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Cyanobacteria and algae are becoming increasingly attractive cell factories for producing
renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and
their relatively simple genetic background for genetic manipulation. Increasing research
efforts from the synthetic biology approach have been made in recent years to modify
cyanobacteria and algae for various biotechnological applications. In this article, we critically
review recent progresses in developing genetic tools for characterizing or manipulating
cyanobacteria and algae, the applications of genetically modified strains for synthesizing
renewable products such as biofuels and chemicals. In addition, the emergent challenges
in the development and application of synthetic biology for cyanobacteria and algae are
also discussed.
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INTRODUCTION
Cyanobacteria and algae are endowed with the complex photo-
synthesis systems (Mulkidjanian et al., 2006) which can absorb
solar irradiation with a broad wave length and thereafter chan-
nel the absorbed energy to other forms of energy carriers such
as chemicals (Chisti, 2007; Takahashi et al., 1998; van de Meene
et al., 2006) and electricity (Furukawa et al., 2006; Pisciotta et al.,
2010). Solar irradiation is a clean, abundant, and renewable
energy resource and, if being properly and efficiently transferred,
would be more then enough to power the entire human soci-
ety (Rittmann, 2008). In addition, growing cyanobacteria and
algae do not require arable land, which would eventually alleviate
the increasing food prices due to the growing crop-based micro-
bial industries (Rittmann, 2008). In contrast, they can fix carbon
dioxide (CO2), a type of greenhouse gas, during photosynthesis.
Furthermore, cyanobacteria and algae grow faster than plants and
bear relatively simple genetic background which is relatively easy
to manipulate (Koksharova and Wolk, 2002).

As an emerging discipline that tackles biotechnology from a
rational-design approach, synthetic biology aims to redesign exist-
ing biological systems or create artificial life (Benner, 2003; Endy,
2005; Mukherji and van Oudenaarden, 2009). In recent years, syn-
thetic biology research has been focused on model species such
as Escherichia coli and yeast, and has greatly boosted not only
the in-depth understanding of the biological mechanisms in these
cells, but also the capability and efficiency of these systems in
biological production of various useful products (Benner, 2003;
Lee and Lee, 2003; Martin et al., 2003; Isaacs et al., 2004; Ro
et al., 2006; Dwyer et al., 2007; Atsumi et al., 2008b; Inui et al.,

2008; Keasling, 2008; Prather and Martin, 2008; Zhang et al.,
2008, 2012; Bayer et al., 2009; Ma et al., 2009; Mukherji and van
Oudenaarden, 2009; Steen et al., 2010; Yim et al., 2011). How-
ever, with over 40 cyanobacterial genome sequences1 and more
than 60 algal genome sequences2 being completed and published,
application of synthetic biology in cyanobacteria and algae has
significantly lagged behind those in E. coli and yeast. Consid-
ering the aforementioned inherent merits of the photosynthetic
microbes, we believe it would be of great scientific and application
values to further develop synthetic biology tools and apply them
in cyanobacteria and algae. We herein review the recent progresses
and the challenges in developing and applying synthetic biology
for cyanobacteria and algae.

TOOLS FOR SYNTHETIC BIOLOGY IN CYANOBACTERIA
AND ALGAE
DEVELOPMENT OF “BIOBRICKS” FOR CYANOBACTERIA AND ALGAE
“BioBricks” stand for standardized DNA parts with common
interface and can be assembled in living organisms. They are
the basic interchangeable elements for regulating the genet-
ics3. Here we focus on the development of the most common
BioBricks for cyanobacteria and algae (i.e., promoters, transtrip-
tional terminators, ribosome binding sites, and other regulatory
factors).

1http://www.genomesonline.org/
2http://genome.jgi.doe.gov/
3http://biobricks.org/
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Promoters
Both native and foreign promoters have been evaluated in
cyanobacteria, mostly using Synechococcus elongatus PCC 7942
(hereafter Synechococcus 7942) and Synechocystis sp. PCC 6803
(hereafter Synechocystis 6803) as model species (Table 1). The
native promoters used are usually from genes essential to photo-
synthesis such as CO2 fixation (PrbcL, Pcmp, Psbt), photosystem
I (PSI; PpsaA,PpsaD), PSII (PpsbA1,PpsbA2), and photosynthesis
antenna protein phycocyanin (Pcpc). A native nickel-inducible
promoter, PnrsB, has also been successfully utilized to express
phage lysis genes in Synechocystis 6803 (Liu and Curtiss, 2009).
Besides the native promoters, a limited number of foreign promot-
ers have also been characterized in cyanobacteria. The chimeric
Ptac/Ptrc promoter, a strong promoter in E. coli, has been used
in Synechococcus and Synechocystis species to initiate high-level
expressions of the interest genes (Geerts et al., 1995; Ng et al.,
2000; Atsumi et al., 2009; Huang et al., 2010; Niederholtmeyer
et al., 2010; Lan and Liao, 2011). It is noteworthy that the com-
position of the cyanobacterial holopolymerase is quite different
from those in most bacteria (including E. coli), so commonly
used E. coli promoters might perform differently when intro-
duced into cyanobacteria (Heidorn et al., 2011). A recent study
on gene expression analysis in Synechocystis 6803 showed that
the strength of Ptrc1O (a version of the Ptrc/Ptac promoter) was

more than fourfold higher than all versions of the promoter of
native ribulose bisphosphate carboxylase/oxygenase (RuBisCO)
large subunit, PrbcL, whereas the common E. coli promoters
Plac, Ptet, and λ PR exhibited very low or no detectable activ-
ities in the same system (Huang et al., 2010). Since currently
very little is known about the performance of various native
and foreign promoters in cyanobacteria, a systematic investiga-
tion on behaviors of various promoters in cyanobacteria would be
important.

In algae, CaMV 35S and SV40 promoters from viruses have
been used to express target genes (Benfey et al., 1990; Wang
et al., 2010). However, the most effective promoters have been
derived from highly expressed algal genes. For example, the
widely used promoters for Chlamydomonas transformation have
been derived from the 5′ untranslated region of the Chlamy-
domonas reinhardtii RuBisCO small subunit gene (rbcS2 ;Stevens
et al., 1996), Chlamydomonas heat shock protein 70A gene hsp70A
(Schroda et al., 2000), marine diatom fucoxanthin-chlorophyll a/c
binding protein gene fcp (Apt et al., 1996; Miyagawa-Yamaguchi
et al., 2011), Dunaliella duplicated carbonic anhydrase 1 (DCA1;
Li et al., 2010; Lu et al., 2011), Porphyra yezoensis actin1 gene
(PyAct1; Takahashi et al., 2010), and two Nannochloropsis unlinked
violaxanthin/chlorophyll a-binding protein (VCP) genes, VCP1
and VCP2 (Kilian et al., 2011).

Table 1 | Selected promoters used in cyanobacteria.

Promoters Sources Gene(s) Expression hosts Reference

Prbc Synechococcus 6301,

Synechocystis 6803,

Synechococcus 7942

firefly luciferase, pdc, adh, far,

accBCDA, accD, accA, fatB2

Synechococcus 6301,

Synechocystis 6803,

Synechococcus 7942

Takeshima et al. (1994), Deng and Coleman

(1999), Liu et al. (2011b), Tan et al. (2011)

PpetE Synechocystis 6803 far, far1, far2, accBCDA Synechocystis 6803 Tan et al. (2011)

PpsbA1 Synechococcus 7942 efe, hydEF, hydG, cvrbcLS Synechococcus 7942 Sakai et al. (1997), Takahama et al. (2003),

Ducat et al. (2011a)

PpsbA2 Synechocystis 6803 pdc, adh, cvrbcLS, ispS, tesA,

fatB1, fatB2

Synechocystis 6803,

Synechococcus 7942

Iwaki et al. (2006), Dexter and Fu (2009),

Lindberg et al. (2010), Liu et al. (2011b)

PpsaA Synechocystis 6803 luxAB Synechocystis 6803 Muramatsu and Hihara (2006)

PpsaD Synechocystis 6803 luxAB Synechocystis 6803 Muramatsu and Hihara (2007)

Pcpc Synechocystis 6714 luxAB, accB, accC Synechococcus 7942 Imashimizu et al. (2003)

PrnpB Synechocystis 6803 GFP Synechocystis 6803 Huang et al. (2010)

Pcmp Synechocystis 6803 fol, gpl, shl Synechocystis 6803 Liu et al. (2011a)

Psbt Synechocystis 6803 gpl Synechocystis 6803 Liu et al. (2011a)

PnrsB Synechocystis 6803 holin, endolysin, auxiliary lysis

enzyme

Synechocystis 6803 Liu and Curtiss (2009)

PT7 Coliphage T7 luxAB Anabaena sp. 7120 Wolk et al. (1993)

Plac E. coli atoB, adhE2, ter, hbd, crt, hydA,

alsS, ilvC, ilvD,

Synechococcus 7942 Atsumi et al. (2009), Ducat et al. (2011a),

Lan and Liao (2011)

Ptrc/Ptac E. coli petE, atoB, adhE2, ter, hbd, crt,

kivd, rbcLS, invA, glf, ldhA, lldP,

phrA, GFP, EYFP

Synechococcus 7942,

Synechocystis 6803

Geerts et al. (1995), Ng et al. (2000), Atsumi

et al. (2009), Huang et al. (2010), Niederholt-

meyer et al. (2010), Lan and Liao (2011)

Ptet E. coli GFP Synechocystis 6803 Huang et al. (2010)
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Transcriptional terminators
Placing a transcription terminator downstream of the introduced
genes will prevent effects on the expression of genes adjacent to
the insertion loci; meanwhile, placing a terminator upstream of
the promoter of an introduced gene will also prevent any back-
ground transcription effect on the upstream genes (Adhya and
Gottesman, 1982). So far only a few native and foreign terminators
have been utilized in cyanobacteria, including the cyanobacterial
RuBisCO terminator (Takeshima et al., 1994) and strong E. coli
terminators such as rrnB terminator (Geerts et al., 1995; Taka-
hashi et al., 1998; Atsumi et al., 2009), bacteriophage T7 terminator
(Lang and Haselkorn, 1991; Argueta et al., 2004), and rrnBT1-
T7TE double terminator4 (Huang et al., 2010). Very little work
has been conducted to characterize the termination efficiencies in
cyanobacteria and algae.

Ribosome binding sites
The ribosome binding sites (RBS) play a crucial role in initiating
the translation of downstream target genes. Upon translation ini-
tiation, the 3′-terminal sequence of the 16S rRNA interacts with
the core Shine–Dalgarno (SD) sequence of RBS by complemen-
tary pairing of the nucleic acids. For example, in cyanobacterium
Synechocystis 6803, the 3′-terminal sequence of the 16S rRNA is
AUCACCUCCUUU (Kaneko et al., 1996; Ma et al., 2002) and
therefore the optimal complementary SD sequence should be
AAAGGAGGUGAU (core SD sequence underlined). Heidorn
et al. (2011) studied the efficiencies of different RBS in express-
ing GFP in Synechocystis 6803 and found that the RBS sequence
UAGUGGAGGU gave about twofold higher translation efficiency
than a RBS sequence AUUAAAGAGGAGAAA and about four-
fold higher than those of sequences UCACACAGGAAAG and
AAAGAGGAGAAA. However, it is found that the efficiency of
the same RBS might vary across species, such as E. coli vs. Syne-
chocystis (Heidorn et al., 2011). The efficiency of a given RBS
also depends on the surrounding nucleotide sequence that may
result in secondary structures and the spacing between the SD
sequence and the translation start codon AUG (de Smit and
van Duin, 1990; Chen et al., 1994; Pfleger et al., 2006). In order
to predict the translation efficiency of a given RBS in various
genetic contexts, Salis et al. (2009) have established a thermody-
namic model that calculates the impact from the SD sequence,
the start codon, the spacing between the SD sequence and the
start codon, and the mRNA secondary structure; the model
can accurately predict protein expression levels within a factor
of 2.3 over a range of 100,000-fold in E. coli. Similar model
should be employed to optimize the RBS for gene expression in
cyanobacteria.

Negative regulation of gene expression
The down-regulation of the target gene expression has been stud-
ied at transcriptional, translational, and post-translational levels
in cyanobacteria. The negative transcriptional factor, LacI, has
been utilized as a repressor in regulating the Ptac/Ptrc controlled
target gene expression (Geerts et al., 1995; Atsumi et al., 2009;
Huang et al., 2010; Niederholtmeyer et al., 2010; Ducat et al.,

4http://partsregistry.org/Part:BBa_B0015

2011a; Lan and Liao, 2011). However, lacI-Ptac/Ptrc expression sys-
tem can result in severe leaky expression of target genes (Huang
et al., 2010). By placing dual lac operators upstream of Ptac/Ptrc

promoter the leaky expression of downstream target genes was
significantly repressed; however, this also resulted in a limited
induction of the promoter with presence of the inducer IPTG
(Huang et al., 2010). Degradation tags which can be fused to the
target proteins through genetic engineering have also been inves-
tigated in cyanobacteria. Three ssrA protease degradation tags
including ASV, AAV, and LVA were fused to EYFP and expressed in
Synechocystis 6803. The results indicated that LVA is the strongest
degradation tag, AAV is the weaker one and ASV is the weak-
est (Huang et al., 2010). Recently, it has been discovered that
antisense RNAs (asRNAs) play an important role in cyanobac-
terial gene regulation (Hernández et al., 2006; Georg et al., 2009;
Cerutti et al., 2011; Mitschke et al., 2011). asRNAs thus provide
another approach for gene silencing in cyanobacteria. For exam-
ple, Mussgnug et al. (2007) have successfully down-regulated the
expression of light-harvesting antenna complexes through RNA
interference.

Endogenous enhancers
The transcription of an interest gene can be positively affected by
placing in the gene cluster an enhancer, a short DNA fragment
which interacts with certain proteins to enhance the transcrip-
tion. In cyanobacteria, some light-responsive elements exhibit
enhancer activities. For example, the 5′-untranslated regions of the
psbAII and psbAIII genes of Synechococcus 7942 have been found as
enhancers which can increase the expression of downstream genes
by 4- to 11-fold when combined with an E. coli promoter (conII)
in the Synechococcus 7942 host strain (Li and Golden, 1993). A
recent study by Eichler-Stahlberg et al. (2009) showed that insert-
ing three introns from the native alga C. reinhardtii RBCS2 gene
into the recombinant luciferase and erythropoietin resulted in up
to fourfold increase of the expression levels. By fusing the recom-
binant luciferase with the endogenous RuBisCO LSU protein,
Muto et al. (2009) has achieved enhanced luciferase expression by
33-fold.

PLASMID VECTORS
Both integrative and replicative plasmids have been developed for
cyanobacteria. In cyanobacteria, integrative plasmids are usually
utilized as vectors to integrate foreign genes into the cyanobac-
terial genomes via homologous recombination (Golden et al.,
1987; Eaton-Rye, 2004; Heidorn et al., 2011). Integrative plasmids
usually cannot replicate themselves and would eventually be elim-
inated through cell division. Replicative plasmids are those which
can replicate in host cyanobacteria and the replication proper-
ties can be descended to daughter cells. Replicative cyanobacterial
plasmids can be classified into two types: those with replicons of
broad-host range plasmids (Mermet-Bouvier et al., 1993; Mermet-
Bouvier and Chauvat, 1994; Ng et al., 2000; Huang et al., 2010)
and those derived from endogenous cryptic plasmids (Reaston
et al., 1982; Wolk et al., 1984; Lang and Haselkorn, 1991; Sum-
mers et al., 1995; Deng and Coleman, 1999; Argueta et al., 2004;
Iwaki et al., 2006). Representative shuttle vectors for cyanobac-
teria are listed in Table 2. The copy numbers of the broad-host
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Table 2 | Representative shuttle vectors for cyanobacteria.

Cyanobacterial E. coli Representative Host cyanobacteria Reference

replicons replicons vectors

pDU1 pMB1 pRL1, pJL3 Anabaena 7120, Anabaena 7118, Anabaena

M-131, Nostoc 7524

Reaston et al. (1982), Wolk et al. (1984),

Lang and Haselkorn (1991)

pDC1 pMB1 pSCR119/202,

pSUN119/202

Nostoc sp. MAC 8009, Nostoc punctiforme,

Nostoc ATCC 29133

Lambert and Carr (1983),

Summers et al. (1995), Argueta et al. (2004)

pUH24 P15A pUC303 Synechococcus 7942 Kuhlemeier et al. (1983), Iwaki et al. (2006)

pUH24 pMB1 pCB4, pSG111 Synechococcus 7942 Golden and Sherman (1983), Luinenburg and Coleman

(1993), Deng and Coleman (1999)

pAQ1 pMB1 pAQE17 Synechococcus 7002 Buzby et al. (1985)

PBA1 pMB1 pARUB19 Synechococcus 6301 Takeshima et al. (1994)

RSF1010 RSF1010 pFC1, pSL1211,

pPMQAK1,

Synechosystis 6803, Synechosystis 6714,

Synechococcus 7942, Synechococcus 6301,

Anabaena 7120, Nostoc ATCC 29133

Mermet-Bouvier et al. (1993),

Mermet-Bouvier and Chauvat (1994), Ng et al. (2000),

Huang et al. (2010)

range RSF1010-derived plasmids have been reported as about 10
per chromosome in E. coli cells and 10–30 per cell in Synechocystis
(Ng et al., 2000; Huang et al., 2010) which is slightly higher than
the average copy number (approximately 10) of the Synechocystis
chromosome (Eaton-Rye, 2004). Due to lack of an active partition-
ing mechanism, RSF1010-derived plasmids tend to be eliminated
in cells and thus antibiotic selection pressure is required for the
maintenance (Becker and Meyer, 1997; Meyer, 2009).

Plasmid vectors have been developed to transform algae (León-
Bañares et al., 2004). Recombinant eukaryotic algal viruses as
transformation vectors (Langridge et al., 1986) and Agrobacterium
tumefaciens-mediated method (Kumar et al., 2004) were also suc-
cessfully developed for both marine and freshwater algae (Wang
et al., 2010).

CODON USAGE
Since different organisms usually bear particular codon usage pat-
terns, when a gene is cloned from one species and expressed in
a second organism, some codons might become rare codons in
the new host, leading to poor translation efficiency (Kane, 1995).
Genes in cyanobacteria show a bias in use of synonymous codons
(Campbell and Gowri, 1990; Nakamura et al., 2000; Beck et al.,
2012; Yu et al., 2012); it is thus very important to examine the
difference in codon usage of a heterologous gene before it is
expressed in cyanobacteria. In a recent study, Lindberg et al. (2010)
studied the effects of codon usage on heterologous expression of
kudzu IspS gene (encoding the isoprene synthase) in Synechocystis
6803. The results showed that the codon-optimized IspS showed
remarkable improved expression, 10-fold higher than that of the
native IspS gene under control of the same promoter. The impor-
tance of codon optimization in algal genetic applications is also
increasingly acknowledged. For instance, it has been shown that
codon bias significantly affects the GFP expression in C. reinhardtii
(Heitzer et al., 2007). As a result, in recent transgenic research, the
codon-optimized luciferase gene was used in a green alga Gonium
pectorale (Lerche and Hallmann, 2009) and the codon-modified

β-glucuronidase gene was transformed in a red seaweed P. yezoensis
(Takahashi et al., 2010).

TRANSFORMATION OF CYANOBACTERIA AND ALGAE
Methods to introduce DNA into cyanobacteria include conjuga-
tion (Thiel and Wolk, 1987; Elhai and Wolk, 1988), electroporation
(Zang et al., 2007), and natural transformation (Shestakov and
Khyen, 1970; Grigorieva and Shestakov, 1982; Kuhlemeier and
van Arkel, 1987). The methods have been well summarized in sev-
eral recent reviews (Eaton-Rye, 2004; Koksharova and Wolk, 2002;
Heidorn et al., 2011) and we suggest readers to refer these excellent
reviews for details. Compared to cyanobacteria, transformation
methods for algae are less developed and more complicated. Since
the chloroplast and nucleus of alga C. reinhardtii were stably
transformed more than two decades ago (Boynton et al., 1988;
Debuchy et al., 1989; Fernández et al., 1989), different meth-
ods have been employed in algal transformation which include,
but not limited to, particle bombardment, glass bead agita-
tion, microinjection, electroporation and A. tumefaciens-mediated
transformation (León-Bañares et al., 2004; Coll, 2006; León and
Fernández, 2007; Potvin and Zhang, 2010). Specifically, bombard-
ment of target cells with DNA-coated metal particles turns to be
an effective and highly reproducible method to transform algae.
This method has been so far applied in the transformation of
nuclear and chloroplast of many algal species such as C. rein-
hardtii, Volvox carteri, Chlorella sorokiniana, Chlorella ellipsoidea,
Chlorella kessleri, Haematococcus pluvialis, Phaeodactylum tricor-
nutum, and G. pectorale (Boynton and Gillham, 1993; Potvin and
Zhang, 2010). In addition, agitation of the cell wall-deficient algal
cells with glass beads, polyethylene glycol (PEG) and foreign DNA
has been used to transform algae such as C. reinhardtii, Dunaliella
salina, and red alga Porphyra haitanensis (Kindle, 1990; Feng et al.,
2009; Wang et al., 2010). Microinjection of the viral SV40 DNA
or the chimeric construction pSV2neo into the marine unicellu-
lar green alga Acetabularia mediterranea also resulted in a high
yield and stable nuclear transformation (Neuhaus et al., 1986);
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nevertheless, it is hard to operate and the throughput of transfor-
mation is low. Agrobacterium tumefaciens has been used to mediate
the transformation of C. reinhardtii (Kumar et al., 2004) and
H. pluvialis (Kathiresan et al., 2009). Recently, it was discovered
that the industrially relevant oil-producing alga Nannochlorop-
sis sp. is haploid and can be transformed with high efficiency
using high electric field electroporation. It has also been found
that efficient stable transformation of this species via homologous
recombination requires using linear DNA fragment rather than
circular plasmid DNA (Kilian et al., 2011). However, the mecha-
nism for the high homologous recombination efficiency is to be
elucidated.

APPLICATIONS OF MODIFIED CYANOBACTERIA AND ALGAE
We focus here on recent progress in producing biofuels and
other useful chemicals using genetically modified cyanobacteria
and algae. For other applications, readers can refer to several
other excellent reviews published recently (Radakovits et al., 2010;
Ruffing, 2011; Qin et al., 2012).

BIOFUELS
United States consumed 13.3 million barrels of petroleum per
day for transportation purposes in 2009, accounting for 71% of
all petroleum used (Energy Information Administration, 2010).
Many alternatives to current liquid fuels have been proposed,
including ethanol, 1-butanol, isobutanol, short-chain alcohols,
short-chain alkanes, biodiesel (FAME, fatty acid methyl esters),
fatty alcohols, alkanes, linear and cyclic isoprenoids (Lee et al.,
2008; Connor and Atsumi, 2010). Current routes for biological
production of fuels and chemicals are summarized in Figure 1.
Traditionally people follow a two-step route to firstly collect plant
biomass and then convert biomass to fuels by microbial fer-
mentation (Stephanopoulos, 2007); whereas recently interest in
harnessing photosynthetic microbes to directly convert CO2 to
fuels has been dramatically increased (Chisti, 2007; Lu, 2010).
Compared to crops, the per-hectare oil yield of cyanobacteria or
microalgae is about two orders of magnitude higher and the culti-
vation land needed is around two orders of magnitude less (Chisti,
2007). It is estimated that more than $1 billion has been invested
in the algae-to-biofuel research and development since 2007 in US
alone (Mascarelli, 2009).

Biodiesel
Cyanobacteria and algae are rich in energy stock compounds,
such as diacylglycerol (DAG), triacylglycerol (TAG) and starch,
which can be extracted and used for biodiesel production (van de
Meene et al., 2006; Chisti, 2007; Radakovits et al., 2010; Sheng et al.,
2011). To further increase the oil contents in the cells, effects have
been made to block metabolic pathways as well as to overexpress

FIGURE 1 | Routes for biological production of fuels and chemicals.

Arrows indicate the carbon and energy flow between different carriers.

genes of limiting steps. For example, two different starch-deficient
strains of C. reinhardtii, the sta6 and sta7 mutants that carries gene
knockout in the ADP-glucose pyrophosphorylase and isoamylase
genes, respectively, have been isolated (Mouille et al., 1996; Pose-
witz et al., 2005); and these mutants accumulated increased levels
of TAG during nitrogen deprivation (Wang et al., 2009). Another
starchless mutant of Chlorella pyrenoidosa has also been reported
that the lipid content of this mutant has been elevated by nearly
twofold relative to the wild-type under nitrogen limitation culture
conditions (Ramazanov and Ramazanov, 2006). It indicated that
blocking the starch biosynthesis may be an effective way to increase
lipid, and thus potentially biodiesel, production.

Nevertheless, lipid extraction process is energy-intensive and
significant amount of glycerol as a byproduct have been two of
the major hurdles for commercial production of biodiesel (Chisti,
2007; Fernando et al., 2007; Liu and Curtiss, 2009). Efforts have
been made from both process engineering and genetic engineering
approaches to facilitate the lipid extraction (Liu and Curtiss, 2009;
Liu et al., 2011a; Sheng et al., 2011). Specifically, Liu and colleagues
have constructed inducible systems to conditionally express phage
lysis genes and lipolytic enzyme genes in Synechocystis 6803 to
trigger the cell lysis upon harvest and thus help lipid extraction
from this species (Liu and Curtiss, 2009; Liu et al., 2011a). To
produce secretable biofuels from a synthetic biology approach is
another way to resolve above issues.

Free fatty acids
Enhanced production of free fatty acid (FFA) has already been
achieved in E. coli through a series of genetic engineering (Davis
et al., 2000; Lu et al., 2008). In a recent study, Liu et al. (2011b)
engineered cyanobacterium Synechocystis strains to produce and
secret FFAs to up to 197 mg/L at a cell density of 1.0 × 109 cells/mL.
The acetyl-CoA carboxylase (ACC) was overexpressed to drive the
metabolic flux toward FFAs, while the fatty acid activation gene
aas (slr1609) was deleted to inactivate the FFAs degradation. Poly-
β-hydroxybutyrate (PHB) synthesis genes (slr1993 and slr1994)
and the phosphotransacetylase gene pta (slr2132) were deleted
to block competitive pathways. Particularly, two genetic modifi-
cations turned to significantly increase the FFAs production and
secretion: overexpression of thioesterases and weakening the polar
peptidoglycan layer of the cell wall of Synechocystis 6803.

Alkanes and alkenes
Although it was known that some cyanobacteria can synthesize
alkanes, the molecular mechanism had been mysterious until
recently an alkane/alkene biosynthetic pathways were identified
in cyanobacteria (Steen et al., 2010; Mendez-Perez et al., 2011).
Steen et al. (2010) identified an alkane/alkene biosynthetic path-
way that two successive biochemical reactions catalyzed by an
acyl-ACP reductase and an aldehyde decarbonylase, respectively,
converts acyl-ACP (intermediates of fatty acid metabolism) to
alkanes/alkenes. In order to increase the alkane production in
cyanobacteria, heterologous expression of acyl-ACP reductase and
aldehyde decarbonylase genes (from Synechococcus 7942) has been
achieved in Synechococcus 7002, which led to a total intracellu-
lar accumulation of n-alkane to up to 5% of the dry cell weight
(Reppas and Ridley, 2010). In another research, Mendez-Perez
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et al. (2011) identified the genes responsible for α-olefin biosyn-
thesis in Synechococcus 7002. In addition, overexpression of the
accBCDA operon (which encodes ACC) in Synechocystis was also
reported to enhance alkane/alkene production (Tan et al., 2011),
consistent with the aforementioned results of FFAs production.
Although it is believed there are certain alkane/alkene secretion
pathways, the specific mechanisms are still under exploration
(Radakovits et al., 2010).

Ethanol
Ethanol production via microbial fermentation has undergone a
sharp increasing in the past decade for its utility as supplement in
transportation fuel (Stephanopoulos, 2007; Energy Information
Administration, 2010). In 1999, photosynthetic production of up
to 230 mg/L ethanol has been reported using genetically engi-
neered cyanobacterium Synechococcus 7942, in which an artificial
operon of pdc-adh (genes originally from Zymomonas mobilis)
was expressed under a Plac and Prbc promoters via a shuttle vec-
tor pCB4 (Deng and Coleman, 1999). In a recent study, the
pdc-adh expression cassette was integrated into the chromosome
of Synechocystis 6803 at the psbA2 locus. Driven by the light-
inducible strong PpsbA2 promoter, expression of pdc/adh resulted
in ∼550 mg/L ethanol production by the engineered Synechocys-
tis under high light (∼1000 μE/m2/s) conditions (Dexter and
Fu, 2009). In algae, although many species have fermentative
pathways to produce ethanol, the pathways are only functional
under dark and anaerobic conditions (Hirayama et al., 1998). Algal
ethanol is currently produced via heterotrophic fermentation of
algal biomass using heterotrophs such as yeast and E. coli (Nguyen
et al., 2009; Harun et al., 2010; Wargacki et al., 2012), which follows
the two-step route (Figure 1). Direct photosynthetic production
of ethanol by algae would be possible using a similar approach
as being demonstrated in cyanobacteria by expressing foreign
ethanol biosynthesis pathways, or by tuning the native regulatory
pathways in algae.

Isobutanol and 1-butanol
Compared with ethanol, isobutanol and 1-butanol have much
higher energy density. The energy density of butanol reaches
29.2 MJ/L, about 90% of that of gasoline, 32.5 MJ/L, and it is
also less volatile and less corrosive than ethanol (Dürre, 2007).
Therefore, butanol is regarded as a better gasoline substitute.
Recently, significant progress has been achieved for photosyn-
thetic production of butanol. Liao and colleagues introduced
an artificial isobutanol biosynthesis pathway into Synechococcus
7942 and the engineered strains were able to photosynthetically
produce isobutyraldehyde and isobutanol at titers of 1100 and
450 mg/L, respectively (Atsumi et al., 2009). In contrast, photo-
synthetic production of 1-butanol in oxygenic cyanobacteria or
algae has been hard because the intrinsic oxygen-sensitivity and
NADH-dependence of the 1-butanol biosynthetic pathway are
conflict with the photo-oxygenisis and lack of NADH cofactors
in cyanobacteria (Atsumi et al., 2008a; Inui et al., 2008; Lan and
Liao, 2011). When a 1-butanol pathway was overexpressed in Syne-
chococcus 7942, the 1-butanol was barely detectable (∼1 mg/L)
after 2 weeks cultivation under photosynthetic conditions. Up
to 14.5 mg/L 1-butanol has been achieved in Synechococcus 7942

under an anoxic condition (Lan and Liao, 2011). Further analysis
revealed that the reversible acetyl-CoA condensation reaction cat-
alyzed by thiolase (encoded by atoB) strongly favors the thiolysis
of acetoacetyl-CoA rather than the condensation of two acetyl-
CoA molecules, and thus AtoB may be insufficient to drive the
flux from acetyl-CoA pool toward 1-butanol biosynthesis under
photosynthetic conditions (Lan and Liao, 2012). To this end,
an alternate ATP-driven acetoacetyl-CoA biosynthetic pathway
was constructed by overexpressing an acetoacetyl-CoA synthase
(NphT7) which instead condenses malonyl-CoA and acetyl-CoA
in Synechococcus. With co-expressing the downstream NADH-
dependent 1-butanol biosynthetic pathway, 6.5 mg/L 1-butanol
has been produced under photosynthetic conditions. After the
NADH-dependent bifunctional aldehyde/alcohol dehydrogenase
(AdhE2) was further replaced with separate NADPH-dependent
butyraldehyde dehydrogenase (Bldh) and alcohol dehydrogenase
(YqhD), the 1-butanol production was increased by fourfold, up
to ∼30 mg/L, under the same photosynthetic condition (Lan and
Liao, 2012).

Longer carbon chain fatty alcohols
In order to produce long-chain alcohols, Lu and colleagues
heterologously expressed fatty acetyl-CoA reductases from dif-
ferent sources in Synechocystis and the resultant strains achieved
production of fatty alcohols, including hexadecanol (C16) and
octadecanol (C18; Tan et al., 2011). Although the titer was very
low (about 0.2 mg/L), it is amenable for further improvement
via further enhancing upstream pathways and addressing secre-
tion issues as that in the engineering of Synechocystis 6803
for enhanced fatty acid production (Liu et al., 2011b). Produc-
tion of the intermediate-chain alcohols (C5 to C10) in E. coli
has been well summarized by Lamsen and Atsumi (2012).
Briefly, C5 to C10 alcohols have been successfully biosynthe-
sized via the expanded 1-butanol pathway (Dekishima et al.,
2011), the engineered reversal of the β-oxidation pathway (Del-
lomonaco et al., 2011) and the 2-keto acid metabolic pathways
(Atsumi et al., 2008b; Zhang et al., 2008). Since cyanobacteria
and algae share with E. coli the most chassis metabolic path-
ways required for longer-chain alcohol biosynthesis, it is believed
that similar approaches can be used to achieve the biosynthe-
sis of alcohols with carbon chain length >5 in cyanobacteria
and algae.

Hydrogen
Besides liquid biofuels, production of hydrogen – a gaseous,
carbon-free, and high-energy-content fuel – in algae and
cyanobacteria has also gained increasing attention in recent years
(Melis et al., 2000; Kruse et al., 2005; Ghirardi et al., 2007, 2009;
Hankamer et al., 2007; Hemschemeier et al., 2009; Lee et al., 2010;
Srirangan et al., 2011). Many cyanobacteria and algae naturally
produce hydrogen as a secondary metabolite to balance the redox
energetics. In order to fortify the hydrogen production, endeavor
has been made to augment the electron flux, instead of the
carbon flux, toward H2 biosynthesis catalyzed by hydrogenases
(2H+ + 2e− → H2). In alga C. reinhardtii, for instance, block-
ing the cyclic electron transfer around PSI turned to eliminate
the possible electron competition for electron with hydrogenase;
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as a result, the H2 evolution rate increased 5–13 times under a
range of conditions (Kruse et al., 2005). Hydrogenase has been
tethered to the PSI to obtain a much greater electron through-
put and thus H2 evolution rate (Ihara et al., 2006; Schwarze et al.,
2010; Lubner et al., 2011). However, to date these experiments
were all conducted in vitro and efforts need to be made from a syn-
thetic biology approach to validate the concept in vivo. In another
study, expression of an exogenous ferredoxin from Clostridium
acetobutylicum in addition to the native ferredoxin could fortify
the electron flow toward the hydrogenase HydA via siphoning
electrons from the fermentation of internal reducing equivalents
(such as glycogen). As a result, the hydrogen production was
enhanced by approximately twofold (Ducat et al., 2011a) under
light-dependent anoxic conditions. On the other hand, efforts
have been made to block pathways competitive for reductant
consumption to facilitate the H2 production. For example, after
the ldhA gene (which is responsible for NADH consumption in
lactate production) was inactivated in Synechococcus 7002, the
NADH/NAD+ ratio increased markedly and therefore the hydro-
gen production by the native bidirectional [NiFe] hydrogenase was
increased fivefold under anoxic dark conditions (McNeely et al.,
2010). The oxygen-sensitivity of both two major [NiFe] and [FeFe]
hydrogenases is the greatest challenge to date which is discussed
infra.

OTHER COMMODITY CHEMICALS
Although significant attention has been paid to photosynthetic
production of fuels from CO2, the relative values (in term of USD
per photon) of fuels are much lower than those of other commod-
ity chemicals. For example, it is estimated that the relative value
of a photon fixed in lactic acid is about 3.5-fold greater than that
in octane (Ducat et al., 2011b). Therefore, photosynthetic produc-
tion of chemicals with higher unit values than fuels is economically
more desirable at least in the near term.

Ethylene
Ethylene, the simplest unsaturated alkene, is one of the most
important building-blocks in synthetic chemical industry. How-
ever, its production almost exclusively relies on petroleum. To
make the production sustainable, biosynthesis of ethylene from
renewable resources has been explored. Sakai et al. (1997) first
demonstrated photosynthetic production of gaseous ethylene
from CO2 in genetically engineered Synechococcus by heterolo-
gously expressing a single efe gene of Pseudomonas syringae on
a pUC303-derived shuttle vector. Later, by integrating the efe
gene into the psbA1 locus of the Synechococcus 7942 genome,
the research group achieved higher ethylene production with a
titer of ∼37 mg/L (Takahama et al., 2003). However, the engi-
neered Synechococcus strains were not genetically stable, resulting
in declined ethylene production during successive batch cul-
tivations (Takahama et al., 2003). Since production of every
two molecules of ethylenes consumes three molecules of 2-
oxoglutarate and one molecule of L-arginine (Fukuda et al., 1992),
the genetic instability might be attributed to the shortage in
the tricarboxylic acid (TCA) cycle intermediates, leading to a
severe depression on cell growth (Takahama et al., 2003). In
order to sustain the ethylene production in cyanobacteria or

algae, metabolic flux toward TCA cycle should be enhanced and
alternative ethylene biosynthesis pathways might be considered
(Yang and Hoffman, 1984; Fukuda et al., 1989; Kende, 1993;
Kosugi et al., 2000).

Isoprene
Isoprene is another important feedstock in the synthetic chemistry
and potentially a biofuel. Biosynthesis and emission of isoprene
occurs in many plants as a way to cope with heat flecks and reactive
oxygen species, and the genetic mechanism has been investigated
(Sharkey et al., 2008). Lindberg et al. (2010) cloned the IspS gene
(encoding isoprene synthase) from Pueraria montana and inte-
grated into the psbA2 locus of the Synechocystis genome, conferring
heterologous expression of the isoprene synthase under the light-
dependent PpsbA2 promoter in Synechocystis. Codon usage turned
to be a very important factor for optimal expression of the IspS
gene. After codon optimization, the IspS gene expression was
enhanced by about 10-fold. Isoprene was eventually produced at
a rate of ∼50 mg/g dry cell/day under high light (∼500 μE/m2/s)
culture conditions. It is noteworthy that heterologous expression
of IspS by replacing the psbA2 gene did not affect photosynthesis
significantly and depress the growth of the transformants (Lind-
berg et al., 2010), which was differed from the aforementioned
ethylene-producing cyanobacteria (Sakai et al., 1997; Takahama
et al., 2003).

Acetone
Acetone represents the simplest ketone which serves as a sol-
vent and precursor for industrial chemicals (Yurieva et al., 1996).
Microbial production of acetone has been achieved in fermenta-
tion of Clostridia and recombinant E. coli using sugar as feedstocks
(Bermejo et al., 1998). However, the maximal yield is merely 50%
with the other half carbon being released as CO2 when hexose is
the sole carbon source. Recently, through a combination of co-
expression of the acetoacetate decarboxylase (adc) and coenzyme
A transferase (ctfAB) and deletion of the PHB polymerase (PhaEC)
in Synechocystis 6803, 3–5 mg/L acetone has been produced under
nitrogen and phosphate deprived, dark and anaerobic culture con-
ditions. After deleting the phosphotransacetylase-encoding gene
pta, the competitive acetate production was remarkably reduced
and the acetone titer has been evidently increased to 36.0 mg/L in
the culture (Zhou et al., 2012).

Poly-β-hydroxybutyrates
Cyanobacteria are the natural producers of PHB, a type of poly-
hydroxyalkanoates (PHAs) that serves as biodegradable plastics
(Hein et al., 1998; Taroncher-Oldenburg et al., 2000). However,
the yield is very low and nutrient deprivation and acetate addition
are usually necessary for accumulation of PHB (Wu et al., 2001).
By introducing PHB biosynthesis genes from Ralstonia eutropha
into Synechococcus 7942 coupled with nitrogen starvation and
acetate supplementation, the PHB biosynthesis in the recombi-
nant cyanobacteria has reached a maximum of 25.6% of the dry
cell weight (Takahashi et al., 1998). Efforts in identifying gene dis-
ruptions which might contribute to increase of PHB accumulation
were also made and several gene disruptions with positive effects
were discovered (Tyo et al., 2009). Nevertheless, similar with other
types of macromolecules PHB can not be secreted out of cells;
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the required extraction process is energy-intensive and remains
as one of the major hurdles for commercial applications (Chisti,
2007; Liu and Curtiss, 2009). As a result, 3-hydroxybutyrate (3HB),
the monomer of PHB and a building block molecule for other
PHAs, has been successfully produced and secreted by genetically
engineered E. coli (Lee and Lee, 2003; Liu et al., 2007; Tseng et al.,
2009). Hence, photosynthetic production of 3HB in cyanobacteria
and algae might be a feasible approach to cope with the secretion
problem.

Lactic acid
Lactic acid is another chemical that can serve as a building block
for synthesizing biodegradable polyesters with valuable medical
properties. It is also used as a preservative and acidulant in food
industry, and can serve as an advanced nutrient for neuron cells
(Wee et al., 2006). While conventional production of lactic acid
relies on microbial fermentation of sugars (Wee et al., 2006), pho-
tosynthetic production of lactic acid using CO2 as carbon source
has been recently demonstrated (Niederholtmeyer et al., 2010).
Through heterologously expressing three genes, including ldhA,
lldP, and udhA, in cyanobacterium Synechococcus 7942, Nieder-
holtmeyer et al. (2010) has accomplished production of lactic acid
with a titer of ∼56 mg/L under photoautotrophic culture con-
dition. While LdhA catabolizes the conversion of pyruvate to
lactate, expression of the lactate transporter gene lldP turned to
be essential for lactate secretion from the engineered Synechococ-
cus strain (Niederholtmeyer et al., 2010). Repletion of NADH,
a cofactor for LdhA, through expressing the NADPH/NADH
transhydrogenase (encoded by udhA) greatly enhanced the lac-
tate production but reduced the growth rate of Synechococcus
(Niederholtmeyer et al., 2010).

Sugars
Fresh water cyanobacteria accumulate solutes such as glucosylglyc-
erol and sucrose when they are exposed to salt stress (Hagemann,
2011). By knocking out the agp gene (which contributes to
the biosynthesis of glucosylglycerol) from the Synechocystis 6803
genome, Miao et al. (2003) achieved sucrose accumulation of up
to 44 mg/L/OD730 after 0.9 M salt shock for 96 h. In another study,
overexpression of invA, glf, and galU genes in Synechococcus 7942
resulted in up to 45 mg/L total hexose production (including glu-
cose and fructose) in the culture supplemented with 200 mM NaCl
(Niederholtmeyer et al., 2010). While InvA catalyzes the conver-
sion of sucrose to glucose and fructose, expression of the glucose
or fructose transporter GLF (encoded by glf gene) was essential
for glucose or fructose secretion. Additional expression of GalU
enhanced the biosynthesis of intracellular precursors and thus fur-
ther increased the hexose sugar production by over 30% in the
culture (Niederholtmeyer et al., 2010).

CHALLENGES AND OPPORTUNITIES OF SYNTHETIC BIOLOGY
IN CYANOBACTERIA AND ALGAE
Despite of promising progresses, there are challenges ahead for
synthetic biology to reach its full power in modifying cyanobac-
teria and algae for biotechnological applications. Here we briefly
discuss the challenges and possible strategies.

IMPROVING TOOLS FOR GENETIC MANIPULATION
Effective “BioBricks”
Although a few“BioBricks”have been characterized in cyanobacte-
ria, the limit number of gene expression elements would not fulfill
the need of synthetic biology in cyanobacteria. After an initial gene
expression, a fine-tuning of the gene expression is usually the next
step in order to further optimize the properties of the genetically
engineered strains, which requires a good number of “BioBricks.”
Currently most of the “BioBricks” were collected from E. coli, but
the E. coli “BioBricks” might behave differently in cyanobacte-
ria. For example, tightly regulated IPTG-inducible lacI/Ptac gene
expression system does not work as well in cyanobacteria as it
does in E. coli (Huang et al., 2010). Thus, systematic collection
and characterization of “BioBricks” in cyanobacteria is necessary.
Additionally, in contrast to various commercialized E. coli and
yeast strains that have been genetically modified to serve as chassis
for different purposes, there are few such cyanobacterial or algal
species available nowadays. To design and construct a series of
chassis strains is thus an urgent task. Moreover, to our knowledge,
there has been no study of the performance of a given BioBrick
in different cyanobacterial species. We assume that a defined Bio-
Brick might behave differently across cyanobacterial species and
the efficiency of the BioBrick need to be characterized for each
cyanobacterial species.

Improved transformation efficiency
Standardized transformation vectors/protocols have been estab-
lished for model cyanobacteria, such as Synechococcus and Syne-
chocystis, although the transformation efficiency still needs further
improvement (Eaton-Rye, 2004; Heidorn et al., 2011). However,
the transformation methods for model filamentous cyanobacte-
ria, such as Anabaena and Spirulina, are still under development
(Ducat et al., 2011b), and so far no genetic engineering has
been conducted in the marine N2-fixing cyanobacterium Tri-
chodesmium despite significant interest on its ability of peaking
the fixation of CO2 and N2 simultaneously during the day time
(Chen et al., 1998; Berman-Frank et al., 2001). In vivo restric-
tion activities have been demonstrated as an important barrier
for introducing foreign DNA into cyanobacterial cells (Elhai et al.,
1997; Koksharova and Wolk, 2002). Hence, it would be helpful
to construct methylation-defect cyanobacterium host strains or
to establish in vitro systems that can methylate the foreign DNA
before transformation. Additionally, since the bacteriophage λ

recombination system has greatly improved the E. coli transfor-
mation efficiency (Yu et al., 2000), we propose that high-efficiency
homologous recombination in cyanobacterial cells might be
achievable by developing a proper cyanophage recombination
system.

In order to improve transformation efficiency of other algal
species, endeavor could be made to uncover the mechanism behind
the recently discovered truth that highly efficient homologous
recombination occurs after electroporation of the industrially
relevant oil-producing alga Nannochloropsis sp. (Kilian et al.,
2011). Recently, through an approach of ex vivo assembly of the
chloroplast genome before bombarding it into the green alga C.
reinhardtii, O’Neill et al. (2012) demonstrated that simultaneous
and multi-loci genetic modifications of the chloroplast of the green
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alga C. reinhardtii could occur after one single round of transfor-
mation, providing an alternative method to improve the efficiency
of multiple-gene transfer.

IMPROVING PHOTOSYNTHESIS EFFICIENCY
Although the solar energy conversion efficiencies of algae and
cyanobacteria are 2–3 folds higher than those of crop plants,
the efficiencies are still low with yields around 5–7% during the
growing season and around 3% in bioreactors on an annual basis
(Blankenship et al., 2011). A recent study on in silico modeling of
the reconstructed photosynthetic process revealed that the regula-
tion of the photosynthesis activity is quite complex and a high
degree of cooperativity of nine alternative electron flow path-
ways is responsible for optimized photosynthesis performance in
Synechocystis 6803 (Nogales et al., 2012).

Light harvesting
The photosynthetic microorganisms in nature have been selected
by the abilities to reproduce but not by the ability to produce
a maximal amount of biomass or specific products. In order to
thrive in the wild environment, cyanobacteria and algae have max-
imized their expression of pigments and antenna to compete with
the competitors for sunlight. However, when monoculture was
employed to produce high-density of biomass or maximal titers
of specific products in photo-bioreactors, excessive photon cap-
ture by the cells in the surface layer can block the light availability
to the cells underneath (Melis, 2009). To address this issue, studies
have been conducted on minimizing the size of the photosystem
antenna complex through various strategies, such as by express-
ing truncated light-harvesting antenna complex (LHC) mutants
(Blankenship et al., 2011; Ort and Melis, 2011; Work et al., 2012),
by down-regulating the expression of LHC through RNA interfer-
ence (RNAi) and expression of LHC translation repressor in both
cyanobacteria and algae (Mussgnug et al., 2007; Work et al., 2012).
For example, the photosynthetic activity (measured by oxygen
evolution) was about threefold higher in the alga strain Stm3LR3
(with LHC being down-regulated via RNAi) than in the parent
strain Stm3 (without RNAi) after 100 min of high-light treatment;
the cell growth rate also increased under high-light conditions
after the LHC was down-regulated via RNAi (Mussgnug et al.,
2007). Another bold proposal was to increase the photosynthesis
efficiency by extending the light absorption range of the pho-
tosystems in cyanobacteria and algae (Blankenship et al., 2011).
As the chlorophyll, carotenoids, and other accessory pigments in
cyanobacteria and algae capture only visible region of the spec-
trum of solar radiation (400 to 700 nm), about 50% of the incident
solar energy is dissipated and wasted during photosynthesis. More-
over, since the two photosystems compete for light with the same
wavelengths, the overall efficiency is significantly reduced. Thus,
it was proposed that one of the two photosystems be engineered
to extend the absorption maxima to ∼1100 nm, approximately
doubling the solar photon capture, by heterologously expressing
bacteriochlorophyll b (Blankenship et al., 2011).

CO2 fixation
RuBisCO is an essential enzyme in photosynthetic carbon fix-
ation in Calvin–Benson–Bassham (CBB) cycle, catalyzing the

combination of ribulose-1,5-bisphosphate with CO2. However,
the reaction is slow. In addition, RuBisCO can also take O2 as sub-
strate in addition to CO2 which further lower the carbon fixation
efficiency. A recent study has revealed that despite slow catalytic
turnover and confused CO2/O2 substrate specificity, RuBisCOs
might have been nearly perfectly optimized (Tcherkez et al., 2006).
In nature, cyanobacteria and some algae have evolved certain CO2-
concentrating mechanisms (CCMs) to increase the CO2 fixation
efficiencies. In cyanobacteria, RuBisCOs are sequestered together
with carbonic anhydrous in carboxysomes, polyhedral microcom-
partments (MCPs) with proteinaceous shells. Anhydrase catalyzes
the conversion of HCO3

− to CO2 which is trapped by MCPs for
RuBisCOs. Because CCMs can result in much higher CO2 concen-
tration, and thus higher CO2 to O2 ratio, around the RuBisCOs,
the carbon fixation efficiency is greatly increased (Espie and Kim-
ber, 2011). It has been found that Synechococcus 7942 cells with
more carboxysomes exhibited higher CO2 fixation rates (Sav-
age et al., 2010). Heterologous expression of Synechococcus 6301
rbcLS (that encodes RuBisCO) in Synechococcus 7942 also led to
more efficient CO2 fixation and higher yield of isobutyraldehyde
in the genetically modified isobutyraldehyde-producing strain
(Atsumi et al., 2009). Besides, overexpression of bicarbonate trans-
porters has also been proposed to improve the photosynthesis
efficiency (Price et al., 2011). Alternatively, RuBisCO-independent
carbon fixation pathways have been posited. A recent work using
in silico modeling of the recombination of existing metabolic
building blocks showed that some of the proposed carbon fix-
ation cycles have overall higher kinetic rates (Bar-Even et al.,
2010). For example, by coupling the phosphoenolpyruvate car-
boxylase and the core of the natural C4 carbon fixation cycle,
the overall CO2 fixation rate was predicted as 2–3 folds higher
than that of the CBB cycle which employs RuBisCO (Bar-Even
et al., 2010).

OVERCOMING THE OXIDATIVE STRESS
Since cyanobacteria and algae are oxygenic microorganisms, the
abundant oxygen evolved by splitting water during photosyn-
thesis process becomes an issue for expressing oxygen-sensitive
enzymes. For example, either [NiFe] or [FeFe] hydrogenase
required for biological production of H2 has low oxygen-tolerance
(Lee et al., 2010); and the nitrogenases which fix N2 into NH4

+
are also extremely oxygen-sensitive (Fay, 1992). From a broader
prospect, this oxygen sensitivity issue could be crucial for suc-
cessful expression of a large number of pathways from anaerobic
microorganisms in oxygenic cyanobacteria and algae. To address
the issue, efforts have been made to obtain oxygen-resistant
enzymes from nature or through mutagenesis. For example,
hydrogenases with better oxygen-tolerance have been found from
Ralstonia eutropha H16 (Saggu et al., 2009) and Hydrogenovibrio
marinus (Yoon et al., 2011); and elevated oxygen-tolerance has
been made for the hydrogenase of Desulfovibrio fructosovorans by
a single V74M mutation (Dementin et al., 2009). Alternatively,
temporal segregation of oxygenic photosynthesis and hydrogen
biosynthesis would be another option. In nature, many cyanobac-
terial species have evolved the mechanism to photosynthetically fix
CO2 during day time while fix N2 by the oxygen-sensitive nitro-
genases during night (Fay, 1992). Thereby, the solar energy can
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be firstly fixed into carbohydrates, such as starch, during oxygenic
photosynthesis and then be utilized to power the oxygen-sensitive
reactions during dark anoxic conditions. In addition, spatial seg-
regation could be used. Hydrogenases can be localized to certain
advantageous space, such as being expressed in heterocysts, to
avoid the oxidative stress (Fay, 1992). Recent studies on bacte-
rial MCPs assembling might have provided another opportunity
to spatially segregate incompatible oxygenic and oxygen-sensitive
processes (Fan et al., 2010; Heinhorst and Cannon, 2010; Bonacci
et al., 2012). Moreover, Mehler reaction can be used to overcome
the oxidative stress (Mehler, 1951; Asada, 2006). Mehler reaction
has been evolved to overcome the intracellular oxidative stress by
scavenging reactive oxygen species in cyanobacteria and chloro-
plasts (Kana, 1993; Asada, 2006). For instance, during N2-fixation
period Mehler reaction consumes ∼75% of gross O2 production
and therefore maintains the O2 concentration at a low level (Kana,
1993; Milligan et al., 2007). However, Mehler reaction consumes
reductant significantly (Asada, 2006); thus, in the future it will be
of great interest and of vital importance to maintain the activity
locally around the oxygen-sensitive enzymes rather than in the
entire cytoplastic environment.

SYSTEMATIC APPROACHES
Functional genomics
Functional genomics, i.e., transcriptomics, proteomics, and
metabolomics, would greatly promote the development of
synthetic biology in cyanobacteria and algae. Albeit the genomes
of some many species of cyanobacteria and algae have been
sequenced1,2, a large portion of the sequenced genomes have
not yet been annotated and the regulatory networks are still
very poorly understood. The study of cyanobacterial and algal
transcriptomes, proteomes, and metabolomes would allow for
identification of new genes, pathways and regulatory networks
which are essential to expand the size and diversity of the
pool of genetic tools for synthetic biology. For example, recent
transcriptomics studies on Synechocystis 6803 has enhanced the
understanding of the transcriptional regulation in this photosyn-
thetic microorganism which revealed that approximate two-thirds
of the transcriptional start sites give rise to asRNAs and noncod-
ing RNAs (ncRNAs), indicating that asRNAs and ncRNAs play
an important role in cyanobacterial genetic regulation (Mitschke
et al., 2011). We prospect that omics may be the key to collect
information about the interactions and regulations to develop a
sustainable green chemistry industry.

Metabolic modeling
Although most synthetic biology research in cyanobacteria and
algae focus on local pathway optimization, comprehensive syn-
thetic biology summons optimization of the genetic network and
metabolic flux at the systems level. Genome-scale metabolic mod-
eling allows theoretically evaluating the impact of genetic and
environmental perturbations on the biomass yield and metabolic
flux distribution and allows predicting the optimal metabolic flux
profile to maximize the value of a given objective function (Shas-
tri and Morgan, 2005; Knoop et al., 2010; Yoshikawa et al., 2011).
The in silico modeling may thus provide a systematic approach to
design an optimal metabolic network to maximize the production

of the interest biofuel or chemical. Such genome-scale metabolic
network models have been constructed for cyanobacteria and
algae, and have been utilized to predict new targets to improve
product yields and new pathways (Shastri and Morgan, 2005;
Knoop et al., 2010; Dal’Molin et al., 2011; Yoshikawa et al., 2011).
However, the reconstruction of the global metabolic networks is
still in the infancy stage and the simulation results rely signifi-
cantly on the included pathways. For instance, with ambiguities in
metabolic networks in Synechocystis 6803, the estimated metabolic
fluxes could be significantly different from the experimental results
(Yoshikawa et al., 2011). In order to refine the quality of the recon-
structed metabolic networks and thus the simulation of metabolic
flux, it is inevitable to couple with experimental characterization
of the metabolic networks in cyanobacteria and algae (Yoshikawa
et al., 2011). As an example, by firstly investigating the in vitro
activities of the purified relevant enzyme products (heterologously
expressed in E. coli) and subsequently verifying their in vivo activ-
ities in the native host Synechococcus 7002, Zhang and Bryant
(2011) reported that two enzymes could functionally compensate
for the missing 2-oxoglutarate dehydrogenase in the TCA cycle.
Further database searches indicated that homologs of these two
enzymes occur in all cyanobacteria but Prochlorococcus and marine
Synechococcus, which overturned the previously widely accepted
assumption that cyanobacteria possess an incomplete TCA cycle
(Meeks, 2011; Zhang and Bryant, 2011). Such discoveries would
be of utter importance to reconstruct qualified in silico models for
simulating the metabolic flux in the future.

CONCLUSION
Owing to the relatively simple genetic contents and the ability
to capture solar energy, fix CO2, grow fast and directly syn-
thesize specific products, cyanobacteria and algae have become
excellent candidates for building autotrophic cell factories to pro-
duce renewable surrogate fuels and chemicals. With a large pool
of genome sequences and improved genetic tools being available,
application of synthetic biology in these photosynthetic microor-
ganisms are highly desirable. In recent years, exciting results
have been achieved not only in understanding of the fundamen-
tal molecular mechanisms but also in producing various interest
products, such as biofuels and chemicals, utilizing cyanobacte-
ria and algae as the production platforms. Nevertheless, synthetic
biology in cyanobacteria and algae is still in its infancy and syn-
thetic biologists are facing great challenges and opportunities in
addressing various issues, such as improving the tools for genetic
manipulation, enhancing light harvesting, increasing CO2 fix-
ation efficiency, and overcoming of the intracellular oxidative
stress. Systematic approaches, such as functional genomics and
metabolic modeling, may also diversify the genetic tools and help
the metabolic network design. It is doubtless that synthetic biol-
ogy would be indispensable for the future success in applying
cyanobacteria and algae for various biotechnological purposes.
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