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The microbiology of subsurface, hydrothermally influenced basaltic crust flanking mid-
ocean ridges has remained understudied, due to the difficulty in accessing the subsurface
environment. The instrumented boreholes resulting from scientific ocean drilling offer
access to samples of the formation fluids circulating through oceanic crust.We analyzed the
phylogenetic diversity of bacterial communities of fluid and microbial mat samples collected
in situ from the observatory at Ocean Drilling Program Hole 896A, drilled into ∼6.5 million-
year-old basaltic crust on the flank of the Costa Rica Rift in the equatorial Pacific Ocean.
Bacterial 16S rRNA gene sequences recovered from borehole fluid and from a microbial
mat coating the outer surface of the fluid port revealed both unique and shared phylo-
types. The dominant bacterial clones from both samples were related to the autotrophic,
sulfur-oxidizing genusThiomicrospira. Both samples yielded diverse gamma- and alphapro-
teobacterial phylotypes, as well as members of the Bacteroidetes, Planctomycetes, and
Verrucomicrobia. Analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)
genes (cbbL and cbbM ) from the sampling port mat and from the borehole fluid demon-
strated autotrophic carbon assimilation potential for in situ microbial communities; most
cbbL genes were related to those of the sulfur-oxidizing generaThioalkalivibrio andThiomi-
crospira, and cbbM genes were affiliated with uncultured phylotypes from hydrothermal
vent plumes and marine sediments. Several 16S rRNA gene phylotypes from the 896A
observatory grouped with phylotypes recovered from seawater-exposed basalts and sul-
fide deposits at inactive hydrothermal vents, but there is little overlap with hydrothermally
influenced basaltic boreholes 1026B and U1301A on the Juan de Fuca Ridge flank, sug-
gesting that site-specific characteristics of Hole 896A (i.e., seawater mixing into borehole
fluids) affect the microbial community composition.

Keywords: basalt, chemolithoautotrophic bacteria, CORKs, Costa Rica rift, formation fluids, ocean drilling program,
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INTRODUCTION
The deep-sea subsurface is characterized by relatively low organic
carbon input, elevated pressures, geographically variable temper-
atures, and sparse nutrient availability. Together, these conditions
create unique and challenging habitats for microorganisms. Sub-
seafloor sediments are estimated to constitute a large proportion
of Earth’s biomass (Whitman et al., 1998; Parkes et al., 2000),
although local cell densities and microbial activities are low
compared to surficial sediments (D’Hondt et al., 2004, 2009; Jør-
gensen and Boetius, 2007). Less is known, however, about a
biosphere potentially hosted in subsurface oceanic basalt crust,
largely due to difficulties is accessing this environment. Chemi-
cal and microscopic evidence coupled with theoretical models of
potential metabolic reactions (Bach and Edwards, 2003) suggest
that microbial activity in oceanic crust occurs and may have a

significant impact on global biogeochemical cycles. Specifically,
gradual microbial oxidation of reduced metals and sulfur species
within the basalt crusts results in increased oxidation state and bio-
catalyzed weathering of ocean crust, as it ages and moves from the
center of a mid-ocean ridge to the outer flanks (Bach and Edwards,
2003). Microaerophilic, autotrophic iron-oxidizing, or nitrate-
reducing bacteria from ridge flank surfaces have been isolated, and
include alpha- and gammaproteobacteria (Edwards et al., 2003);
seafloor basalts from the 9◦N East Pacific Rise harbor mostly
gamma- and alphaproteobacteria, and Planctomycetes (Santelli
et al., 2008, 2009). The question is whether similar bacteria are
active in the deep basaltic subsurface.

Scientific ocean drilling provides one potential mechanism for
the collection of deep subsurface samples for microbiological anal-
ysis. Such drilling is often conducted within the framework of the
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Integrated Ocean Drilling Program (IODP) and its precursor, the
Ocean Drilling Program (ODP). Subsurface drilling can work well
in sedimentary layers, since contamination monitoring protocols
allow for stringent control of seawater and drilling fluid contam-
ination (Lever et al., 2006). By contrast, collection of pristine
hard rock crustal samples through drilling is often problem-
atic (Santelli et al., 2010), and rock sample surfaces are generally
prone to seawater and drilling fluid contamination (Lever et al.,
2006). Installation of long-term observatories within the result-
ing borehole offers an alternative for exploring subsurface crustal
environments. Such borehole observatories, known as Circulation
Obviation Retrofit Kits or “CORKs” (Davis et al., 1992; Becker
and Davis, 2005), have been used successfully in the past to
study hydrogeologic properties of crustal aquifers (Fisher et al.,
2008) and to examine the biogeochemical composition of fluids
circulating within oceanic crust (Wheat et al., 2010).

More recently, the composition of microbial communities
inhabiting deep basaltic crust has been investigated through the
collection of observatory fluids (Cowen et al., 2003), mineral crusts
formed on the surface on observatories (Nakagawa et al., 2006),
and mineral chip colonization experiments conducted within
the observatories (Orcutt et al., 2011). Those experiments have
focused on a series of CORK observatories, mostly at ODP Hole
1026B and IODP Hole U1301A (Fisher et al., 2005), installed on
the eastern flank of the Juan de Fuca Ridge in the northeastern
Pacific Ocean. Here, reduced, anoxic, sulfate-rich hydrothermal
(∼64◦C) fluids flow within 3.5 million-year-old basaltic crust.
Analysis of borehole fluids and mineral crusts from these sites
revealed diverse microbial communities containing novel Firmi-
cutes bacteria, some of which are distantly related to Ammonifex
degensii, a chemolithoautotrophic, thermophilic bacterium that
oxidizes hydrogen, formate or pyruvate with nitrate, sulfate or ele-
mental sulfur (Cowen et al., 2003; Nakagawa et al., 2006; Orcutt
et al., 2011). Furthermore, enrichment experiments conducted on
mineral crusts from the Hole 1026B observatory yielded anaero-
bic thermophiles, including methanogens, fermenters, and sulfate
reducers (Nakagawa et al., 2006; Steinsbu et al., 2010). Archaeal
communities in these observatories appear to be less diverse
and align more closely with cultivated members of thermophilic,
hydrogenotrophic methanogens of the genus Methanothermococ-
cus (Nakagawa et al., 2006). Similar microbial communities of
deep basalt origin might permeate adjacent layers of the overlying
sediment column, as indicated by elevated counts of bacteria and
archaea in sediments just above the basalt/sediment interface at
Juan de Fuca (Engelen et al., 2008). The microbial community
composition of the Juan de Fuca Ridge flank crustal subsur-
face differs significantly from the composition of communities
harbored in seafloor-exposed basalts (Santelli et al., 2008, 2009),
near-surface hydrothermal fluids circulating within basaltic out-
crops (Huber et al., 2006), and hydrothermal fluids collected from
sulfide- and/or iron-rich hydrothermal vents (Suzuki et al., 2004;
Perner et al., 2007; Takai et al., 2008; Rassa et al., 2009). This dis-
parity suggests that, although the crustal subsurface shares similar
mineralogical and geochemical characteristics with the other habi-
tats, it nonetheless harbors a unique subsurface crustal biosphere
(Orcutt et al., 2011). Investigations of other subsurface crustal
habitats are necessary to evaluate this hypothesis.

Here, we report the results of culture-independent 16S rRNA
and RuBisCO gene molecular surveys conducted on opportunis-
tic borehole fluid and mineral crust samples collected from an
observatory in ODP Hole 896A. Hole 896A is located on the
southern flank of the Costa Rica Rift in the equatorial Pacific
Ocean at a water depth of 3,440 m (Shipboard Scientific Party,
1993). The borehole was drilled in 1993 to a maximum depth of
469 meters below seafloor (mbsf), with the lowermost 290 m pen-
etrating roughly 6.8 million-year-old altered basaltic basement.
Many features of the Hole 896A crustal aquifer are similar to those
observed at the Juan de Fuca Ridge flank sites mentioned earlier.
For instance, both sites are characterized by pillow and sheet-flow
plagioclase-olivine phyric basalts; and vein filling with saponite
and celadonite alteration minerals indicates complex hydrother-
mal evolutions of the systems (Alt et al., 1996; Hunter et al., 1999).
Furthermore, formation fluids at Hole 896A are roughly 58◦C
(Becker et al., 2004), which is similar to those observed in the
Juan de Fuca boreholes. Chemically, the basement fluids at both
sites are characterized by reduced, high sulfate, low alkalinity flu-
ids with relatively high calcium and low magnesium contents,
indicating hydrothermal fluid-rock interactions (Table 1). Finally,
both sites are located on buried basement highs (Alt et al., 1996;
Fisher et al., 2005) with inferred fluid flow on the order of hun-
dreds of liters per hour (Becker et al., 2004). As at the Juan de
Fuca Ridge flank sites, microbial alteration textures, elemental
analyses, cell counts, extractable DNA, and carbon and oxygen
isotope data from basalts of Hole 896A indicate microbial activ-
ity (Giovannoni et al., 1996; Fisk et al., 1998; Torsvik et al., 1998;
Furnes et al., 2001).

In this study, samples were collected from an observatory placed
at Hole 896A in 2001 and revisited in 2002 (Becker et al., 2004)
to conduct comparative phylogenetic analysis for evaluating the
in situ microbial communities.

MATERIALS AND METHODS
STUDY SITE
ODP Hole 896A on the Costa Rica Rift (1◦13′ N, 83◦43′ W;
Figure 1) is 3,463 m below sea level and drilled to a depth of
469 mbsf (Figure 1). The lower 290 m of the hole consists of
altered basaltic oceanic crust. During drilling in 1993, the upper
196 m section of Hole 896A was cased, thus sealing out sediment
pore water and allowing the influx and accumulation of hydrother-
mal subsurface fluids from the basaltic crust. In 2001, roughly 8
years after the borehole was originally drilled, a wireline packer
seal apparatus similar to a CORK observatory was deployed with
the intent to plug the hole, record the pressure and temperature
in the sealed zones, sample borehole formation fluids, and moni-
tor the return to in situ hydrogeological conditions (Becker et al.,
2004). The wireline CORK apparatus was constructed primarily
from mild steel, and it included one packer in the cased section
and a second packer intended to be set about 50 m into the open-
hole section, as well as steel tubing umbilicals to bring formation
fluids to sampling ports at the wellhead. However, on deployment,
the lower packer became stuck in the hole about 20 m above the
intended setting depth. In the attempts to deal with this, it is likely
that the tubing umbilicals were damaged and the packers could
not be inflated to seal the hole.
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Table 1 | Comparative chemistry of fluids from Costa Rica Ridge flank Holes 896A and 504B with Juan de Fuca Ridge flank fluids, with seawater

for comparison.

Component Units Hole 896Aa Hole 504Bb Hole U1301Ac Baby Bared Seawatere

Temperature ◦C ∼60 58 64 64 2

Cl− mmol/kg 547 546 553 554 541

SO4
2− mmol/kg 18.5 17 17.6 17.8 27.9

Alkalinity meq/kg 0.6 0.1 0.4 0.43 2.44

Na+ mmol/kg 460 456 463 473 463.5

K+ mmol/kg 6.8 7 6.9 6.88 10.1

Ca2+ mmol/kg 50.5 58 55.8 55.2 10.2

Mg2+ mmol/kg 8.5 8 1.9 0.98 52.6

aData extrapolated from basal sediment pore water samples collected from ODP Holes 501, 504, 677, and 678 (Holes 678 became Hole 896A; Mottl, 1989).
bData from Hole 504B borehole fluids collected in situ 1,233 days after drilling (Mottl and Gieskes, 1990; Wheat and Mottl, 2000).
cNear steady-state formation fluid from Hole U1301A CORK OsmoSamplers deployed in basement borehole for ∼4 years (Wheat et al., 2010).
dFluids sampled from the Baby Bare basalt outcrop of the Juan de Fuca Ridge flank (Wheat and Mottl, 2000).
eBottom seawater from the Costa Rica Ridge flank (Mottl, 1989).

FIGURE 1 | Map of the Ocean Drilling Program Hole 896A study site in

the Pacific Ocean in relation to the Costa Rica Rift. Color gradient scale
provided for water depth in meters. Maps were created using the
GeoMapApp software (www.geomapapp.org; Ryan et al., 2009).

Immediately prior to the attempt to deploy the wireline packer,
a video and temperature log had been conducted to verify that the
hole was open down to the intended setting depth of the lower
packer about 50 m into open hole. The temperature log indicated
that upper basement formation fluids were being produced up the
hole, with an average temperature of 57.8◦C and total fluid flow
rate through the casing of 12 m/h, equivalent to a volume flux
of 800 l/h (Becker et al., 2004). In situ video monitoring revealed
the presence of thick whitish crusts resembling sulfur-oxidizing
bacterial mats on both the cased and open-hole sections of Hole
896A, and flocculent material seems to be entering the borehole
around 220 mbsf (Becker et al., 2004).

SAMPLE COLLECTION
Roughly 15 months after the installation of the observatory, fluid
and microbial mat samples were collected on November 18, 2002
during submersible operations with DSV Alvin (Dive 3840; Woods
Hole Oceanographic Institution). Because the wireline CORK
packers had not been inflated, it is likely that the uphole flow of
upper basement fluids revealed by the 2001 temperature log was
continuing up around the wellhead. The microbial mat sample,
referred to as mat, consisted of a flocculent grey crust growing
on the seawater exposed exterior of Port L that was swabbed
with a fresh green plastic sponge, which was exposed to sea-
water and therefore not sterile (Figure 2A). The sponge was
stored on the submersible in a closed plastic biobox filled with
site bottom water before return to the ship. The fluid sample,
referred to as bore, consisted of fluids collected at a wellhead
sampling port about 10 min after the valve (Port L; Figure 2A)
was opened, into an ethanol-sterilized titanium bottle using a
flexible sampling hose (Figure 2B). The sampling port was con-
nected to the tubing leading from just below the lower packer.
However, because of the possibility of damage to the umbili-
cal and lack of packer seal, it is likely that a mix of bottom
water and true formation fluids was being sampled. No warm
water venting and efflux of borehole water was observed at
Port L. After return to the ship, approximately 0.75 l of bore-
hole fluid was filtered, using a handpump, through a 90-mm
diameter 0.22 μm mesh nylon filter to collect particulate mat-
ter and microorganisms. Both samples were returned to the ship
(RV Atlantis, Woods Hole Oceanographic Institution) within a
few hours and immediately frozen at −80◦C for preservation of
DNA. Samples were then transported frozen to a shore-based
laboratory.

DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING
Environmental DNA was extracted from samples following a pro-
tocol modified from two published procedures for extracting DNA
from deep subsurface sediments (Juniper et al., 2001; Kormas
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FIGURE 2 | Microbial mat and fluid sampling at ODP Hole 896A made

from still images captured during Alvin operations. (A) The L port with
attached biofilm, removed with the first scrubber and sequenced as “mat”
sample; (B) water sampling (the material used here) by tube coupling to the
L port.

et al., 2003). Using sterilized tools, the filter and sponge were
cut into pieces and then transferred into replicate vials of 6 ml
DNA extraction buffer (200 mM NaCl, 200 mM Tris, 2 mM
sodium citrate, 10 mM CaCl2, 50 mM EDTA, pH 8). The fil-
ter pieces were vortexed, and subjected to two freeze-thaw cycles
(alternating −80◦C and +65◦C). Fifty microliters of Proteinase
K (20 mg/ml) and 100 μl of 20% [w/v] sodium dodecyl sulfate
(SDS) were added, and the samples were incubated for 30 min at
37◦C. About 1.5 ml of 20% SDS was added and the samples were
incubated at 55◦C for 2 h in a shaking chamber. Then, the samples
were centrifuged at 6,000×g for 10 min, the supernatant was har-
vested, an equal amount of 24:25:1 phenol/chloroform/isoamyl
alcohol was added, and they were centrifuged again at 6,000×g
for 10 min. The upper phase was harvested and 2.5× volume
of ice-cold ethanol and 0.1× volume of ice-cold 5 M NaCl were
added. The samples were placed in the −80◦C freezer overnight to
allow for DNA precipitation. The DNA was harvested by centrifug-
ing at 10,000×g for 30 min, removing the supernatant, washing
with 500 μl of 70% EtOH, and centrifuging again at 10,000×g
for an additional 30 min. The remaining pellet was allowed to
air dry before re-dissolving in 50 μl sterile water. To obtain
more sequences, additional filter and mat samples were extracted
with the Powersoil DNA Isolation Kit (Mobio) according to the
manufacturer’s instructions and final volume of 50 μl elution
solution.

Near full-length 16S rRNA genes were amplified by poly-
merase chain reaction (PCR) using bacterial primers BAC-8F
(5′-AGRGTTTGATCCTGGCTCAG-3′) and BAC-1492R (5′-
CGGCTACCTTGTTACGACTT-3′; Lane, 1991). The PCR mixture
for the phenol/chloroform/isoamyl alcohol extracted samples con-
sisted of 1 μl of the environmental DNA, 2 μl of each primer
(0.5 mM), 0.5 μl of enzyme included in the FailsafeTM PCR System
kit (EpiCentre Biotechnologies), 25 μl of FailsafeTM Premix B and
a balance of water for a total reaction volume of 50 μl. The PCR
cycle conditions involved an initial denaturation at 95◦C for 2 min,
followed by 30 cycles of denaturation at 95◦C for 1 min, annealing
at 55◦C for 1 min, and extension at 72◦C for 3 min. These 30
cycles were followed by a final extension at 72◦C for 10 min. Sam-
ples extracted with the Mobio Powersoil DNA Isolation Kit were
amplified with Speedstar HS DNA Polymerase (Takara) using 2 μl
of DNA sample and the manufacturer’s recommendations con-
centrations of buffer, dNTPs, and polymerase in a final volume
of 25 μl. Thermal cycling was performed as previously described
above with the exception that cycling times were 95◦C for 10 s,
52◦C for 15 s, and 72◦C for 20 s over 28 cycles.

To examine the potential for autotrophy using the Calvin
cycle, ccbL and ccbM genes involved in the formation of ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from the mat
sample environmental DNA were PCR amplified as described pre-
viously (Elsaied and Nagamuna, 2001). An initial round of PCR,
cloning and sequencing yielded only one cbbL clone and three
cbbM clones (mat clones A06, E03, H09, and F03). Additional
DNA was amplified from the Powersoil Isolation Kit extractions
with the GoTaq Flexi DNA Polymerase (Promega) using a final
concentration of 3 mM MgCl2, 1 μM of each primer, and the
manufacturer’s recommendation of dNTP, buffer, and polymerase
concentration. Primers for the cbbL gene included cbbL1AF172
(5′-ACNTGGACNACNGTNTGG-3′) and cbbL1AR1382 (5′-TCR
AAYTTGATYTCBTTCCA-3′). Primers for the cbbM gene
included cbbM337F (5′-AACCARGYATGGGYGAY-3′) and
cbbM1126R (5′-TCATRCCVCCVGADAT-3′). In the bore sample,
non-specific priming was extensive in one cbbL PCR sample and
an additional primer, cbbL1AR1142 (5′-GGCATRTGCCANACRT
GRAT-3′), was used with primer cbbLAF172 in a nested PCR
using 0.2 μl of the bore PCR sample and the same mixture
and cycling conditions described above, with the exception that
the number of cycles was reduced to 20. We note that the cbbL
primers did not fully target the total diversity of the “red-like”
IC form of RuBisCO (Badger and Bek, 2008) due to the need
to limit the number of degeneracies; some diversity may have
been missed.

The PCR products were subjected to 1.5% agarose gel elec-
trophoresis, stained with 0.5 μg/ml of ethidium bromide or 1×
GelRed (Biotium), and visualized by UV excitation for bands
indicating successful DNA amplification. PCR products were
either excised from the agarose gel or directly purified using the
Wizard� PCR preparation kit (Promega) or the Qiagen Minelute
Gel Extraction kit, and then cloned using TOPO XL PCR cloning
kit (Invitrogen). From each clone library, clones were selected
randomly for sequencing at the Josephine Bay Paul Center of
the Marine Biological Laboratory in Woods Hole, MA, USA or
Genewiz (Research Triangle Park, NC, USA).
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PHYLOGENETIC ANALYSIS
Raw 16S rRNA gene and RuBisCO sequences were edited using
Chromas or Sequencher (Genecodes) software to remove cloning
vector sequences, and potential chimeric sequences were eval-
uated using Pintail1. Closely related sequences were identified
using the Basic Local Alignment Search Tool (BLAST) program
searches in GenBank2 (Altschul et al., 1997). 16S rRNA gene
sequences were aligned against a curated sequence database (using
the NAST alignment tool available at greengenes.org; DeSan-
tis et al., 2006a) and manually checked for alignment accuracy
against reference sequences from the Greengenes database (DeSan-
tis et al., 2006b) using the ARB software package (Ludwig et al.,
2004). A phylogenetic tree of the nearly full-length 16S rRNA
gene sequences of this study, plus key reference sequences, was
calculated in ARB based on Jukes-Cantor distances via neigh-
bor joining. The cbbL and cbbM gene sequences were translated
to amino-acid sequences and aligned with Clustal W in MEGA
4.0 (Kumar et al., 2008) using a Gonnet protein weight matrix.
The RuBisCO phylogeny was constructed in MEGA using a
neighbor-joining method based on Poisson-corrected distances.
Statistical support of tree topology was estimated by boot-
strapping with 1,000 replicates in MEGA. The 16S rRNA gene
sequences reported here are available in GenBank under the acces-
sion numbers GQ903340–GQ903342, GQ903344, GQ903346–
GQ903350, and GQ903352–GQ903376. The RuBisCO genes
have GenBank accession numbers HQ856238–HQ856241 and
JQ795724–JQ795729.

The similarity of the bore and mat 16S rRNA gene clone
libraries to previously published clone libraries was evaluated by
comparing sequence similarity distance matrices with the pro-
grams DOTUR and SONS (Schloss and Handelsman, 2005, 2006)
using methods described previously (Santelli et al., 2008). In par-
ticular, the nearly full-length Hole 896A 16S rRNA gene sequences
were compared to sequence datasets generated from seafloor-
exposed basalts from the East Pacific Rise and the Loihi Seamount
(Santelli et al., 2008); from subsurface (3 m) hydrothermal basalt
formation fluids from the Baby Bare outcrop on the Juan de
Fuca Ridge flank (Huber et al., 2006); from fluids freely venting
from the ODP Hole 1026B borehole (Huber et al., 2006); from
bottom water samples collected above the Juan de Fuca Ridge
flank (Huber et al., 2006); and from seafloor-exposed inactive
massive sulfides from the East Pacific Rise (Sylvan et al., 2012).
Sequence datasets were compared to identify the number and
type of shared “species” between samples, with “species” oper-
ationally defined as operational taxonomic units (OTUs) with
97% or greater sequence similarity, as defined previously (San-
telli et al., 2008). Sequence distance matrices were generated in
ARB using the neighbor-joining method, the Jukes–Cantor cor-
rection, and application of an in-program filter for bacteria, of
E. coli base pair positions 228–1420. Diversity estimators were
calculated in DOTUR under standard settings at the 97% or
greater sequence similarity definition level, and shared richness
estimates were generated using standard settings in the SONS
program.

1www.bioinformatics-toolkit.org/Web-Pintail/
2www.ncbi.nlm.nih.gov

RESULTS
16S rRNA GENE PHYLOGENY
A total of 66 and 60 nearly full-length 16S rRNA gene clones
were successfully sequenced from the bore and mat sample clone
libraries, respectively. Phylogenetic analysis of the clone libraries
revealed 40 phylotypes from several bacterial phylum-level groups
including Bacteroidetes, aerobic and anaerobic heterotrophs
widespread in soil and water (Kirchman, 2002); Cyanobacte-
ria; Actinobacteria (OM1 group; Rappé et al., 1997), oxygenic
marine phototrophs; the phylum-level lineages Verrucomicrobia
and Planctomycetes, often detected in oxygen-depleted marine
habitats (Kirkpatrick et al., 2006) and with relatively few cul-
tured chemoorganotrophic isolates (Wagner and Horn, 2006); and
diverse Alpha-, Gamma-, and Epsilonproteobacteria (Figures 3
and 4). The seven most abundant phylotypes (highlighted in pur-
ple in Figures 3 and 4) were found in both the borehole fluids and
the microbial mat.

Despite using bacteria-specific 16S rRNA gene primers, one
archaeal clone was also recovered from the mat sample. This clone,
mat1, was related to Thermocladium modestius, an extremely ther-
mophilic crenarchaeote isolated from acidic hot spring areas in
Japan (Itoh et al., 1998). The presence of an archaeal clone in a
bacterial 16S rRNA gene clone library was unexpected, given that
the bacterial and archaeal versions of the forward primers had five
nucleotide mismatches and thus strong PCR bias against archaeal
gene amplification.

A number of sequences grouped near known sulfur cycling
microorganisms. Phylotype mix2 was related to the free-living,
autotrophic, oxygen- and nitrate-respiring, sulfur-oxidizing genus
Thiomicrospira of the Gammaproteobacteria; this phylotype
comprised nearly half of the sequences of both the bore and
mat clone libraries (Figure 3). This phylotype has also been
observed in clone libraries from seafloor-exposed massive sulfides
(Sylvan et al., 2012) and in fluids sampled from the ODP Hole
1026B observatory on the Juan de Fuca Ridge flank (Huber et al.,
2006). One bore phylotype affiliated with the sulfur-oxidizing
chemolithoautotrophic Epsilonproteobacteria Sulfurimonas den-
itrificans and S. autotrophica. Generally, hydrogen- and sulfur-
oxidizing, chemolithoautotrophic Epsilonproteobacteria have a
wide environmental distribution at hydrothermal vents and in
marine surficial sediments (Campbell et al., 2006; Nakagawa and
Takai, 2008) and employ an alternative pathway of autotrophic
CO2 fixation, the reverse tricarboxylic acid (TCA) cycle (Hügler
et al., 2005). The whitish mats deposited on the walls of the
observatory and recorded in video logs of the Hole 896A bore-
hole (Becker et al., 2004) bear a conspicuous resemblance to the
sulfur precipitates and flocs produced by sulfur-oxidizing bac-
teria (Kuenen and Veldkamp, 1972; Taylor and Wirsen, 1997;
Wirsen et al., 2002).

Several other bore and mat sequences also grouped most
closely with uncultivated environmental sequences recovered from
seawater-exposed basalts and inactive sulfides from the East Pacific
Rise and Hawaii (Santelli et al., 2009; Sylvan et al., 2012), from
hydrothermal fluids from a basaltic outcrop (Huber et al., 2006)
and from cold seep and hydrothermally influenced deep marine
sediments. These phylotypes are highlighted with colored cir-
cles in Figures 3 and 4. Nine of the forty observed bacterial
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FIGURE 3 | 16S rRNA gene neighbor-joining phylogenetic tree for Hole

896A observatory bore and mat sample sequences in comparison to

close relatives from the GenBank database, excluding the Alphaproteo-

bacteria phylum. Clones from borehole fluids collected at the observatory
spigot are labeled as bore in blue, and clones from the microbial mat on
the exterior of the borehole are labeled as mat in red. Identical clones from
both samples are labeled in purple. Short sequences are indicated with
asterisks. Sequences that are shared with other clone libraries are
indicated with colored dots: East Pacific Rise inactive massive sulfides
(black); East Pacific Rise and Loihi Seamount basalts (green); Juan de Fuca
Ridge flank crustal fluids (white); Juan de Fuca CORK Hole 1301A (yellow).

phylotypes, marked with black circles, grouped closely with phylo-
types from inactive massive sulfide samples collected from the East
Pacific Rise (Sylvan et al., 2012), whereas eight phylotypes, marked
with green circles, were shared with clone libraries from seafloor-
exposed basalts (Santelli et al., 2009). Three phylotypes, marked
with white and yellow circles, were similar to clones from samples
from other deep basalt observatories. Of these, one alphapro-
teobacterial sequence (Figure 4) grouped closely with a sequence
from a biofilm formed on pyrite incubated in the subsurface for
4 years (Orcutt et al., 2011); the Thiomicrospira-related clone mix
2 and Prochlorophyte clone mat 3 are close to clones from vent-
ing basalts at Baby Bare on the Juan de Fuca ridge (Huber et al.,
2006). No 16S rRNA clone library phylotypes were shared between
the Hole 896A samples and background bottom water collected
above basaltic lavas the Pacific Ocean (Santelli et al., 2008). While

FIGURE 4 | 16S rRNA gene neighbor-joining phylogenetic tree for Hole

896A observatory bore and mat sample Alphaproteobacteria

sequences in comparison to close relatives from the GenBank

database. Same details as for Figure 3.

the identification of shared phylotypes is robust, shared diver-
sity estimates between the sample sets were tested, but they were
skewed due to the difference in clone library sizes between the Hole
896A samples and the comparison studies, and the possibility of
seawater entrainment in the Hole 896A samples.

Several sequences grouped most closely to environmental
sequences commonly found in seawater (Figures 3 and 4). For
example, the bore18 phylotype grouped near Pelagibacter ubique
within the SAR 11 cluster, a cosmopolitan clade of marine olig-
otrophic bacteria (Rappé et al., 2002). Several alphaproteobacterial
phylotypes from each sample grouped within the Rhodobacter-
aceae or marine Roseobacter group, a cosmopolitan group of
marine bacteria that often metabolize and oxidize organosulfur
compounds (Buchan et al., 2005; Brinkhoff et al., 2008). Two phy-
lotypes were most closely related (99% identity) to sequences from
the marine cyanobacterial genus Prochlorococcus, which is found
at varying depths in the water column in oceans worldwide (West
et al., 2001). The presence of these phylotypes is unexpected in
samples of oceanic basement formation fluids, and indicates sea-
water entrainment and contamination during sampling of the
bore and mat samples at the observatory platform, or seawater
entrainment into the mixed borehole fluids itself. Moreover, the
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occasional close phylogenetic association of some phylotypes with
known aerobic chemoorganotrophic isolates, such as Flaviramu-
lus basaltis and Marivirga tractuosus (Figure 3), suggests chronic
oxic seawater mingling with basement fluids at the Hole 896A
observatory.

RuBisCO PHYLOGENY
Amplification of the cbbM and cbbL genes of RuBisCO yielded
sequences of sufficient length and quality for phylogenetic analysis
from the mat sample and from the borehole fluid sample. BLAST
search based on amino-acid sequence, and subsequent phyloge-
netic analysis (Figure 5) revealed that most cbbL sequences (mix
clone ODP3_4_1) recovered from the mat (45 clones) as well as
the borehole sample (16 clones) were most closely related to the
obligately chemolithoautotrophic, sulfur-oxidizing gammapro-
teobacterial genera Thioalkalivibrio, isolated from Siberian and
East African soda lakes (Sorokin et al., 2001; Thioalkalivibrio thio-
cyanoxidans, GenBank accession ZP_08930733, 93% identity), to
sequences from hypersaline soda lake sediment in Kulunda Steppe
(Russia; Kovaleva et al., 2011; GenBank ADN96557, 97% iden-
tity), and to the facultatively phototrophic sulfur oxidizer Thio-
capsa (Guyoneaud et al., 1998), capable of chemolithoautotrophic
growth with reduced sulfur compounds under microoxic con-
ditions (Caumette, 1986). Other clones (mix clone ODP 6_1_9;
five bore and one mat clone) were most closely related to
Thiomicrospira (Thiomicrospira crunogena, GenBank YP_391108,
94% identity) isolated from marine sediments and hydrothermal

vents (Jannasch et al., 1985; Scott et al., 2006) and the obligately
autotrophic hydrogen oxidizer Hydrogenovibrio marinus, phylo-
genetically a lineage within the genus Thiomicrospira (GenBank
BAD15312, 93% identity; Nishihara et al., 1998). Two other
borehole sequences were most closely related to those from a
pogonophoran bacterial endosymbiont from a cold methane seep
in the Japan Trench (Nagamuna et al., 2007).

Only five cbbM sequences from the mat and bore sample were
obtained in total despite attempts to amplify the gene with pub-
lished (Elsaied and Nagamuna, 2001) and newly designed primers
(this study). The cbbM sequences recovered from the Hole 896A
samples were related to cbbM sequences of uncultivated bacte-
ria from the hydrothermally active Suiyo Seamount, a submarine
black smoker volcano in the Izu-Bonin trench off Japan (Clone
Suiyo II-5, nucleotide accession number AB174751, protein ID
BAD13304; Elsaied et al., 2007) and to cbbM sequences obtained
from reducing sediments near the deepest known chemosyn-
thetic microbial community, in deep-sea sediments of the Japan
Trench at 7,434 m depth (Clone JT-Sed(II)-5, nucleotide accession
number AB040517, protein ID BAD94441; Elsaied and Nagamuna,
2001; Figure 5).

DISCUSSION
The phylogenetic data presented here from Hole 896A on the Costa
Rica Rift flank represents the second dataset from a basaltic crust
borehole observatory, providing the first comparison to the avail-
able data from the Holes 1026B and U1301A CORK observatories

FIGURE 5 | Neighbor-joining tree based on amino-acid sequences

translated from RuBisCO cbbL and cbbM large subunit gene sequences.

Bootstrap values (1,000 replicates) above 50% are displayed beside the
nodes. Clone sequences are indicated in bold.
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on the Juan de Fuca Ridge flank (Cowen et al., 2003; Nakagawa
et al., 2006; Orcutt et al., 2011). Such comparisons face impor-
tant limitations; the two samples from the Hole 896A observatory
were not pristine, and the sample type (formation fluids from the
damaged observatory, and a scraping of a mat on the observa-
tory exterior – both with likely seawater admixture) differs from
previous samples, for example the enrichments on mineral sur-
faces in Hole U1301A (Orcutt et al., 2011), the CORK mineral
crusts at Hole U1301A (Nakagawa et al., 2006), the vent fluids at
Hole 1026B (Huber et al., 2006), or the biocolumn enrichments at
1026B (Cowen et al., 2003). However, we believe that the samples
still allow broad comparisons toward a more complete picture of
the biosphere hosted in subsurface oceanic crust. Our analysis also
highlights operational issues that need to be addressed for future
efforts to investigate the subsurface deep biosphere.

COMPARISON OF HOLE 896A MICROBIAL COMMUNITIES TO
THOSE FROM OTHER HABITATS
Based on 16S rRNA gene clone libraries, the microbial com-
munities observed in the Hole 896A samples (Figures 3 and 4)
bore little resemblance to the communities described in forma-
tion fluids and mineral crusts from Holes 1026B and U1301A,
despite the previously reported similarities in mineralogy, base-
ment fluid chemistry, and temperature (Table 1). Holes 1026B
and U1301A on the Juan de Fuca ridge flank reveal sub-
surface microbial communities characterized by an abundance
of Firmicutes bacteria (Cowen et al., 2003; Nakagawa et al.,
2006; Orcutt et al., 2011). The predominant bacterial phylo-
types in the Hole 1026B clone libraries were distantly related
to thermophilic, nitrate-, and sulfate-reducing bacteria, such
as the hydrogen-oxidizing nitrate-reducing ammonia producer
Ammonifex degensii, and the gram-positive, spore-forming sul-
fate reducing genus Desulfotomaculum. In contrast, the Hole
896A observatory samples were dominated by sequences grouping
with Gammaproteobacteria related to the chemolithoautotrophic,
sulfur-oxidizing genus Thiomicrospira that is predominantly iso-
lated from sulfidic marine sediments and hydrothermal vents,
and hydrothermal plumes; these bacteria were not detected in
other borehole surveys (Cowen et al., 2003; Nakagawa et al., 2006;
Orcutt et al., 2011).

One explanation for these differences in the dominant members
of the microbial communities, with suspected metabolic differ-
ences as well, may be different redox regimes within the boreholes,
despite the similarity in major ion concentrations of the formation
fluids (Table 1). Namely, the extensive accumulation of white floc-
culent crusts in Hole 896A (Becker et al., 2004) suggests microoxic
or nitrate-reducing conditions, while an anaerobic environment is
known to prevail in Holes 1026B and U1301A (Wheat et al., 2010).
The formation of extensive white flocs is also known from biore-
actor experiments, where microaerobic sulfur-oxidizing bacteria
produce extracellular sulfur in large amounts (Taylor and Wirsen,
1997); sulfur precipitation is also a characteristic by-product of
aerobic, sulfur-oxidizing Thiomicrospira spp. growing in labora-
tory culture (for an instructive example, see Figure 2 in Kuenen and
Veldkamp, 1972). The in situ observation of the flocculent mat-
like material within the Hole 896A borehole (Becker et al., 2004)
indicates in situ production of biomass and flocculent mats by

sulfur-oxidizing bacteria within the borehole. Seawater influence
at the Hole 896A CORK observatory is consistent with this inter-
pretation. If seawater were entrained or mixed with the borehole
fluids, which are presumably rich in reduced substrates such as sul-
fur and iron, this might create an ideal niche for the enrichment for
the sulfide-oxidizing and biofilm-forming phylotypes observed.
The sulfur-oxidizing bacteria that dominate the borehole could
ultimately be derived from bottom water mixed with highly dilute
hydrothermal plumes and microbial populations (Huber et al.,
2006, 2007). The observation of seawater-related phylotypes such
as SAR11, Roseobacter, Prochlorophytes, and OM1 Actinobacteria
in the bore hole sample clone libraries also supports the argument
for seawater entrainment. In consequence, the in situ enrichment
of bacteria growing under likely conditions of seawater entrain-
ment in the borehole and within the CORK distorts the assessment
of potential indigenous microbial diversity in basaltic basement
fluids (Cowen, 2004).

AUTOTROPHIC POTENTIAL
Based on theoretical models of the energy available from sulfur
and iron oxidation in basaltic crust, significant levels of primary
production should occur in the subsurface (Bach and Edwards,
2003), a prediction testable by RuBisCO genes analysis. RuBisCO
catalyzes the assimilation of carbon dioxide to organic carbon via
the Calvin–Benson–Bassham cycle. Of its currently four known
forms, form I is oxygen tolerant and found predominantly in
cyanobacteria, chloroplasts, and aerobic chemolithoautotrophic
bacteria, while form II is adapted to high CO2 conditions and
found predominantly in microaerobic or anaerobic bacteria (Del-
wiche and Palmer, 1996; Badger and Bek, 2008). We observed
both forms of RuBisCO in the Hole 896A mat and borehole sam-
ples (Figure 5). RuBisCO sequences were phylogenetically related
to Thiomicrospira, the closest cultured relative of the most fre-
quently recovered 16S rRNA sequences at the 896A CORK. The
form I RuBisCO sequences obtained from the bore hole and from
the mat sample were most closely related to the sulfur-oxidizing
chemolithoautotrophic genera Thioalkalivibrio, Thiocapsa, and
Thiomicrospira, within the form IA “green-type” clade that is asso-
ciated with proteobacteria and cyanobacteria (Badger and Bek,
2008). This pattern is consistent with the 16S rRNA sequencing
results, and with the interpretation that the borehole fluid and the
mat sample contain autotrophic, sulfur-oxidizing bacteria related
to these gammaproteobacterial genera. The presence of additional
autotrophic bacteria (or of bacteria that contain form II in addi-
tion to one of the form I sequences found here) is indicated by
the form II sequences in the mat; these sequences were related
to RuBisCO of uncultured marine bacteria, not from the open
water column but from methane seep sediments and hydrothermal
plumes (Figure 5).

As a note of caution, RuBisCO has a high rate of horizontal gene
transfer events (Delwiche and Palmer, 1996). The gammapro-
teobacterial form I types are also found in cyanobacteria, for
example, the common marine cyanobacterium Prochlorococcus
which most likely acquired its RuBisCO genes by horizontal gene
transfer (Hess et al., 2001). Thus, the RuBisCO sequences do
not rule out seawater contamination, as indicated by the two
Prochlorococcus 16S rRNA gene sequences found in the borehole
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fluid (Figure 3). A certain degree of seawater contamination is
obvious, but it does not invalidate the abundance of phylotypes
most closely related to sulfur-oxidizing bacteria (Thiomicrospira,
Sulfurimonas) and to basalt-associated bacterial phylotypes. With
this caveat, the 16S rRNA gene and RuBisCO sequence data are
consistent with autotrophic, most likely sulfur-oxidizing bacterial
populations growing within the borehole and on the sampling
ports of the CORK; this interpretation is fully consistent with
in situ borehole observations of microbial mat growth within the
borehole (Becker et al., 2004).

RECOMMENDATIONS FOR FUTURE OBSERVATORY STUDIES
The Hole 896A observatory was installed for primarily geophys-
ical experiments (Becker et al., 2004) and was not designed for
high-quality sampling for microbiological analysis of the sub-
surface crustal biosphere. Nevertheless, samples were collected
opportunistically and analyzed despite potential contamination
pitfalls, as they represented a unique chance to evaluate the crustal
biosphere. Our analysis indicates that fluids from the crustal sub-
surface mixed with seawater can support microbial communities
that appear to form biofilms, and that some of these biofilm-
forming species are related to known sulfide oxidizing microbial
groups like Thiomicrospira. Given the stark differences in the
microbial communities observed between subsurface observato-
ries placed in similar crustal settings (i.e., between the Hole 896A
observatory and the Juan de Fuca Ridge flank Holes 1026B and
U1301A), enhanced sample characterization may shed light on
the underlying environmental conditions that could explain these

differences. For example, analysis of borehole fluid oxygen, nitrate
and redox conditions may help resolve whether the presence of
these electron acceptors may have influenced the Hole 896A com-
munity. A time series analysis of the Hole 896A observatory would
provide background information on whether the observed com-
munity was representative of “steady state” formation fluids or if
it instead represented a transitory evolution of the community
post-observatory installation, as has been observed elsewhere for
microbial communities in other boreholes (Orcutt et al., 2011).
Most importantly, improvements in the Hole 896A observatory
infrastructure to allow cleaner microbiological sampling would
reduce the confounding influence of seawater contamination.

ACKNOWLEDGMENTS
We thank Steve D’Hondt and Eddie Roggenstein for obtaining
samples from the ODP Hole 896A observatory during DSV Alvin
dives in November 2002, and C. Geoff Wheat for helpful discussion
regarding borehole fluid chemistry. Installation of the wireline
CORK and the 2002 Alvin dives were supported by the National
Science Foundation under grant OCE-9819316 to Keir Becker.
Funding for this project was provided by the American Society for
Microbiology Undergraduate Research Fellowship to Kate Harris,
and by the NASA Astrobiology Institutes “Subsurface Biospheres”
at the University of Rhode Island, and “Environmental Genomes”
at the Marine Biological Laboratory. Andreas Teske was further
supported through the Center for Dark Energy Biosphere Investi-
gations. We thank the reviewers for their constructive comments
that improved this manuscript significantly.

REFERENCES
Alt, J. C., Teagle, D. A. H., Laverne, C.,

Vanko, D., Bach, W., Honnorez, J.,
Becker, K., Ayadi, M., and Pezard,
P. A. (1996). “Ridge flank alteration
of upper ocean crust in the eastern
Pacific: a synthesis of results for vol-
canic rocks of holes 504B and 896A,”
in Proceedings of the ODP, Scientific
Results, Vol. 148, eds J. C. Alt, H.
Kinoshita, L. B. Stokking, and P. J.
Michael (College Station, TX: Ocean
Drilling Program), 434–452.

Altschul, S. F., Madden, T. L., Schaffer,
A. A., Zhang, J., Zhang, Z., Miller,
W., and Lipman, D. J. (1997). Gapped
BLAST and PSI-blast: a new gen-
eration of protein data-base search
programs. Nucleic Acids Res. 25,
3389–3402.

Bach, W., and Edwards, K. J. (2003).
Iron and sulfide oxidation within
the basaltic ocean crust: implications
for chemolithoautotrophic microbial
mass production. Geochim. Cos-
mochim. Acta 67, 3871–3887.

Badger, M. R., and Bek, E. J. (2008).
Multiple Rubisco forms in proteobac-
teria: their functional significance
in relation to CO2 acquisition by
the CBB cycle. J. Exp. Bot. 59,
1525–1541.

Becker, K., and Davis, E. E. (2005).
“A review of CORK designs and

operations during the ocean drilling
program,” in Proceedings of the
IODP 301, eds A. T. Fisher, T.
Urabe, A. Klaus, and the Expedition
301 Scientists (College Station, TX:
Integrated Ocean Drilling Program
Management International, Inc.),
1–28.

Becker, K., Davis, E. E., Spiess, F. N.,
and de Moustier, C. (2004). Temper-
ature and video logs from the upper
oceanic crust, Holes 504B and 896A,
Costa Rica Rift flank: implications for
the permeability of the upper oceanic
crust. Earth Planet. Sci. Lett. 222,
881–896.

Brinkhoff, T., Giebel, H.-A., and Simon,
M. (2008). Diversity, ecology and
genomics of the Roseobacter clade: a
short overview. Arch. Microbiol. 189,
531–539.

Buchan, A., González, J. M., and Moran,
A. M. (2005). Overview of the marine
Roseobacter lineage. Appl. Environ.
Microbiol. 71, 5665–5677.

Campbell, B. J., Engel, A. S., Porter, M.
L., and Takai, K. (2006). The versatile
ε-proteobacteria: key players in sul-
phidic habitats. Nat. Rev. Microbiol.
4, 458–468.

Caumette, P. (1986). Phototrophic sul-
phur bacteria and sulphate-reducing
bacteria causing red waters in a shal-
low brackish coastal lagoon (Prévost

Lagoon, France). FEMS Microbiol.
Ecol. 38, 113–124.

Cowen, J. P. (2004). The microbial bio-
sphere of sediment-buried oceanic
basement. Res. Microbiol. 155,
497–506.

Cowen, J. P., Giovannoni, S. J., Kenig,
F., Johnson, H. P., Butterfield, D.,
Rappe, M. S., Hutnak, M., and Lam, P.
(2003). Fluids from aging ocean crust
that support microbial life. Science
299, 120–123.

Davis, E. E., Becker, K., Pettigrew,
T., Carson, B., and MacDonald, R.
(1992). CORK: a hydrologic seal
and downhole observatory for deep-
ocean boreholes. Proc. Ocean Drill.
Prog. Init. Rep. 139, 43–53.

Delwiche, C., and Palmer, J. (1996).
Rampant horizontal gene transfer
and duplication of RuBisCO genes
in eubacteria and plastids. Mol. Biol.
Evol. 13, 873–882.

DeSantis, T. Z., Hugenholtz, P., Keller,
K., Brodie, E. L., Larsen, N., Piceno,
Y. M., Phan, R., and Andersen,
G. L. (2006a). NAST: a multiple
sequence alignment server for com-
parative analysis of 16S rRNA genes.
Nucleic Acids Res. 34, W394–W399.

DeSantis, T. Z., Hugenholtz, P., Larsen,
N., Rojas, M., Brodie, E. L., Keller,
K., Huber, T., Dalevi, D., Hu, P., and
Andersen, G. L. (2006b). Greengenes,

a chimera-checked 16S rRNA gene
database and workbench compatible
with ARB. Appl. Environ. Microbiol.
75, 5069–5072.

D’Hondt, S., Jørgensen, B. B., Miller, D.
J., Batzka, A., Blake, R., Cragg, B. A.,
Cypionka, H., Dickens, G. R., Ferdel-
man, T., Hinrichs, K.-U., Holm, N.
G., Mitterer, R., Spivack, A., Wang,
G., Bekins, B., Engelen, B., Ford, K.,
Gettemy, G., Rutherford, S., Sass, H.,
Skilbeck, C. G., Aiello, I. W., Guèrin,
G., House, C. H., Inagaki, F., Meis-
ter, P., Naher, T., Niitsuma, S., Parkes,
R. J., Schippers, A., Smith, D. C.,
Teske, A., Wiegel, J., Padilla, C. N.,
and Acosta, J. L. S. (2004). Distribu-
tions of microbial activities in deep
subseafloor sediments. Science 306,
2216–2221.

D’Hondt, S., Spivack, A. J., Pockalny,
R., Ferdelman, T. G., Fischer, J. P.,
Kallmeyer, J., Abrams, L. J., Smith, D.
C., Graham, D., Hasiuk, F., Schrum,
H., and Stancin, A. M. (2009). Sub-
seafloor sedimentary life in the South
Pacific Gyre. Proc. Nat. Acad. Sci.
U.S.A. 106, 11651–11656.

Edwards, K. J., Rogers, D. R., and
Wirsen, C. O. (2003). Isolation and
characterization of novel psychro-
philic, neutrophilic, Fe-oxidizing
chemolithoautotrophic alpha- and
gamma-proteobacteria from the

www.frontiersin.org June 2012 | Volume 3 | Article 232 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Extreme_Microbiology/archive


“fmicb-03-00232” — 2012/6/29 — 10:23 — page 10 — #10

Nigro et al. ODP Hole 896A microbial community

deep-sea. Appl. Environ. Microbiol.
69, 2906–2913.

Elsaied, H., and Nagamuna, T.
(2001). Phylogenetic diversity of
ribulose-1,5-bisphosphate carboxy-
lase/oxygenase large-subunit genes
from deep-sea microorganisms. Appl.
Environ. Microbiol. 67, 1751–1765.

Elsaied, H. E., Kimura, H., and
Nagamuna, T. (2007). Composition
of archaeal, bacterial, and eukaryal
RuBisCO genes in three Western
Pacific arc hydrothermal vent sys-
tems. Extremophiles 11, 191–202.

Engelen, B., Ziegelmüller, K., Wolf, L.,
Köpke, B., Gittel, A., Cypionka, H.,
Treude, T., Nakagawa, S., Inagaki,
F., Lever, M. A., and Steinsbu, B. O.
(2008). Fluids from the ocean crust
support microbial activities within
deep biosphere. Geomicrobiol. J. 25,
56–66.

Fisher, A. T., Davis, E. E., and Becker, K.
(2008). Borehole-to-borehole hydro-
logic response across 2.4 km in the
upper oceanic crust: implications for
crustal-scale properties. J. Geophys.
Res. 113, B07106.

Fisher, A. T., Wheat, C. G., Becker, K.,
Davis, E. E., Jannasch, H., Schroeder,
D., Dixon, R., Pettigrew, T. L., Mel-
drum, R., McDonald, R., Nielsen,
R., Fisk, M., Cowen, J., Bach, W.,
and Edwards, K. (2005). “Scientific
and technical design and deployment
of long-term, subseafloor observa-
tories for hydrogeologic and related
experiments, IODP Expedition 301,
eastern flank of Juan de Fuca Ridge,”
in Proceedings of the IODP 301, eds
A. T. Fisher, T. Urabe, A. Klaus, and
the Expedition 301 Scientists (Col-
lege Station, TX: Integrated Ocean
Drilling Program Management Inter-
national, Inc.), 1–39.

Fisk, M. R., Giovannoni, S. J., and
Thorseth, I. H. (1998). Alteration of
oceanic volcanic class: textural evi-
dence of microbial activity. Science
281, 978–980.

Furnes, H., Muehlenbachs, K., Torsvik,
T., Thorseth, I. H., and Tumyr, O.
(2001). Microbial fractionation of
carbon isotopes in altered basaltic
glass from the Atlantic Ocean, Lau
Basin, and Costa Rica Rift. Chem.
Geol. 173, 313–330.

Giovannoni, S. J., Fisk, M. R., Mullins,
T. D., and Furnes, H. (1996). “Micro-
bial activity in the alteration of glass
from pillow lavas from ODP Hole
896A,” in Proceedings of the ODP Sci-
ence Results, Vol. 148, eds J. C. Alt,
H. Kinoshita, L. B. Stokking, and P. J.
Michael (College Station, TX: Ocean
Drilling Program), 191–206.

Guyoneaud, R., Süling, J., Petri, R.,
Matheron, R., Caumette, P., Pfennig,

N., and Imhoff, J. F. (1998). Taxo-
nomic rearrangements of the genera
Thiocapsa and Amoebobacter on the
basis of 16S rDNA sequence analyses,
and description of Thiolamprovum
gen. nov. Int. J. Syst. Bacteriol. 48,
957–964.

Hess, W. R., Rocap, G., Ting, C.
S., Larimer, F., Stilwagen, S.,
Lamerdin, J., and Chrisholm, W.
(2001). The photosynthetic appa-
ratus of Prochlorococcus: insights
through comparative genomics. Pho-
tosynth. Res. 70, 53–71.

Huber, J. A., Johnson, H. P., Butterfield,
D. A., and Baross, J. A. (2006). Micro-
bial life in ridge flank crustal fluids.
Environ. Microbiol. 8, 88–99.

Huber, J. A., Welch, D. B. M., Morrison,
H. G., Huse, S. M., Neal, P. R., Butter-
field, D. A., and Sogin, M. L. (2007).
Microbial population structure in the
deep marine biosphere. Science 318,
97–100.

Hügler, M., Wirsen, C. O., Fuchs,
G., Taylor, C. D., and Sievert, S.
M. (2005). Evidence for autotrophic
CO2 fixation via the reductive tricar-
boxylic acid cycle by members of the
epsilon subdivision of proteobacte-
ria. J. Bacteriol. 187, 3020–3027.

Hunter, A. G., Kempton, P. D.,
and Greenwood, P. (1999). Low-
temperature fluid-rock interaction –
an isotopic and mineralogical
perspective of upper crustal evo-
lution, eastern flank of the Juan de
Fuca Ridge (JdFR), ODP Leg 168.
Chem. Geol. 155, 3–28.

Itoh, T., Suzuki, K., and Nakase,
T. (1998). Thermocladium modestius
gen. nov., sp. nov., a new genus of
rod-shaped, extremely thermophilic
crenarchaeote. Int. J. Syst. Evol.
Microbiol. 48, 879–887.

Jannasch, H. W., Wirsen, C. O., Nel-
son, D. C., and Robertson, L. A.
(1985). Thiomicrospira crunogena, sp.
nov., a colorless, sulfur-oxidizing bac-
terium from a deep-sea hydrother-
mal vent. Int. J. Syst. Bacteriol. 35,
422–424.

Jørgensen, B. B., and Boetius, A. (2007).
Feast and famine – microbial life in
the deep-sea bed. Nat. Rev. Microbiol.
5, 770–781.

Juniper, S. K., Cambon, M.-A,
Lesongeur, F., and Barbier, G. (2001).
Extraction and purification of DNA
from organic rich subsurface sedi-
ments (ODP Leg 169S). Mar. Geol.
174, 241–247.

Kirchman, D. L. (2002). The ecology of
Cytophaga–Flavobacteria in aquatic
environments. FEMS Microbiol. Ecol.
39, 91–100.

Kirkpatrick, J., Oakley, B., Fuchsman,
C., Srinivasan, S., Staley, J. T., and

Murray, J. W. (2006). Diversity and
distribution of Planctomycetes and
related bacteria in the suboxic zone of
the Black Sea. Appl. Environ. Micro-
biol. 72, 3079–3083.

Kormas, K., Smith, D. C., Edg-
comb, V., and Teske, A. (2003).
Molecular analysis of deep subsurface
microbial communities in Nankai
Trough sediments (ODP Leg 190, Site
1176). FEMS Microbiol. Ecol. 45,
115–125.

Kovaleva, O. L., Tourova, T. P., Muyzer,
G., Kolganova, T. V., and Sorokin, D.
Y. (2011). Diversity of RuBisCO and
ATP citrate lyase genes in soda lake
sediments. FEMS Microbiol. Ecol. 75,
37–47.

Kuenen, J. G., and Veldkamp, H.
(1972). Thiomicrospira pelophila, gen.
nov., sp. nov., a new obligately
chemolithotrophic colourless sulfur
bacterium. Antonie van Leeuwenhoek
38, 241–256.

Kumar, S., Dudley, J., Nei, M.,
and Tamura, K. (2008). MEGA: a
biologist-centric software for evolu-
tionary analysis of DNA and pro-
tein sequences. Brief. Bioinform. 9,
299–306.

Lane, D. J. (1991). “16S/23S rRNA
sequencing,” in Nucleic Acid Tech-
niques in Bacterial Systematics, eds
E. Stackebrandt and M. Goodfellow
(New York, NY: John Wiley & Sons),
115–175.

Lever, M. A., Alperin, M., Inagaki, F.,
Nakagawa, S., Steinsbu, B. O., Teske,
A., and IODP Expedition 301 Sci-
entists. (2006). Trends in basalt and
sediment core contamination during
IODP Expedition 301. Geomicrobiol.
J. 23, 517–530.

Ludwig, W., Strunk, O., Westram, R.,
Richter, L., Meier, H., Yadhukumar,
Buchner, A., Lai, T., Steppi, S., Jobb,
G., Förster, W., Brettske, I., Gerber,
S., Ginhart, A., Gross, O., Grumann,
S., Hermann, S., Jost, R., König,
A., Liss, T., Lüssmann, R., May, M.,
Nonhoff, B., Reichel, B., Strehlow,
R., Stamatakis, A., Stuckmann, N.,
Vilbig, A., Lenke, M., Ludwig, T.,
Bode, A., and Schleifer, K.-H. (2004).
ARB: a software environment for
sequence data. Nucleic Acids Res. 32,
1363–1371.

Mottl, M. J. (1989). Hydrothermal con-
vection, reaction, and diffusion in
sediments on the Costa Rica Rift
flank: pore-water evidence from ODP
Sites 677 and 678. Proc. ODP. Sci.
Results 111, 195–213.

Mottl, M. J., and Gieskes, J. M.
(1990). Chemistry of waters sam-
pled from oceanic basement bore-
holes, 1979–1988. J. Geophys. Res. 95,
9227–9242.

Nagamuna, T., Elsaied H. E., Hoshii,
G., and Kimura, H. (2007). Bacte-
rial endosymbioses of gutless tube-
dwelling worms in nonhydrothermal
vent habitats. Mar. Biotechnol. 6,
416–428.

Nakagawa, S., Inagaki, F., Suzuki, Y.,
Steinsbu, B. O., Lever, M. A., Takai,
K., Engelen, B, Sako, Y., Wheat, C. G.,
Horikoshi, K., and Integrated Ocean
Drilling Program Expedition 301 Sci-
entists. (2006). Microbial commu-
nity in black rust exposed to hot ridge
flank crustal fluids. Appl. Environ.
Microbiol. 72, 6789–6799.

Nakagawa, S., and Takai, K. (2008).
Deep-sea vent chemoautotrophs:
diversity, biochemistry and ecolog-
ical significance. FEMS Microbiol.
Ecol. 65, 1–14.

Nishihara, H., Yaguchi, T., Chung, S. Y.,
Suzuki, K.-I., Yanagi, M., Yamasato,
K., Kodama, T., and Igarashi, Y.
(1998). Phylogenetic position of
an obligately chemoautotrophic,
marine hydrogen-oxidizing bac-
terium, Hydrogenovibrio marinus,
on the basis of 16S rRNA gene
sequences and two form I RubisCO
gene sequences. Arch. Microbiol. 169,
364–368.

Orcutt, B., Bach, W., Becker, K., Fisher,
A. T., Hentscher, M., Toner, B. M.,
Wheat, C. G., and Edwards, K. J.
(2011). Colonization of subsurface
microbial observatories deployed in
young ocean crust. ISME J. 5,
692–703.

Parkes, R. J., Cragg, B. A., and Wells-
bury, P. (2000). Recent studies on
bacterial populations and processes
in subseafloor sediments: a review.
Hydrogeol. J. 8, 160.

Perner, M., Kuever, J., Seifert, R.,
Pape, T., Koschinsky, A., Schmidt,
K., Strauss, H., and Imhoff, J. F.
(2007). The influence of ultramafic
rocks on microbial communities at
the Logatchev hydrothermal field,
located 15◦N on the Mid-Atlantic
Ridge. FEMS Microbiol. Ecol. 61,
97–109.

Rappé, M. S., Connon, S. A.,
Vergin, K. L., and Giovannoni,
S. J. (2002). Cultivation of the
ubiquitous SAR11 marine bacterio-
plankton clade. Nature 418, 630–633.

Rappé, M. S., Kemp, P. F., and Gio-
vannoni, S. J. (1997). Phylogenetic
diversity of marine coastal picoplank-
ton 16S rRNA genes cloned from the
continental shelf off Cape Hatteras,
North Carolina. Limnol. Oceanogr.
45, 811–826.

Rassa, A. C., McAllister, S. M., Safran,
S. A., and Moyer, C. L. (2009). Zeta-
proteobacteria dominate the colo-
nization and formation of microbial

Frontiers in Microbiology | Extreme Microbiology June 2012 | Volume 3 | Article 232 | 10

http://www.frontiersin.org/Extreme_Microbiology/
http://www.frontiersin.org/Extreme_Microbiology/archive


“fmicb-03-00232” — 2012/6/29 — 10:23 — page 11 — #11

Nigro et al. ODP Hole 896A microbial community

mats in low-temperature hydrother-
mal vents at Loihi Seamount, Hawaii.
Geomicrobiol. J. 26, 623–638.

Ryan, W. B. F., Carbotte, S. M., Coplan,
J. O., O’Hara, S., Melkonian, A., Arko,
R., Weissel, R. A., Ferrini, V., Good-
willie, A., Nitsche, F., Bonczkowski,
J., and Zemsky, R. (2009). Global
multi-resolution topography synthe-
sis, Geochem. Geophys. Geosyst. 10,
Q03014.

Santelli, C. M., Banarjee, N., Bach,
W., and Edwards, K. J. (2010).
Tapping into the subsurface ocean
crust biosphere: low biomass and
drilling-related contamination
calls for improved quality controls.
Geomicrobiol. J. 27, 158–169.

Santelli, C. M., Edgcomb, V. P., Bach, W.,
and Edwards, K. J. (2009). The diver-
sity and abundance of bacteria in
habiting seafloor laves positively cor-
relate with rock alteration. Environ.
Microbiol. 11, 86–98.

Santelli, C. M., Orcutt, B. N., Banning,
E., Bach, W., Moyer, C. L., Sogin, M.
L., Staudigel, H., and Edwards, K. J.
(2008). Abundance and diversity of
microbial life in ocean crust. Nature
453, 653–656.

Schloss, P. D., and Handelsman,
J. (2005). Introducing DOTUR, a
computer program for defining oper-
ational taxonomic units and estimat-
ing species richness. Appl. Environ.
Microbiol. 71, 1501–1506.

Schloss, P. D., and Handelsman,
J. (2006). Introducing SONS, a
tool for operational taxonomic unit-
based comparisons of microbial com-
munity memberships and struc-
tures. Appl. Environ. Microbiol. 72,
6773–6779.

Scott, K. M., Sievert S. M., Abril, F. N.,
Ball, L. A., Barrett, C. J., Blake, R.
A., Boller, A. J., Chain, P. S., Clark,
J. A., Davis, C. R., Detter, C., Do,
K. F., Dobrinski, K. P., Faza, B. I.,
Fitzpatrick, K. A., Freyermuth, S. K.,
Harmer, T. L., Hauser, L. J., Hügler,
M., Kerfeld, C. A., Klotz, M. G.,
Kong, W. W., Land, M., Lapidus, A.,

Larimer, F. W., Longo, D. L., Lucas,
S., Malfatti, S. A., Massey, S. E., Mar-
tin, D. D., McCuddin, Z., Meyer, F.,
Moore, J. L., Ocampo, L. H. Jr., Paul,
J. H., Paulsen, I. T., Reep, D. K., Ren,
Q., Ross, R. L., Sato, P. Y., Thomas,
P., Tinkham, L. E., and Zeruth, G.
T. (2006). The genome of deep-sea
vent chemolithoautotroph Thiomi-
crospira crunogena XCL-2. PLoS Biol.
4, 2196–2212. doi: 10.1371/journal.
pbio.0040383

Shipboard Scientific Party. (1993).
“Site 896,” in Proceedings of the
ODP, Scientific Results, eds J. C.
Alt, H. Kinoshita, L. B. Stokking,
and P. J. Michael (College Sta-
tion, TX: Ocean Drilling Program),
123–192.

Sorokin, D. Y., Lysenko, A. M.,
Mityushina, L. L., Tourova, T. P.,
Jones, E., Rainey, F. A., Robertson, L.
A., and Kuenen, J. G. (2001). Thioal-
kalimicrobium aerophilum gen. nov.,
sp. nov., and Thioalkalimicrobium
sibericum sp. nov., and Thioalka-
livibrio versutus gen. nov., sp. nov.
Thioalkalivibrio nitratis sp. nov., and
Thioalkalivibrio denitrificans sp. nov.,
novel obligately alkaliphilic and obli-
gately chemolithoautotrophic sulfur-
oxidizing bacteria from soda lakes.
Int. J. Syst. Evol. Microbiol. 51,
565–580.

Steinsbu, B. O., Thorseth, I. H., Nak-
agawa, S., Inagaki, F., Lever, M. A.,
Engelen, B., Øvreas, L., and Ped-
ersen, R. B. (2010). Archaeoglobus
sulfaticallidus sp. nov., a novel ther-
mophilic and facultative lithoau-
totrophic sulfate-reducer isolated
from black rust exposed to hot ridge
flank crustal fluids. Int. J. Syst. Evol.
Microbiol. 60, 2745–2752.

Suzuki, Y., Inagaki, F., Takai, K.,
Nealson, K. H., and Horikoshi, K.
(2004). Microbial diversity in inactive
chimney structures from deep-sea
hydrothermal systems. Microb. Ecol.
47, 186–196.

Sylvan, J. B., Toner, B. M., and
Edwards, K. J. (2012). Life and death

of deep-sea vents: bacterial diver-
sity and ecosystem succession on
inactive hydrothermal sulfides. MBio
3, e00279-11. doi: 10.1128/mBio.
00279-11

Takai, K., Nunoura, T., Ishibashi, J.,
Lupton, J., Suzuki, R., Hamasaki,
H., Ueno, Y., Kawagucci, S.,
Gamo, T., Suzuki, Y., Hirayama,
H., and Horikoshi, K. (2008).
Variability in the microbial com-
munities and hydrothermal fluid
chemistry at the newly discovered
Mariner hydrothermal field, south-
ern Lau Basin. J. Geophys. Res. 113,
G02031.

Taylor, C. D., and Wirsen, C. O. (1997).
Microbiology and ecology of fila-
mentous sulfur formation. Science
277, 1483–1485.

Torsvik, T., Furnes, H., Muehlen-
bachs, K., Thorseth, T. H., and
Tumyr, O. (1998). Evidence for
microbial activity at the glass-
alteration interface in oceanic basalts.
Earth Planet. Sci. Lett. 162,
165–176.

Wagner, M., and Horn, M. (2006).
The Planctomycetes, Verrucomicro-
bia, Chlamydiae and sister phyla
comprise a superphylum with
biotechnological and medical rel-
evance. Curr. Opin. Biotechnol. 17,
241–249.

West, N. J., Schonhuber, W. A., Fuller, N.
J., Amann, R. I., Rippka, R., Post, A.
F., and Scanlan, D. J. (2001). Closely
related Prochlorococcus genotypes
show remarkably different depth
distributions in two oceanic regions
as revealed by in situ hybridiza-
tion using 16S rRNA-targeted
oligonucleotides. Microbiology 147,
1731–1744.

Wheat, C. G., Jannasch, H. W., Fisher,
A. T., Becker, K., Sharkey, J., and
Hulme, S. (2010). Subseafloor
seawater-basalt-microbe reactions:
continuous sampling of borehole
fluids in a ridge flank environment.
Geochem. Geophys. Geosyst. 11,
Q07011.

Wheat, C. G., and Mottl, M. J.
(2000). Composition of pore and
spring waters from Baby Bare: global
implications of geochemical fluxes
from a ridge flank hydrothermal sys-
tem. Geochim. Cosmochim. Acta 64,
629–642.

Whitman, W. B., Coleman, D. C., and
Wiebe, W. J. (1998). Prokaryotes: the
unseen majority. Proc. Natl. Acad. Sci.
U.S.A. 95, 6578–6583.

Wirsen, C. O., Sievert, S. M., Cavanaugh,
C. M., Molyneaux, S. J., Ahmad, A.,
Taylor, L. T., DeLong, E. F., and Taylor,
C. D. (2002). Characterization of an
autotrophic sulfide-oxidizing marine
Arcobacter sp. that produces filamen-
tous sulfur. Appl. Environ. Microbiol.
68, 316–325.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 22 March 2011; accepted: 07
June 2012; published online: 29 June
2012.
Citation: Nigro LM, Harris K, Orcutt BN,
Hyde A, Clayton-Luce S, Becker K and
Teske A (2012) Microbial communities
at the borehole observatory on the Costa
Rica Rift flank (Ocean Drilling Program
Hole 896A). Front. Microbio. 3:232. doi:
10.3389/fmicb.2012.00232
This article was submitted to Frontiers
in Extreme Microbiology, a specialty of
Frontiers in Microbiology.
Copyright © 2012 Nigro, Harris, Orcutt,
Hyde, Clayton-Luce, Becker and Teske.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution Non Commercial License,
which permits non-commercial use, dis-
tribution, and reproduction in other
forums, provided the original authors and
source are credited.

www.frontiersin.org June 2012 | Volume 3 | Article 232 | 11

http://dx.doi.org/10.3389/fmicb.2012.00232
http://dx.doi.org/10.3389/fmicb.2012.00232
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Extreme_Microbiology/archive

	Microbial communities at the borehole observatory on the Costa Rica Rift flank (Ocean Drilling Program Hole 896A)
	Introduction
	Materials and methods
	Study site
	Sample collection
	DNA extraction, amplification, and sequencing
	Phylogenetic analysis

	Results
	16S rRNA gene phylogeny
	RuBisCO phylogeny

	Discussion
	Comparison of hole 896A microbial communities to those from other habitats
	Autotrophic potential
	Recommendations for future observatory studies

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


