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In bacteria and archaea, genome size
and guanine–cytosine (GC) content
are correlated (Bentley and Parkhill,
2004; Musto et al., 2006; Mitchell, 2007;
Suzuki et al., 2008; Guo et al., 2009).
These parameters show greater corre-
lation in bacteria (Pearson’s correlation
coefficient r = 0.46) than in archaea
(r = 0.195) (Nishida, 2012a). The GC
content in bacteria varies widely from
13.5% in “Candidatus Zinderia insecti-
cola” (McCutcheon and Moran, 2010) to
74.9% in Anaeromyxobacter dehalogenans
(Thomas et al., 2008). Although the GC
content is similar among closely related
bacteria, sometimes, the GC content is
similar in phylogenetically distant bac-
teria. The distribution of GC content in
bacterial genomes differs from a Gaussian
distribution with multiple peaks.

Bacterial chromosome organization is
mediated by nucleoid-associated proteins
(NAPs) (Wang et al., 2011). The specificity
of NAP–DNA binding is determined by the
differences in the GC content in specific
regions of the DNA (Lucchini et al., 2006;
Navarre et al., 2006; Castang et al., 2008;
Smits and Grossman, 2010; Yun et al.,
2010; Gordon et al., 2011). For example,
the Salmonella NAP specifically binds to
DNA regions with low GC content and
inhibits expression of the genes present
in these regions (Lucchini et al., 2006;
Navarre et al., 2006). NAPs vary among
bacteria (Ali et al., 2012). In addition, the
NAP genes are located in the plasmid as
well as in the chromosome, suggesting that
these genes have been distributed via plas-
mids (Takeda et al., 2011). I hypothesize
that the GC content distribution may be
related to the variation in bacterial NAPs
(Nishida, 2012b, 2013). However, the cor-
relation between the genome size and GC
content in bacteria is poorly understood.

The obligate host-associated bacteria
contain short genomes with low GC
content (Mira et al., 2002; Moran, 2002;
McCutcheon and Moran, 2012). Insertion
sequence elements play an important role
in the genome reduction of the host-
associated bacteria (Song et al., 2010),
whose small population size and asexual
mode of reproduction lead to reduction
of the genome size. In addition, deletion
of the genes involved in DNA repair may
contribute to a GC-poor genome (Moran
et al., 2008). However, genome size reduc-
tion is not limited to the obligate host-
associated bacteria (Nilsson et al., 2005).
Generally, bacteria show a bias toward
genomic deletions than insertions (Mira
et al., 2001). Thus, bacteria must acquire
additional genes to adapt to different
environments.

Some bacterial lineages, for exam-
ple, Actinobacteria, have maintained long
genomes with high GC content. Plasmids
(and viruses) have played an impor-
tant role in additional gene uptake into
chromosomes (Davison, 1999; Sørensen
et al., 2005; Harrison and Brockhurst,
2012). Occasionally, the plasmid DNA
gets integrated into the host chromo-
somal DNA (Harrison and Brockhurst,
2012). In addition, viral DNA occasion-
ally remains in the chromosome as a
prophage. Horizontally transferred DNA,
plasmid DNA, and virus DNA have lower
GC content than host chromosome DNAs
(Rocha and Danchin, 2002). In a pre-
vious study, I compared the GC con-
tent across 953 pairs of bacterial chro-
mosomes and plasmids. Among the 953
pairs, 746 (78.3%) pairs showed <10%
difference in the GC content of the plas-
mid DNA and the host chromosomal DNA
(Nishida, 2012a). Probably, most bacte-
ria are unable to maintain and regulate

plasmids that show very different GC con-
tent from their own. However, why most
bacteria have not acquired DNAs with GC
content higher than that of their own chro-
mosome, but have acquired DNAs with
lower GC content is not clear.

During evolution, DNA base mutations
occurred intracellulaly and not in extra-
cellular environments. The DNA poly-
merase components that are involved in
DNA replication directly influence the
base composition of the genome (Zhao
et al., 2007; Wu et al., 2012). Variations
in the bacterial genome DNA sequences
cannot be fully explained on the basis of
neutral mutations alone (Sueoka, 1988). In
bacterial genomes, mutations from GC to
adenosine–thymine (AT) are more com-
mon than mutations from AT to GC
(Lind and Andersson, 2008; Hershberg
and Petrov, 2010; Hildebrand et al., 2010;
Rocha and Feil, 2010). I hypothesize that
plasmids (and viruses) have been gen-
erated from the chromosome (Frontiers
Research Topics, “Evolution and func-
tion of bacterial and archaeal genome
sequences”). The host bacterial genome
DNA has undergone a series of changes
during evolution to become AT rich. On
the other hand, the GC content in a plas-
mid that is in an extracellular environ-
ment would not change. Such a plasmid
will not be accepted by the original host
bacterium because most bacteria appear
unable to acquire DNAs with GC con-
tent higher than that in their own chro-
mosome. Such plasmids are transferred
to bacteria that contain genomes with
GC content higher than that in the plas-
mid (Figure 1). This natural system may
be effective for obtaining useful genetic
information (DNA fragments) from phy-
logenetically distant bacteria. I propose
that the genome size and GC content
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FIGURE 1 | Flow of DNA fragments in bacteria.

in bacteria are correlated because genetic
information has been transferred from
AT-rich chromosomes to GC-rich chro-
mosomes during evolution. If most bacte-
ria could acquire DNAs with GC content
higher than that in their own chromosome
in addition to the lower GC content DNAs,
then the flow of DNA fragments would
not be biased and the genome size and
GC content would not show a correlation.
The results of previous studies indicate
that bacteria contain a system (or systems)
to generate and maintain GC content dif-
ferences in the chromosomal DNA (e.g.,
Lawrence and Ochman, 1997). In order to
maintain GC content, bacteria should esti-
mate the DNA base composition of the
transferred DNA fragments.
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