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Invasive aspergillosis is a significant threat to health and is a major cause of mortality in
immunocompromised individuals. Understanding the interaction between the fungus and
the immune system is important in determining how the immunocompetent host remains
disease free. Several studies examining the direct interaction between Aspergillus fumiga-
tus and purified innate immune cells have been conducted to measure the responses of
both the host cells and the pathogen. It has been revealed that innate immune cells have
different modes of action ranging from effective fungal killing by neutrophils to the less
aggressive response of dendritic cells. Natural killer cells do not phagocytose the fungus
unlike the other innate immune cells mentioned but appear to mediate their antifungal
effect through the release of gamma interferon. Transcriptional analysis of A. fumigatus
interacting with these cells has indicated that it can adapt to the harsh microenvironment
of the phagosome and produces toxins, ribotoxin and gliotoxin, that can induce cell death
in the majority of innate immune cells. These data point toward potential novel antifungal
treatments including the use of innate immune cells as antifungal vaccines.
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INTRODUCTION
The fungus Aspergillus fumigatus (teleomorph Neosartorya fumi-
gata; O’Gorman et al., 2009) normally plays a role in the decay
of plant organic matter in the environment (Gugnani, 2003). It is
also an opportunistic pathogen that causes a spectrum of diseases
in humans ranging from allergic reactions to life-threatening inva-
sive disease in immunocompromised individuals (Neofytos et al.,
2009). Invasive aspergillosis (IA) is the most severe disease caused
by the fungus and is the leading cause of mycosis-related mortality
in the immunocompromised (McCormick et al., 2010b).

Invasive aspergillosis is usually caused by the inhalation of asex-
ual spores (conidia) into the alveoli; it is estimated that 200–300
conidia are inhaled daily (Latge, 1999). Conidia are covered in a
layer of hydrophobin which is inert to the immune system (Aima-
nianda et al., 2009) and the presence of dihydroxynaphthalene
(DHN)-melanin in the cell wall interferes with host endocyto-
sis (Thywissen et al., 2011) leading to potential long-term survival
of inhaled resting conidia. Proteomic analysis of resting conidia
indicated the presence of enzymes that allow rapid adaptation to
the environment in which the fungus germinates and the establish-
ment of infection in the absence of competent antifungal defenses
(Teutschbein et al., 2010). The cellular innate immune system usu-
ally provides protection against IA by neutralizing germinating
conidia (Hasenberg et al., 2011).

Immunity to fungal infection requires the concerted activity
of the cells of the immune system (Figure 1). The importance
of alveolar macrophages and neutrophils has been the subject of

relatively extensive research and will not be the major focus of this
review. We will primarily focus on dendritic cells (DC),monocytes,
and the emerging role of natural killer (NK) cells in immunity to
IA; examining how these analyses have added to the understanding
of fungal virulence and immunity to IA.

INTERACTIONS WITH INNATE IMMUNE CELLS
The first immune cells to interact with germinating fungal spores
are the alveolar macrophages and neutrophils that are recruited
to the site of infection. These cells recognize pathogen-associated
molecular patterns (PAMPs), e.g., β-1,3-glucan, galactomannan,
and chitin, that are exposed on the surface of germinating conidia
or hyphae through pathogen-recognition receptors (PRR) such as
Toll-like receptors (TLR; Netea et al., 2003) and Dectin-1 (Brown,
2006). It has been observed in murine models that neutrophils play
an essential role in defense against germinating conidia (Mircescu
et al., 2009; Ibrahim-Granet et al., 2010). Interference with the
innate immune response is a primary factor in the initiation of
IA; neutropenia is a primary risk factor for IA (De Pauw et al.,
2008). However, increasing evidence suggests that neutrophils
and macrophages act cooperatively to defend against infection
(Silva, 2011).

MACROPHAGES
The population of resident alveolar macrophages (AM) are
thought to be the first immune cells to encounter A. fumigatus
in the lung (Figure 1). The interaction between A. fumigatus and
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FIGURE 1 | Schematic diagram of cells of the innate immune system

interacting with Aspergillus fumigatus in the vicinity of an alveolus. The
resident alveolar macrophages (1) are first to encounter the fungus and after
phagocytosis they kill the ingested fungus and initiate the inflammatory
response (Segal, 2007; Volling et al., 2007; Slesiona et al., 2012). Neutrophils
(2) are recruited to the site of infection by chemoattractant cytokines, they are
necessary for clearance of the fungal infection (Sugui et al., 2008; Brakhage
et al., 2010; Fallon et al., 2010). Dendritic cells (3) actively scan the body for
potential infectious agents; they phagocytose pathogens and drain to the
lymph nodes where they can present antigens from the degraded

pathogen to induce an adaptive immune response (Bozza et al., 2002; Mezger
et al., 2008; Morton et al., 2011). Monocytes, progenitors for macrophages
and some dendritic cell, (4) are present in blood; they can phagocytose fungal
elements and release proinflammatory cytokines (Rodland et al., 2008;
Loeffler et al., 2009). NK cells (5) are present in blood and can be attracted to
sites of infection; they release antimicrobial molecules that can directly kill
invading fungi (Park et al., 2009; Bouzani et al., 2011). The tables are
summaries of the key features of the interactions between A. fumigatus with
each immune cell based on the studies cited in each section. The figure is not
to scale.
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macrophages has provided an important model for the study-
ing phagocytosis of the fungus. Conidia are phagocytosed by
AM and killed following acidification of the phagolysosome and
activation of antimicrobial enzymes (e.g., cathepsin D and chiti-
nase; Ibrahim-Granet et al., 2003). Reactive oxygen species (ROS)
are required to kill conidia but are not directly responsible for
killing the fungus (Philippe et al., 2003; Cornish et al., 2008).
AM along with direct antifungal activity also release cytokines
to initiate an inflammatory response to fungal infection (Agarwal
et al., 2007).

Fungal survival during interactions with AM is associated with
fungal DHN-melanin inhibiting acidification of the phagolyso-
some (Thywissen et al., 2011). This promotes germination of the
conidia and escape from the AM through hyphal growth (Slesiona
et al., 2012). Another factor that is important for fungal survival
during encounters with AM is the production of siderophores,
deletion of genes encoding these iron scavenging molecules
decreased fungal survival within the AM phagolysosome (Schrettl
et al., 2010).

NEUTROPHILS
Neutrophils are recruited to the site of infection by cytokines,
primarily IL-8 in the lung, and are important players in the inflam-
matory response associated with the clearance of fungal infection
(Bellocchio et al., 2004; Bonnett et al., 2006; Park and Mehrad,
2009). These cells recognize fungi through PRR–PAMP inter-
actions and can phagocytose pathogenic microbes. Neutrophils
are also capable of attacking hyphae through the production
of neutrophil extracellular traps (NET) which are formed when
neutrophils undergo autolysis releasing their DNA into the sur-
rounding environment to impede the progress of infection (Bruns
et al., 2010). NET formation is important in inhibition of hyphal
growth and their formation can be induced by both conidia
and hyphae (McCormick et al., 2010a). Interestingly, restoration
of NET formation in neutrophils from a patient with chronic
granulomatous disease (CGD) restored resistance to IA (Bianchi
et al., 2011).

Transcriptional analysis of A. fumigatus that is directly inter-
acting with neutrophils has been conducted and has revealed that
there is a complex response by genes involved in oxidative stress
and fatty acid catabolism (Sugui et al., 2008). Up-regulation of
catalases (cat1 and cat2), superoxide dismutase (Mn-SOD), and
thioredoxin reductase are consistent with a reaction to oxidative
stress caused by the generation of ROS within the phagolysosome
in neutrophils.

There was a shift in the metabolism of the fungus to a state
similar to that observed under glucose limitation indicating that
phagocytosis by neutrophils creates nutrient limiting conditions
(Sugui et al., 2008). Transcriptome analysis of A. fumigatus initiat-
ing infection in the murine lung revealed that nutrient limitation
could be a cue for a trophic switch requiring the induction of
putative virulence genes (McDonagh et al., 2008). This behavior
has been seen in fungi developed as biological control agents where
the absence of nutrients induced the expression of serine proteases
that acted as virulence factors against invertebrates (St Leger et al.,
1987; Segers et al., 1994). Up-regulation of secondary metabolite
gene clusters including the gliotoxin gene cluster during infection

of the murine lung may be important for the interaction with
neutrophils since gliotoxin has been shown to inhibit phagocytosis
and induce apoptosis of neutrophils (Comera et al., 2007).

INTERACTIONS WITH ANTIGEN-PRESENTING CELLS
The inflammatory response initiated by AM and neutrophils also
attracts antigen-presenting cells (APC) from the blood and sur-
rounding tissues through the activity of cytokines (Burns and
Thrasher,2004) and alarmins, such as defensins (Oppenheim et al.,
2007). The primary APC are DCs and monocytes. The APCs exist
as a number of distinct subpopulations; monocyte subpopula-
tions are CD14+CD16− and CD14+CD16+ (Serbina et al., 2009).
In humans 90% of circulating monocytes have CD14+ CD16−
markers, these can phagocytose conidia and inhibit germination
but secrete small amounts of TNF-alpha. However, CD14+ CD
16+ monocytes, the remaining 10%, do not inhibit germination
but secrete large amounts of TNF-alpha (Serbina et al., 2009).
Monocytes are precursor cells for specific populations of DC and
macrophages (Osugi et al., 2002).

The major subgroups of DC include myeloid DC (mDC), plas-
macytoid DC (pDC), and monocyte-derived DC (moDC). Both
mDC and pDC occur in low numbers within the bloodstream
which is why moDC are frequently used in experiments since
they can be generated in large numbers. It has been postulated
that moDC in the body may represent an auxillary inflammatory
pathway whereas mDC and pDC are the specialized surveillance
subsets of DC (Osugi et al., 2002). APCs link the innate and adap-
tive arms of the immune response since the antigens induce a
pathogen-specific T helper cell response (Bozza et al., 2002).

DENDRITIC CELLS
Dendritic cells act as a surveillance system for the body; they can
be found in the majority of tissues and the circulatory system in an
immature state (Wuthrich et al., 2012). They act by sampling their
microenvironment for potential microbial pathogens, uptake of a
microbe leads to DC maturation and the presentation of microbial
antigens in the lymph nodes activates specific T cells. These cells
drive the adaptive immune system to produce a Th-1 or Th-2 type
response; the inflammatory Th-1 response is associated with the
clearance of fungal infection.

Whole genome analyses of the interaction between imma-
ture moDC, from healthy donors, and A. fumigatus have been
conducted for both organisms. Analysis of the moDC transcrip-
tome revealed that exposure to A. fumigatus induced a pro-
inflammatory response and indicated the importance of Dectin-1
in fungal recognition. Among the genes that were up-regulated
were CCL20, IL1B, IL8, and PTX-3. The expression of SYK and
IL2RA were considered indicative of a role for DC in the acti-
vation of NK cells (Mezger et al., 2008). This expression pattern
was confirmed by transcriptional analysis using a microarray of
120 immune-related genes which also showed the induction of a
pro-inflammatory response of moDC to A. fumigatus (Morton
et al., 2011).

Direct interaction between moDC and A. fumigatus leads to
rapid phagocytosis of the fungal cells with phagocytosis of 48% of
conidia after 2 h (Bozza et al., 2002) and 68% after 3 h (Morton
et al., 2011). As mentioned with fungal survival in macrophages,
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germ tubes of A. fumigatus emerged from moDC after 6 h, which
coincided with an increase in moDC cell death. Whole genome
transcriptome analysis of A. fumigatus interacting with immature
DC (iDC) at four time points over 12 h identified 210 differ-
entially regulated genes which showed significant up-regulation
of genes involved in fermentation, drug transport, pathogene-
sis, and response to oxidative stress (Morton et al., 2011). It was
interesting that catalases were not up-regulated by the A. fumi-
gatus during interaction with moDC, this contrasts with the data
from interactions with neutrophils. This occurs because DCs do
not acidify the phagolysosome; this is achieved by tightly con-
trolling ROS generation and contributes to antigen preservation
(Watts, 2006).

In contrast to the transcription response in murine lungs there
was no differential regulation of the gliotoxin gene cluster. How-
ever, Aspf1 was up-regulated as germ tubes emerged after 9 h
co-incubation, which corresponded with an increase in CCL20
expression in the iDC. The allergen Aspf1 is a fungal ribotoxin; a
class of RNases that cleave RNA in ribosomes leading to disrupted
protein synthesis and apoptosis in target cells (Lacadena et al.,
2007). CCL20 expression had previously been linked to Aspf1
in an experiment where moDC were co-incubated with puri-
fied Aspf1 (Ok et al., 2009). CCL20 is associated with allergic,
Th2, responses in conditions such as asthma (Reibman et al.,
2003). As an allergen Aspf1 interacts with moDC to induce an
allergic response, characterized by CCL20 expression, which is
seen in allergic bronchopulmonary aspergillosis (ABPA; Lacadena
et al., 2007).

It has been reported that pDC were able to inhibit the growth
of A. fumigatus hyphae through contact-independent cytotoxicity
(Ramirez-Ortiz et al., 2011). This study indicated a close resem-
blance between the antifungal activities of pDC and NK cells
(Bouzani et al., 2011).

MONOCYTES
Monocytes originate from the bone marrow and, in response to
certain immunological cues, such as IA, they migrate via the cir-
culation to the lungs; where they differentiate into DC (Cramer
et al., 2011). In mice, Ly6Chi monocytes express the chemokine
receptor CCR2 which appears to influence their migration from
bone marrow into the circulation (Serbina and Pamer, 2006).
In the steady state, circulating CCR2+ Ly6Chi cells differentiate
into CD 103+ DCs while CCR2 Ly6Clo cells differentiate into
CD11b+ DCs (Jakubzick et al., 2008). However, in experimental
pulmonary Aspergillus infection CCR2+ Ly6CHI cells differentiate
into CD11b+ DCs. This results in phagocytosis of fungal conidia
through recognition of β- D-glucan by Dectin-1. Although mono-
cytes can inhibit fungal growth it is controversial as to whether
they can actually kill Aspergillus. Monocytes are also APCs, and
through the PRR’s TLR, pentraxin 3, and C type lectins, they can
trigger adaptive T cell responses.

The transcriptional responses of healthy human donor mono-
cytes to A. fumigatus have been the subject of comparable studies.
The response of donor monocytes to A. fumigatus conidia mea-
sured over 1800 genes differentially expressed when compared
to unstimulated control monocytes (Cortez et al., 2006), while
over 400 genes were expressed solely in response to A. fumigatus

conidia compared to monocytes stimulated with lipopolysaccha-
ride (LPS; Rodland et al., 2008). In the study of Cortez et al. (2006),
over 80% of monocytes had phagocytosed conidia which was
comparable to the results for moDC (Morton et al., 2011). The
expression of cytokine receptor encoding genes IL1 and IL10 pro-
gressively increased over the 6 h time course as did the expression
of chemokine receptor genes CXCL2, CCL3, CCL4, and CCL20.
Of genes that encode PRRs PTX-3 (long pentraxin 3) expression
also increased over this time course. Interestingly, there was down-
regulation of TLR1 and no change in expression of either TLR2 or
TLR4 (Cortez et al., 2006). The study from Rodland et al. (2008)
differed in that a significant increase in expression of TLR5 was
observed. This had not been identified previously as having a role
in host defense against moulds; it was hypothesized that this may
suggest a role for regulatory T cells in immunity to IA. By contrast,
there was no up-regulation of other TLR gene expression; how-
ever they did observe up-regulation of IRF8 and IRAK1 expression.
Interferon regulating factors are transcription factors involved in
pro-inflammatory cytokine responses. Another potentially impor-
tant finding was production of anti-apoptotic gene responses in
A. fumigatus infected monocytes. Further in vitro experiments
by this group support a role for TLR5 in immune response to
A. fumigatus (Rodland et al., 2011).

Aspergillus fumigatus exists as different morphotypes (coni-
dia and hyphae) during infection, the transcriptional response
of donor monocytes to A. fumigatus hyphae has also been mea-
sured (Loeffler et al., 2009). After 3 h co-incubation 602 monocyte
genes were differentially regulated in response to A. fumigatus
hyphae compared to 206 in response to resting conidia. A range of
cytokines and chemokines had increased expression in response
to A. fumigatus conidia and hyphae however there was no differ-
ential regulation of either TLR2 or TLR4. In parallel ELISA assays
the authors noted increased production of IL-8, CCL2, and CCL20
which together with the finding of increased expression of plas-
minogen activating genes and PTX-3 might suggest a mechanism
for pulmonary thrombosis and local tissue injury at the site of
Aspergillus infection.

From the findings of these three transcriptome studies,
innate immune molecules, pro-inflammatory cytokines, and
immunomodulatory responses appear to be central to the host
monocyte response to Aspergillus infection. It would be impor-
tant to translate these data to the clinical setting by experimentally
studying the in vitro capacity of immunosuppressed patients’
monocytes to respond to Aspergillus challenge

INTERACTIONS WITH NK CELLS
Natural killer cells are innate immune lymphocytes that have
been extensively studied due to their ability to kill virus infected
and transformed cells without any prior immunization (Caligiuri,
2008). They have an immunoregulatory role, which is fulfilled via
the release of several cytokines, predominantly interferon-γ (IFN-
γ) as well as chemokines and growth factors (Smyth et al., 2005).
Upon infection or inflammation, NK cells migrate from the blood
to the lungs, where they become activated (Culley, 2009). During
infection by non-viral pathogens regulation of NK cell function
is relatively indirect, resulting from signals delivered by accessory
cells (Newman and Riley, 2007), but there is growing evidence
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of a direct interplay between NK cells and pathogenic microbes,
including bacteria (Sporri et al., 2006), parasites (Hansen et al.,
2007), and yeast (Ma et al., 2004). The interaction between NK
cells and A. fumigatus is a particularly interesting and relatively
unexplored field.

The first demonstration of a role for NK cells in the host
defense against IA was achieved in a neutropenic mouse model
of IA. The early influx of NK cells into the lungs of mice with
IA was linked to an increase in pulmonary CCL2; neutraliza-
tion of CCL2 impaired the recruitment of NK cells and led to
increased mortality (Morrison et al., 2003). A similar experimen-
tal model indicated that IFN-γ, produced in the lungs by NK
cells, triggers antifungal mechanisms and mediates the protec-
tive impact of NK cells (Park et al., 2009). This indicated that
NK cell-derived IFN-γ was the mediator of the NK cell protec-
tive effect against IA, and excluded the involvement of NK cell
cytotoxic proteins (e.g., perforin, granzymes, granulysin). NK
cell-derived IFN-γ also increased the capacity of macrophages to
inhibit the germination of conidia. These findings suggested that
NK cells are a critical component of the innate immune response
against IA.

More recent studies on the interaction between purified human
NK cells and A. fumigatus (Bouzani et al., 2011; Schmidt et al.,
2011) have both confirmed the ability of NK cells to mount an
effective defense against IA but through contrasting mechanisms
of antifungal activity. The debate raised by these contrasting stud-
ies has been discussed elsewhere (Bouzani et al., 2012). Schmidt
et al. (2011) showed that NK cells with or without interleukin-2
(IL-2) stimulation could kill hyphae but not conidia with perforin
acting as the mediator of the cytotoxic mechanism. In contrast,
Bouzani et al. (2011) demonstrated a two-step antifungal mecha-
nism, where contact-dependent activation of NK cells by hyphae
provoked the release of IFN-γ able to damage the fungus. Second,
upon its secretion, the NK cell-derived IFN-γ was capable of act-
ing against hyphae that were not in physical contact with the NK
cells. This mechanism was found to be independent of the degran-
ulation NK cells (release of perforin). IFN-γ-mediated antifungal
activity of NK cells was consistent with the results of the neu-
tropenic mouse model (Park et al., 2009). The pathway through
which IFN-γ attacks A. fumigatus remains to be elucidated.

The anti-Aspergillus activity of invariant natural killer T (iNKT)
has also been studied (Cohen et al., 2011). In an immunocompe-
tent mouse model, it was shown that A. fumigatus activated iNKT
cells in the presence of CD1d+ APC. Instead of lipids it was β-1,3
glucan that induced the release of IL-12 by APCs and thereafter
the activation of iNKT cells to secrete IFN-γ.

VACCINE AND THERAPEUTIC DEVELOPMENT
The strong evidence, provided by the studies mentioned in this
review, for the ability of immune cells to control the growth
of A. fumigatus in vitro has suggested the possibility of using
innate immune cells as vaccines against IA. The ability of purified
A. fumigatus antigens to modulate the immunity of iDC (Ok et al.,
2009) and the capacity of Aspergillus-pulsed DC to drive a Th1 host
immune response in mice (Bozza et al., 2003) have indicated the
vaccination potential of DC (Roy and Klein, 2012). The transfer
of NK cells to immunosuppressed patients to generate a protective
response against IA is also possible. To date, existing reports show
a protective effect of NK cell transfer to animal hosts with IA (Park
et al., 2009). However, the promising evidence is counter-balanced
by the limited number of studies, the potential side effects and the
unknown characteristics of the candidate treatment group.

The in vitro interactions of monocytes and Aspergillus with the
antifungal drugs voriconazole or lipid formulations of ampho-
tericin B have been investigated. The results suggest that under
the experimental conditions used these drugs can promote pro-
inflammatory immune responses of monocytes to A. fumigatus
hyphae (Simitsopoulou et al., 2008, 2011), suggesting a possible
role in clearing the fungus in vivo. The use of exogenous IFN-γ as
an immunological adjunct to antifungal therapy has been found
to be effective in individual renal transplant cases with A. fumi-
gatus pulmonary infection (Armstrong-James et al., 2010). The
likely mechanism is by IFN-γ immunotherapy enhancing the abil-
ity of pulmonary phagocytic cells to promote pro-inflammatory
responses in Aspergillus infection which facilitates clearance of the
fungus.

CONCLUSION
Studies of the interactions between A. fumigatus and immune
cells have contributed greatly to the understanding of the host–
pathogen interaction during aspergillosis (Figure 1). These have
indicated that under in vitro conditions the fungus can survive
interactions with macrophages and DC through its ability to adapt
to the harsh environmental conditions within the host rather than
a defined pathology reliant on specific virulence factors. In iden-
tifying the roles of lesser studied immune cells in defense against
IA it has been possible to identify novel therapeutic strategies that
may eventually ease the burden of IA.
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