role in the production of other
nitrogen containing secondary metabolites such as ANTX.
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In the following study, the relationship between nitrogen avail-
ability and ANTX production was investigated in Aphanizomenon
issatschenkoi (Ussaczew) Proschkina-Lavrenko using an ANTX
producing strain isolated from a hypereutrophic New Zealand lake
(CAWBG02,Wood et al., 2007). A. issatschenkoi is a colonial plank-
tonic species, which can produce heterocysts (Ballot et al., 2010),
the primary site for atmospheric nitrogen (N2) fixation in the Nos-
tocales in the absence of available inorganic nitrogen. The process
of nitrogen fixation being energy demanding, this study hypothe-
sized that nitrogen fixation might lead to further reductions in the
production of secondary metabolites containing nitrogen when
the supply of inorganic N was low. Both intracellular and extracel-
lular production was estimated: given its small molecular weight
ANTX can be found in significant but variable amounts in solution
(Rapala et al., 1993).

MATERIALS AND METHODS
CULTURE CONDITIONS AND SAMPLING
A culture of A. issatschenkoi was obtained from the Cawthron Insti-
tute, New Zealand (strain CAWBG02). Batch cultures were grown
at a light intensity of 85 μE m−2 s−1 on a 12:12 light: dark cycle at
20 ± 1˚C in a Conviron growth chamber (E-15) in 500 mL Erlen-
meyer flasks. Three different growth media were used with sodium
nitrate (NaNO3) at 100, 5, and 1% of full strength BG11 (Ander-
sen, 2005) corresponding to 1500, 75, and 15 mg L−1 of NaNO3

respectively. Total culture volumes were 250 mL and inocula for all
the experimental cultures came from the same parent culture in
exponential phase acclimated to the same temperature and light
regime. Under these conditions, A. issatschenkoi grew as single
trichomes and minimal clumping occurred which facilitated sub-
sampling. Two milliliters from each flask were sub-sampled every
3–4 days to measure optical density using a Pye-Unicam SP-100
UV-spectrophotometer at 750 nm. The optical density at 750 nm
provides a measure of turbidity of the culture and is a function
of both cell density and cell size. Growth rates were obtained by
plotting the natural logarithm of absorbance readings at 750 nm
during the exponential growth and using linear analysis (Guillard,
1973). Optical densities at 627 and 438 nm were also measured as
an estimate of phycocyanin to chlorophyll a changes (van de Waal
et al., 2009). Phycocyanin is a protein and accessory pigment found
in all cyanobacteria and involved in light harvesting (Whitton and
Potts, 2000).

For toxin extraction from cells, 10 mL from each flask was fil-
tered on days 10, 20, 30, and 40 of growth using pre-ashed and
pre-weighed Whatman GF/C filters. The first three time points
corresponded to early, mid, and late exponential phases whereas
the last corresponded to stationary phase at least in the 1 and 5%
N cultures. A subsequent 10 mL was filtered from each flask using
the same filter type for the analysis of particulate organic carbon
(C) and nitrogen (N). Filters were oven dried overnight at 60˚C,
re-weighed to obtain the dry weight (mg mL−1) and stored frozen
at −20˚C. During filtrations, one 20 mL of filtrate was collected
from each culture in solvent rinsed (acetone and hexane) scin-
tillation vials wrapped in foil. Filtrates were spiked with 50 μL
formic acid to stabilize ANTX and frozen immediately at −20˚C.
For chlorophyll a analysis, 5 mL were sub-sampled and filtered
using 934-AH glass microfiber filters with approximately the same

pore size as GF/C. Filters were inserted in clean 15 mL plastic test
tubes and stored at −20˚C for subsequent analysis. The experi-
ment was terminated when the 1 and 5% N cultures had clearly
reached stationary phase.

EXTRACTION AND ANALYSIS OF ANATOXIN-A, PARTICULATE ORGANIC
CARBON AND NITROGEN, AND CHLOROPHYLL a
The extraction of ANTX from cyanobacterial cells was performed
using an ASE 200 device Dionex Corporation (Bannockburn,
IL, USA). Frozen GF-C filters with cyanobacterial biomass were
thawed and inserted in stainless-steel ASE cells (11 mL) packed
with pre-washed Hydromatrix. The ASE parameters were opti-
mized for anatoxin-a specifically (Table 1) based on a previous
ASE protocol optimized for microcystins (Aranda-Rodriguez et al.,
2005). Extracts were collected in solvent (acetone and hexane)
rinsed amber vials and then spiked with 50 μL formic acid (pH
∼3). Extracts were then evaporated down to dryness at 59˚C under
a gentle nitrogen flow using a Zymark Turbovap II and then
resuspended in 1 mL of 50% methanol in water. Filtrates were
freeze-dried and then resuspended in 1 mL of 50% methanol in
water. All extracts, both particulate and liquid phase, were filtered
with pre-conditioned 0.2 μm Acrodisc filters and stored at −20˚C
until analysis.

Toxin analyses were performed on a Sciex QTRAP 3200 LC-
MS/MS (ABSciex, Toronto, Canada). The system consisted of a
1200 series Agilent liquid chromatograph with a high performance
autosampler (model G1376B), a binary pump (model G1312A),
a column thermostat (model G1316A), and a triple quadrupole
linear ion trap mass spectrometer equipped with a turbospray ion
source, specifically electrospray ionization (ESI) in positive mode
with a voltage of 4500 eV and setpoint temperature of 350˚C.
The acquisition of data was performed with Analyst software
(version 1.4.1). Chromatographic separations were achieved with
a Zobrax SB-C18 Rapid Resolution column (50 × 2.1 mm I.D.,
1.8 μm particle size column) and a guard column (12.5 × 2.1 mm
I.D, 5 μm; Agilent Technologies, Canada) at 40˚C. The optimal
mobile phase conditions were: water and MeOH with 0.1% formic
acid and ammonium formate 20 mM with a constant flow rate of
0.3 mL/min. Injection volume for samples was set to 1 μL. The nee-
dle was washed with 50% methanol, 50% acetonitrile, and 0.01%
formic acid at the flush port (3×) after each injection to min-
imize carry over. The method successfully separated anatoxin-a
from phenylalanine which often interferes with anatoxin analyses

Table 1 | ASE parameters for ANTX pressurized liquid extraction.

Parameters Experimental conditions

Pressure (psi) 2000

Temperature (˚C) 80

Preheat (min) 1

Heat(min) 5

Static (min) 5

Flush (%) 100

Purge (s) 120

Number of cycles 2
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as the compounds are isobaric (Furey et al., 2005). ANTX and
PHE standards were individually infused in the MS with a 4.6 mm
I.D Harvard syringe at a flow rate of 10 μL/min. Multiple reaction
monitoring (MRM) scans were performed for each standard by
selecting the protonated molecular ion [M + H]+1 (parent ion)
with the first mass filter quadrupole (Q1). The product ions,
yielded by collision-induced dissociation, were scanned by the
third quadrupole (Q3). Unambiguous Q1/Q3 pair transitions were
obtained by manually optimizing the declustering potential to get
characteristic product ions of ANTX and PHE (Table 2). Standard
curves were produced with anatoxin-a fumarate obtained from
Tocris Bioscience (USA) and analyzed in line with unknowns. All
samples were analyzed on the same run to minimize any day to
day instrument variability. The instrument limit of detection was
1 pg of ANTX and the limit of quantification 3.5 pg on column.

Particulate organic C and N were measured using a Costech
elemental analyzer (ECS 4010; Costech,Valencia,CA,USA) follow-
ing Frost et al. (2009). Chlorophyll a was extracted by incubating
the frozen 934-AH filters with culture material in 13 mL of 95%
ethanol at 4˚C for about 24 h (Jespersen and Christoffersen, 1987).
Following centrifugation of the extracts, chlorophyll a concentra-
tions were then estimated based on optical densities at 750, 665,
and 649 nm (Bergmann and Peters, 1980).

STATISTICAL ANALYSES
In order to compare the effects of N treatments, one-way analy-
ses of variance (ANOVA) were performed on the following
end-points: total and cellular toxin concentrations, growth rates,
chlorophyll a, phycocyanin to chlorophyll a ratios, and particulate
organic carbon to nitrogen (C:N) ratios at time intervals corre-
sponding to the early to late exponential phase as well as the early
stationary phase. A one-way ANOVA was chosen over a repeated
measures ANOVA in order to focus analyses on specific and pre-
dictable growth phases. In the case of significant treatment effects
(p < 0.05), Tukey’s pairwise comparison test was subsequently
used to determine differences between treatments. All statistical
analyses were carried out using SigmaStat (version 3.1) software.

RESULTS
GROWTH AND NITROGEN STRESS
All cultures entered the exponential phase of growth after about
18 days and reached the stationary phase after approximately
34 days for the 1% N treatment and 40 days for both 5 and 100%
N treatments (Figure 1). The growth curves based on optical den-
sity were clearly different between the three nitrogen treatments
(Figure 1). By day 30, the mean optical density of the 100% N
treatment was significantly higher (p < 0.001) than that at the
lower N concentrations. On days 34 and 40, the treatments were
all significantly different from one another, with the lowest optical
densities corresponding to the 1% N treatment. The average bio-
mass as dry weight (Table 3) of both the 1 and 5% N treatments
was also significantly lower than that of 100% N treatment on all
four sampling dates (10, 20, 30, and 40). Population growth rates
ranged from 0.03 to 0.07 day−1 and were significantly higher in
the 100% N cultures in comparison to the 1% N (Table 3).

Chlorophyll a concentrations of the cultures showed an analo-
gous pattern to absorbance (data not presented). By day 20 and on

Table 2 | MRM transitions of each analyte obtained after infusion into

turboV electrospray source of 3200 QTRAP and their respective

voltages.

MS parameters Analytes

Anatoxin-a Phenylalanine

Q1 transition (m/z) 166.1 166.1

Q3 transition (m/z) 149.2 120.0

Declustering potential (eV) 21 36

Entrance potential (eV) 6.5 4.5

FIGURE 1 | Batch culture growth of Aphanizomenon issatschenkoi in

100% (open circles), 5% (filled squares), and 1% (open triangles)

nitrogen-rich media. The error bars are standard errors of mean (n = 3).

three subsequent sampling dates all three treatments were sig-
nificantly different from one another (p < 0.001). The highest
chlorophyll a concentrations were measured in the 100% N treat-
ment, followed by the 5 and 1% N treatments: maximum values
were attained on day 30 (584 ± 26, 382 ± 8, and 192 ± 16 μg L−1

respectively). In contrast to the optical density data (Figure 1),
by day 40 chlorophyll a concentrations began to decline across all
treatments.

With respect to the ratio of phycocyanin to chlorophyll a, the
100% N batch cultures had clearly the highest mean ratio and the
1% N the lowest (Figure 2). Significant differences between either
all treatments or the 1 and 100% N treatments were observed from
day 7 to day 34. On day 40, the mean ratio for the 1% N was signif-
icantly different (p < 0.001) from both higher N treatments. With
respect to cellular nutrient composition, the particulate organic
carbon to nitrogen ratios (Table 3) began to differ from day 20
onward. Batch cultures grown in 100% N medium were signifi-
cantly different (p < 0.001) from the other two treatments with a
lower mean ratio on both day 20 and 30. At day 40 however, no
difference between the C:N mean ratios of batch cultures grown
in 100 and 1% N was detected using Tukey’s all pair wise test.
This was due to the high standard error between triplicates of the
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Table 3 | Average growth rate based on optical density changes (± standard error), carbon to nitrogen (C:N) molar ratios and yield as dry weight

biomass (mg/mL) for Aphanizomenon issatschenkoi grown in different nitrogen concentrations (shown as % of full strength BG11 media).

Treatment Growth rate (day−1) Time (days)

10 20 30 40

C:N Biomass C:N Biomass C:N Biomass C:N Biomass

100% N 0.07 (0.009)a 0.96

(0.22)a

0.098

(0.002)a

1.56

(0.07)a

0.134

(0.005)a

2.59

(0.08)a

0.157

(0.005)a

2.92

(0.3)a

0.220

(0.015)a

5% N 0.05 (0.002)a,b 4.04

(1.49)a

0.041

(0.005)b

4.63

(0.1)b

0.060

(0.005)b

5.16

(0.1)b

0.080

(0.004)b

5.17

(0.05)b

0.135

(0.003)b

1% N 0.03 (0.042)b 2.79

(0.75)a

0.049

(0.008)b

5.00

(0.36)b

0.061

(0.002)b

6.01

(0.49)b

0.092

(0.001)b

5.49

(1.00)b

0.093

(0.007)b

Within the same column (parameter) values with different letters are significantly different from each other as determined by a one-way ANOVA and Tukey’s post hoc

pairwise comparisons (n = 3, p < 0.05). The different letters signify significant differences between the means in each column at p<0.05.

FIGURE 2 | Phycocyanin to chl-a ratios (627 nm: 438 nm) of

Aphanizomenon issatschenkoi grown in 100% (open circles), 5% (filled

squares), and 1% (open triangles) nitrogen-rich media. The error bars
are standard errors of mean (n = 3).

1% N treatment. However, a Duncan all pair wise test showed a
significant difference (p = 0.045) between the 100% N treatment
and the other two treatments.

ANATOXIN-a
The total ANTX concentrations ranged from 4 to 146 μg L−1

across time and treatments with the highest concentrations
observed during the exponential phase (day 30) for all three nitro-
gen concentrations (Figure 3). On day 10, the highest total ANTX
mean concentration corresponded to the 5% N treatment and
the lowest to the 1% N. By day 30, the 5% N cultures had the
highest total ANTX concentrations with a mean concentration of
111 ± 18 μg L−1; the 100% N cultures had the lowest concentra-
tions ranging from 51 to 74 μg L−1. However, with the exception
of day 10, the total ANTX culture concentrations were not statis-
tically different between the three treatments on a given day, with

the exception of day 10, despite highly significant differences in
culture biomass.

The ANTX cellular content ranged from 6 to 1683 μg g−1 dry
weight with the highest values in each treatment corresponding to
30 days of growth or the late exponential phase (Figure 4). ANTX
content was significantly different among treatments on all dates,
with higher content for the 5% N treatment compared to the
other two treatments on day 20 (p = 0.018) and 30 (p = 0.003).
The highest ANTX cellular content was measured in the 5% N
treatment on day 30 with a mean of 1408 ± 181 μg g−1. The 5 and
1% N treatment had higher ANTX cell content than the batch
cultures grown in 100% N with the 5% N treatment resulting in
the highest amounts except on day 40, which corresponded to the
onset of the stationary phase.

The extracellular ANTX concentrations ranged from below
detection (<0.1 μg L−1) to 13 μg L−1 and were considerably lower
than particulate concentrations (Figure 3) while representing
between 3 and 47% of the total production. Cultures grown in
100% N medium had significantly (p < 0.001) lower ANTX extra-
cellular concentrations and lower percent extracellular release than
the other two treatments on days 20 and 30. The highest mean
extracellular concentrations were found in the 1% N treatments
on days 30 and 40, reaching 9 ± 0.12 μg L−1. Two of the 1% cul-
tures also had higher concentrations of ANTX in the extracellular
phase compared to the intracellular phase one on day 10 and one
on day 20.

DISCUSSION
The total amount of ANTX produced by A. issatchenkoi CAWBG02
was lower in this study than that reported for this strain when
first isolated. For a 23 day culture Selwood et al. (2007) reported
a maximum concentration of 1105 μg L−1, whereas a maximum
of 146 μg L−1was estimated here. This could stem in part from
differences in growing conditions related to differences in the
composition of media, temperature, and light as well as aera-
tion since the present cultures were not bubble aerated which
Selwood et al. (2007) mentioned could double the toxin produc-
tion. Furthermore differences in both extraction and analytical
procedures for ANTX could also lead to differences: there are
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FIGURE 3 | ANTX culture concentrations (μg/L) of total toxin (filled

bars) and intracellular toxin (open bars) of Aphanizomenon

issatschenkoi grown in 100% (top panel), 5% (middle panel), and 1%

(bottom panel) nitrogen-rich media. The error bars are standard errors of
mean (n = 3).

at present no common standard methods for most algal tox-
ins or certified reference materials in use. The cellular content
reported is within the range of that reported for a recently iso-
lated strain of A. issatschenkoi from northeastern Germany (Ballot
et al., 2010). Collectively the species appears less toxic than the

FIGURE 4 | Anatoxin-a cellular content (μg/g dry weight) of

Aphanizomenon issatschenkoi grown in 100% (open circles), 5% (filled

squares), and 1% (open triangles) nitrogen-rich media. The error bars
are standard errors of mean (n = 3).

benthic cyanobacterium Phormidium favosum which produces
8000 μg g−1 per dry weight (Gugger et al., 2005) or previous
reports for Anabaena strains (summarized in Osswald et al., 2007),
although the problem of analytical interference from phenylala-
nine may have inflated these earlier estimates of ANTX which did
not clearly separate these isobaric compounds.

In this study, nitrogen limited the biomass yield of A.
issatschenkoi in the low N cultures as evidenced by lower dry
weights and overall final yields under the 1 and 5% relative to
100% N (Table 3). The growth rate was also reduced in the 1%
cultures and, to a lesser extent, in 5% cultures. Nitrogen defi-
ciency was also reflected in cellular constituents: in particular lower
chlorophyll a concentrations and overall lower ratios of phyco-
cyanin to chlorophyll a (Figure 2). The phycobiliproteins, being
nitrogen-rich accessory pigments, are typically reduced relative
to chlorophyll a under nitrogen stress in cyanobacteria (Turpin,
1991).

When soluble inorganic nitrogen becomes limiting in the envi-
ronment, many cyanobacteria belonging to the Nostocales, such
as Aphanizomenon, are capable of fixing atmospheric nitrogen to
compensate for their needs for that specific nutrient. Hence, the
particulate organic nitrogen content should have been more or
less constant throughout the 40 days in all three treatments if N2

fixation had occurred to compensate for nitrogen limitation. On
days 20 and 30, the C:N ratios were significantly higher for cul-
tures grown in 1 and 5% N compared to 100% N treatment. This
further confirms that nitrogen was limiting and that N2 fixation
did not compensate for the N-deficiency, particularly in the 1%
N treatment. In fact, heterocysts were not evident in the cultures
and were either non-existent or too small to differentiate from
vegetative cells. This may be consistent for CAWBG02 as it did not
produce heterocysts in culture with or without nitrogen supple-
mentation in the original report (Wood et al., 2007). With respect
to another non-fixing cyanobacterium, van de Waal et al. (2009)

www.frontiersin.org June 2012 | Volume 3 | Article 211 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Microbiology/archive


Gagnon and Pick Anatoxin-a production

reported molar C:N ratios ranging from 6.25 to 7.14 for M. aerug-
inosa when neither N nor C was limiting. A. issatschenkoi in the
present study had lower C:N ratios overall. Nevertheless, signif-
icantly higher ratios of C:N were reached in the cultures grown
under low nitrogen concentrations (Table 3).

According to the carbon-nutrient balance hypothesis, nutrients
should be allocated to the production of secondary metabolites
once growth is assured (Hamilton et al., 2001). Because cyanotox-
ins are generally considered secondary metabolites (Carmichael,
1992), their production should increase whenever the availability
of essential nutrients increases. A higher production of anatoxin-
a, an alkaloid that contains a nitrogen atom, was expected under
higher nitrogen availability. In this study, the highest nitrogen sup-
ply corresponded to the highest growth rate and yield (Table 3)
of CAWBG02 but not necessarily to higher total ANTX concen-
trations (Figure 3). In fact, the highest concentrations of total
ANTX were produced by cultures grown in 5% N while the
lowest mean concentrations of total ANTX were found in the
100% N treatment although the differences were not highly sig-
nificant. Highly significant differences were observed in ANTX
cellular contents (Figure 4): the 5% N cultures produced the
highest cellular content and the 100% N treatment the lowest.
The 100% N cultures had the highest growth rate, the highest
biomass yield, the highest levels of particulate organic nitrogen
and the highest phycocyanin to chlorophyll a ratios (Table 3;
Figure 2), yet they produced the lowest ANTX cellular content.
Additional concentrations of nitrogen should be tested to con-
firm these results based on only three contrasting treatments. If
ANTX is indeed a type of defense compound then, its production
might be a mechanism that confers ecological advantage particu-
larly under low nutrient conditions that are common in aquatic
systems during summer stratification when cyanobacteria tend to
thrive and zooplankton grazing is typically high (Sommer et al.,
1986).

The mean extracellular to total toxin concentration ratios were
higher in 1% N treatment than in the other two treatments, the
extracellular fraction almost exceeding the particulate fraction
in stationary phase (Figure 3). Stress conditions in cyanobacte-
ria can lead to permeability changes of the cell membrane that
result in leakage (Whitton and Potts, 2000). However, it should
be noted that the extracellular ANTX concentrations presented
in this study were likely underestimated, as is likely the case for
previous studies (Rapala et al., 1993). ANTX is quite labile under
light and may degrade once released into the medium (Stevens
and Krieger, 1988). Short-term radio-labeling experiments would
be required to estimate more accurately the extracellular release.
Furthermore, although the cultures were initially bacteria free, pre-
pared and sub-sampled under sterile conditions, it is possible that
some biodegradation arose.

This study suggests that toxin production may be higher
when cyanobacterial cells are under moderate nutrient stress.
Recently, Kurmayer (2011) reported that another nitrogen-fixing
cyanobacterium Nostoc produced higher levels of microcystin cell
content under stress conditions, particularly under low phos-
phorous (P-PO4) and low light irradiance, even though growth
rates were reduced up to 100-fold compared to controls. As a

result, microcystin content per cell was negatively correlated to
P-PO4 and irradiance. Interestingly nitrogen reduction did not
have the same effect, but, in this case, the number of heterocysts
increased suggesting some alleviation of N-deficiency. Even if Nos-
toc produced higher levels of microcystin per cell when grown
under stress conditions, the total toxin production was still lower
than when grown under optimal conditions. In contrast, in the
present study, both cellular and total ANTX concentrations in
A. issatschenkoi were higher in cultures grown at intermediate N
concentrations (Figures 3 and 4). Similarly, Rapala et al. (1993)
observed that ANTX cellular contents were higher in both A.
flos-aquae and Anabaena flos-aquae when grown in nitrogen-free
media as opposed to nitrogen-rich control media. In this study,
mean ANTX cell contents of CAWBG02 were both significantly
lower in 100 and 1% N media than in 5% N. Stress conditions
may increase ANTX cellular production to a certain point where
cyanobacterial cells are still capable of producing the toxin without
compromising primary metabolism. Mean cellular ANTX concen-
trations for the 1% N were slightly higher than those of the 100%
N, but the difference was not significant. Based on cellular com-
position, the 1% N cultures were more severely stressed and the
N concentration may have been too low to sustain much toxin
production.

The results presented in this study suggest that ANTX produc-
tion may increase in A. issatschenkoi under moderate nitrogen
limitation. According to the carbon-nutrient balance hypothe-
sis and our current understanding of secondary metabolism, the
opposite was expected. One possible ecological advantage of such
a strategy could be that when nitrogen is limiting and popula-
tion density declines, additional population losses through grazing
would be minimized via higher cell specific toxin concentrations.
In the present experiments batch cultures were used as they best
represent algal bloom dynamics typical of nuisance cyanobacterial
growth in nature. However, it is possible that factors that are not
well controlled in batch cultures may have influenced the results.
Growth rates were slightly different among the treatments and
might have had an effect on ANTX concentrations. Although it
has not been specifically demonstrated for anatoxin-a, in the case
of microcystins the cellular growth rate is the primary factor regu-
lating production (Orr and Jones, 1998). However, in this case the
higher growth rate observed in the 100% N culture did not lead
to the higher anatoxin concentration or cellular content. Further
studies encompassing a wider range of nutrient concentrations
and using other toxin producing cyanobacterial taxa are necessary
to confirm these results and to determine if physiological stress
maximizes toxin production more generally.
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