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We have developed a method for the determination of copper in natural waters at
nanomolar levels. The use of a microplate-reader minimizes sample processing time
(~25s per sample), reagent consumption (~120wL per sample), and sample volume

Edited by:
Sergio Sanudo-Wilhelmy, University
of Southern California, USA

Reviewedby: (~700 nL). Copper is detected by chemiluminescence. This technique is based on the
Kathleen Scott, University of South X K
Florida, USA formation of a complex between copper and 1,10-phenanthroline and the subsequent

emission of light during the oxidation of the complex by hydrogen peroxide. Samples are
acidified to pH 1.7 and then introduced directly into a 24-well plate. Reagents are added
during data acquisition via two reagent injectors. When trace metal clean protocols are
employed, the reproducibility is generally less than 7% on blanks and the detection limit
is 0.7 nM for seawater and 0.4 nM for freshwater. More than 100 samples per hour can
be analyzed with this technique, which is simple, robust, and amenable to at-sea analysis.
Seawater samples from Storm Bay in Tasmania illustrate the utility of the method for
environmental science. Indeed other trace metals for which optical detection methods
exist (e.g., chemiluminescence, fluorescence, and absorbance) could be adapted to the
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INTRODUCTION
Copper, like many trace metals, is an essential micronutrient at
very low concentrations or availability, but may be toxic and have
deleterious effects at elevated concentrations. Copper concen-
trations in natural waters vary greatly depending on water type
and location. Open ocean surface water concentrations can be
as low as 0.5nM, while deep ocean concentrations are as high as
5nM (Boyle et al., 1977; Bruland, 1980). Coastal waters generally
have higher copper concentrations, from between 1 nM in pris-
tine waters to as high as 755nM in highly contaminated coastal
area such as Chafiaral in northern Chile (Stauber et al., 2005) or
170 nM for the Erhjin Chi Esturay in China (Han et al., 1994).
The average concentration of copper in world rivers is 160 nM
(Sarmiento and Gruber, 2006), with concentrations as high as
1.2 mM found in the Odiel river, Spain (Olias et al., 2004).
Overexposure to high copper concentrations is associated with
myriad biological and ecological impacts, including salmon phys-
iology (Baldwin et al., 2003), domoic acid production by toxigenic
pennate diatoms (Maldonado et al., 2002), and the growth and
relative abundance of phytoplankton species (Moffett et al., 1997;
Mann et al., 2002; Paytan et al., 2009). Mining, fossil fuel com-
bustion, industrial processes, and other anthropogenic activities
have greatly accelerated the release of this toxic trace metal to the
oceans (Newman and Unger, 2003) resulting in increased efforts
to determine the sources, transport and fate of Cu (and other
metals) in the aquatic environment (Taylor and Shiller, 1995).

Current methods for low-level copper analysis in natural
waters include flow injection analysis with chemiluminescence
detection (Coale et al., 1992) based on the luminescence pro-
duced by the complexation of copper with 1,10-phenanthroline
(Yamada and Suzuki, 1984), in-situ analysis using chemilumi-
nescence (Holm et al., 2008) and colorimetry (Callahan et al.,
2003), ICP-MS (Field et al., 1999) and electrochemical meth-
ods (Achterberg and Braungardt, 1999; Wang, 2002). The com-
plexity of these methods and their relatively large sample size
requirements (generally at least 40 mL) has limited their use
and contributes directly to the lack of regular monitoring of
environmental copper concentrations. Such measurements would
increase our understanding of the sources of copper to the aquatic
environment and their impact. A simple, low-volume, and low-
cost method for copper analysis would also be useful in manipula-
tive biological experiments such as in-vitro culturing work (Brand
etal., 1986; Peers et al., 2005) and mesocosm incubations (Paytan
et al., 2009) where sample volumes are often limited.

Microplate-readers, or plate-readers, are instruments designed
to measure the absorbance, fluorescence, or luminescence of sam-
ples in microtitre plates. The plates typically consist of 96 wells,
with a volume of 100-200 L per well. Their main advantages
are small sample volume, high-throughput of samples and ease of
use. They have been widely used in biological sciences for many
years (Ashour et al., 1987), but their use in environmental chem-
istry is limited. Methods have been published for macro-nutrient
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analysis in seawater (Ringuet et al., 2011) and pore-water con-
stituents (Laskov et al., 2007). To our knowledge there have
been no plate-reader methods developed for low-level trace metal
analysis.

In this paper we describe the development of a plate-reader
method to detect copper by chemiluminescence via the reac-
tion with 1,10-phenanthroline and hydrogen peroxide. The plate
reader is well suited to this application. Many chemiluminescent
reactions are kinetically fast, resulting in optimal detection imme-
diately after reagent-sample mixing. The plate reader uses two
precision injectors (two needles placed around the detector) to
introduce reagent into the sample and is able to begin detec-
tion before or during reagent injection. Furthermore, the small
size of the instrument makes it practical for use at sea or in the
field.

MATERIALS AND METHODS

MATERIALS

This work used a FLUOstar OPTIMA microplate-reader
equipped with two reagent injectors. The reagent needles are
made of stainless steel, the tubing and valve housing are made
of Teflon and Kel-F, and the syringe barrel is made of glass. Each
syringe has a volume of 500 wL, and can inject a minimum of
50 wL and maximum of 450 L in each cell. The detector present
on the FLUOstar OPTIMA is a photomultiplier tube (PMT). No
filters are used in this method.

All microplate measurements were made in a lab with an air
conditioning system set to 20°C. No further temperature control
was employed.

Low Density Polyethylene (LDPE) bottles were used to store
reagents, stock solutions and samples. Plates used to determine
copper concentration were the CELLSTAR Cell Culture Multiwell
Plates 24 and (grenier bio-one) with a physical surface treat-
ment, made in crystal Clear® polystyrene, sterile and individually
packed.

MEASURES TO MINIMIZE CONTAMINATION

The preparation and manipulation of the reagents, standards, and
samples was carried out in a class 100 laminar flow hood. All
the materials used for the experiments (e.g., reagents, samples,
standards, tips) were stored in two ziplock bags inside the flow
hood except for the hydrogen peroxide, which was stored in three
ziplock bags in a fridge dedicated to trace metal analysis. Not
ideally, the microplate reader instrument was not in a laminar
flow hood, so plates and reagents were placed in a ziplock bag
for transport and kept covered until analysis. During the analysis
reagent bottles were partially capped and kept in closed ziplock
bags. During manipulations the operator wore non-sterile nitrile
gloves.

New and used bottles were rinsed five times with Milli-Q water,
and then soaked in a 6 N HCI solution (Aldrich ACS reagent).
Then the bottles were rinsed five times with Milli-Q water and
soaked for 7 days in a 6 N trace metal grade nitric acid (J. T. Baker)
solution. Then bottles were rinsed 10 times with Milli-Q water,
dried in a laminar flow hood, and stored capped in ziplock bags.
Acid baths were changed after 6 months or 200 bottles washed.
Pipet tips were cleaned immediately prior to use with two rinses of

6 N Ultrex® IT HCI, one rinse of Milli-Q water then 1-3 complete
volumes of the intended solution.

Plates were rinsed first with 50% acetone (Aldrich ACS
reagent), and then rinsed five times with Milli-Q water. The cells
were then filled with 6 N trace metal HCI (J. T. Baker) for two
days. Finally they were rinsed five times with Milli-Q water and
dried in a laminar flow hood. Plates were used only once because
during prolonged exposure the hydrogen peroxide attacked the
plastic.

The two precision injectors of the plate reader, used to inject
reagents, were washed each day before use. The first step was to
rinse the syringes, needles, and tubes three times with 4.5 mL (this
is the maximum volume of the syringe) of 6 N HCI (J. T. Baker
“trace metal” grade). Then injectors were rinsed three times with
4.5 mL of Milli-Q. These steps were repeated and finally the injec-
tors were flushed with 4.5 mL of each reagent. At the end of each
analytical session the system was rinsed two times with 4.5 mL of
Milli-Q water.

ANALYTICAL METHOD

A chemiluminescence method for flow-through analysis of cop-
per (II) in seawater using 1,10-phenanthroline (Coale et al.,
1992; Zamzow et al., 1998), was adapted to the microplate-
reader. This method involves the production of luminescence
during the catalytic decomposition of hydrogen peroxide by the
copper-1,10-phenanthroline complex, at a pH ~9.5 (Yamada
and Suzuki, 1984). The addition of cetylethyldiethylammonium
bromide (CEDAB) introduces surfactant micelles in solution
(Yamada and Suzuki, 1984) which increases the sensitivity of
the method by increasing the probability of contact between the
reagent and the dissolved copper in the solution. In addition,
a stable complexing agent for copper, tetraethylenepentamine
(TEPA), is added to remove the background signal attributed
to copper impurities in the reagents themselves (Yamada and
Suzuki, 1984).

REAGENT PREPARATION
Reagent 1 consists of 30% (in volume) hydrogen peroxide solu-
tion (Stabilized ACS reagent grade).

Reagent 2 contains 0.180 M 1,10-phenanthroline, 0.06 M
TEPA, 0.225M NaOH and 0.06 M CDAB in purified Milli-Q
water (see below). This reagent is made by adding 2.4 g of CDAB
(Reagent grade, Sigma) and 0.9 g of NaOH (ACS Reagent grade,
J. T. Baker) to 100 mL of purified Milli-Q water and allowing
for complete dissolution. Then 30 pL of a 4 mM stock solution
of TEPA (97%, Fluka) and 1.5mL of a 12 mM stock solution of
1,10-phenanthroline (99%, Aldrich) are added.

CREATION OF STANDARDS AND BLANKS

All standard and blank solutions are made from “copper free”
seawater or Milli-Q water. Seawater is filtered using a 0.2 wm
poly-ester-sulphone membrane filter (Pall Acropak). The fil-
tered water is brought to pH 6 with ~300 WL/L of 6 N Ultrex®
II HCI and passed through a 5mL iminodiacetic acid column
(HiTrap Chelating HP, Amersham Biosciences) at a flow rate
of <5mL/min. The column is prepared by first washing it with
50 mL of 0.1 N HCI, then 100 mL of Milli-Q water, and finally
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with 50 mL of seawater before collection. Acidified (pH ~1.7)
standards are made from pH 6 seawater which is then acidified
by adding 3.7 mL/L of 6 N Ultrex® II HCL. Standards are prepared
by gravimetric dilution from a 1g/L copper certified reference
solution for trace metal analysis and were stable for at least 1
month. Milli-Q water cleaned with the HiTrap column (“purified
Milli-Q”), was used to make pure water standards and blanks.

PROCEDURE

The cleaned and dried 24-well plate is filled with 700 WL of pH 1.7
sample, blanks and standards, using a 100-1000 pL micropipette
and clear polypropylene tips. Generally five pH 1.7 standards
and a blank, bracketing the range of expected concentrations, are
used, with four replicates of each standard. We generally run each
sample in triplicate. The plate is covered and placed inside two
ziplock bags for transport to the plate reader. The plate reader
injectors are flushed (see cleaning process) and finally the plate is
loaded into the plate reader and analyzed. Generally samples are
inside the plate for less then an hour before their analysis.

One hundred and twenty microliter of each reagent is
injected to produce the luminescence reaction. A pump speed
of 310 wL/sec was used, as recommended by the manufacturer.
This speed permits good mixing between the reagents and the
sample and limits well-to-well contamination. The positioning
delay refers to a waiting period after a well of the microplate
moves to the measurement position and before the measure-
ment begins. The positioning delay allows the liquid to settle and
the surface to become stable so that the measurement is more
accurate. The recommended delay time from BMG LABTECH
of 0.2s was used. An end-point mode was used for all analy-
ses, meaning each cell was measured once before moving to the
next cell. The instrument was programmed to record light emis-
sion after 25, in order to maximize the signal (see “Results and
Discussion”).

SAMPLE COLLECTION

Surface seawater was collected from six stations in Storm Bay,
Tasmania, from a 15 m aluminum ship. A nylon net was braided
around a 60 mL acid-washed LDPE bottle to create a holder and
the net was linked to the operator with a 5m nylon line. Eight
30g lead weights placed inside ziplock bags were attached to
the net to sink the bottle. To keep the bottle as far as possible
from the boat hull a boat hook was used to catch the line, sep-
arated from the sample bottle by at least a meter in order to
not contaminate the sample. Contact between sample and air
never exceed 30s (the time to catch and close the bottle). All
samples were individually packed inside two ziplock bags and
stored in a closed HDPE box for transport back to the lab. The
nylon net was rinsed with 1 M HCI and Milli-Q water between
samples. Samples were refrigerated for two days, then acidi-
fied to pH 1.7 with ultra-pure HCl and then filtered through
acid-cleaned 0.2 pm poly-ester-sulphone membrane filters (pall
Acropak). This sequence (acidification followed by filtration) is
not ideal, and consequently the copper concentrations reported
here should be interpreted with caution. They most likely repre-
sent a fraction equivalent to slightly less than the total dissolvable
copper.

UV IRRADIATION

We investigated the impact of UV irradiation on copper analy-
sis. Samples were dispensed into 100 mL teflon bottles and placed
between two commercial GPH843TSL/4 ultraviolet lamps inside
a black PVC chamber for 1-3 h.

CALCULATION

The detection limit is calculated as three times the standard
deviation of the concentration measured on blanks. Precision is
calculated as the relative standard deviation (%) (RSD) of the
standard concentration. Generally analyses were performed on
four replicates, except where noted.

RESULTS AND DISCUSSION

REPEATABILITY

The repeatability of the method was assessed using a 24-well plate
filled with 700 pL of either a 50 nM seawater standard or copper-
free seawater. The Cu-free seawater was obtained by passing a
low-Cu, UV-irradiated open ocean surface sample through the
chelating column. For each plate the first three replicates were
discarded because of poor precision on start-up. Well-to-well
reproducibility is good (Figure 1), with a relative standard devi-
ation of 4.46% on the 50 nM standard or a standard deviation
equivalent to 2.23 nM. On blanks the standard deviation is equiv-
alent to 0.23 nM. Generally the %RSD of replicates run on the
same plate is about 5% and never above 10%.

SENSITIVITY, LINEAR RANGE, DETECTION LIMITS, AND ACCURACY
Detection limits were 0.4 nM in pure water and 0.7 nM in sea-
water (Figure 2). Linearity was observed to 200 nM in pure water
and 100 nM in seawater (data not shown). Sensitivity, represented
by the slope of the calibration curve, was always greater in pure
water then in seawater by a factor of 3—5, consistent with previous
studies (Holm et al., 2008). It is therefore important to match the
standard matrix to that of the samples. Sensitivity varied by 25%
day-to-day and appeared random, possibly linked to factors such
as room temperature, humidity, oxygen, and CO; levels (Xiao
et al., 2002). It is therefore important to perform a calibration
with each plate analysed.

Accuracy was assessed with four replicates of the standard ref-
erence material CASS-5 (5.9 £ 0.44nM). The measured value
for CASS-5 (7.1 &= 1.1 nM) is consistent with the certified value
(Figure 2), confirming the accuracy of the technique.

OPTIMIZATION OF INJECTED REAGENT CONCENTRATIONS

Previous studies (Zamzow et al., 1998; Holm et al.,
2008) have optimized reaction pH, and concentrations of
1,10-phenanthroline, TEPA, CDAB, and hydrogen peroxide
for maximum signal intensity. We wanted to see whether the
concentration of reagents injected into the cells had an impact
on signal intensity. We were interested in minimizing contami-
nation and reagent volume injected. In this test we maintained
optimized reagent concentrations and pH in the reaction cells
but adjusted the volume and concentration of injected reagents;
when the reagent concentrations were increased the volume
injected was decreased proportionally within the capabilities of
the plate reader’s injectors (Table1). Sample volume was held
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FIGURE 1 | Reproducibility on 21 replicates analyzed in a 24-well plate for 50 nM seawater consistency standard and seawater blanks.
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FIGURE 2 | Calibration curves in seawater and freshwater with CASS-5 reference for seawater.
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constant at 700 pL. In pure water, the signal intensity increased
with decreasing reagent volume, reaching a maximum at 130 pL
(Figure 3), corresponding to a hydrogen peroxide concentration
of 30%. This result most likely reflects the effect of a decreased
dilution of the sample. In seawater the signal intensity was not
as sensitive to reagent volume (Figure 3). However, using a 30%
hydrogen peroxide solution and 130 wL reagent injection for
both pure water and seawater reduces the risk of contamination
by eliminating a dilution step during reagent preparation.

OPTIMIZATION OF REAGENT VOLUME INJECTED

An optimization was made to determine whether the assay
response was sensitive to small variations in reagent vol-
ume. For this experiment reagent concentrations correspond-
ing to 30% hydrogen peroxide were used (see Table1) and
the concentration of reagents in the well was not maintained
constant; when the volume injected increased the concen-
tration was not adjusted. For both seawater and freshwater,
an injected volume of 120uL produced the best signal
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Table 1| Reagent and sample volumes used in the experiment to optimize reagent concentrations and volumes.

Reagent volume Sample volume R1 concentration

injected (pL) (L) in injectors (% V/V)
130 700 30
200 700 20
400 700 10
450 700 5

R2 amount of
substance in cell

R2 concentration
in injectors (M)

R1 amount of
substance in cell

(mmol) (wmol)
1.3 0.18 24
1.3 0.12 24
1.3 0.06 24
0.75 0.03 13

The amount of substance of each reagent stays constant in the well by adjusting the volume and concentration injected.
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FIGURE 3 | Reagent volume vs. signal intensity to test the optimum reagent concentration and volume. Sample volume was held constant. As reagent
volume was adjusted so too were reagent concentrations, in order to maintain a constant amount of each reagent in the cell. See Table 1 for details.
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intensity (Figure4), so this volume was chosen for all
experiments.

We also tried pre-mixing the two reagents in 1-1 proportions
and using only one mixed reagent with twice the volume injected,
as other studies have done. A mixed reagent did not work with the
plate reader, as the two tensioactives (CDAB and TEPA) present
in the phenanthroline reagent produced bubbles and foam inside
the injector syringes in the presence of hydrogen peroxide.

OPTIMIZATION OF DETECTION TIME

The kinetics of the luminescence reaction between copper and
1,10-phenanthroline are very fast, less then a second (Eigen,
1963). However, we observed that signal intensity increased for
25 s after reagent injection (Figure 5). This delay probably occurs
because there is no mechanical mixing in the well, so it takes
time for convection and diffusion to achieve a homogenous solu-
tion and for complete reaction to occur. The optimal detection
time was 25s. For each cell, the luminescence signal at 25s was
recorded as the final signal. With these settings a 24-well plate can
be analysed in 10 min.

PLATE CONTAMINATION

We found that when new, sterile plates are used unwashed the
signal intensity for blanks is as much as 35nM and the standard
deviation is more than 86% of the signal intensity. After 12h
in a cleaned plate the signal intensity of a 20 nM seawater stan-
dard (pH ~1.7) had increased by 45% and the standard deviation
increased more than 4-fold. These data suggest that polystyrene
continues to release copper into solution even if plates are acid-
cleaned, consistent with previous studies (Batley and Gardner,
1977; Howard and Statham, 1997). Consequently plates need to
be analysed as soon as possible after filling. The use of alternative
plate materials such as PTFE or polyethylene may minimize this
source of contamination.

UV IRRADIATION

UV irradiation is normally not used with flow-through copper
detection via the luminescence reaction with 1,10-phenanthroline
(Coale et al., 1992; Holm et al., 2008). An acidification step to
pH ~1.7 for at least 24 h prior to analysis was assumed to release
all ligand-bound copper to the solution. However, other studies
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FIGURE 4 | Volume of reagents injected vs. signal intensity for a constant sample volume and a constant reagent concentration (R1 30% H,03;

—S—freshwater 50nM
Cu added

—H—seawater 20nM
Cu added

140 150 160

160000 1
140000 1
120000 1
£ 100000 -
w
5]
£ =&—freshwater 50nM Cu
.= 80000 =
—_ added
<
5
& 60000 -
2 =B~scawater 20nM Cu
added
40000
o HW
o0 == . : " " :
0 5 10 15 20 25 30

Detection Time (s)

FIGURE 5 | Signal intensity as a function of detection time. Each data point represents the average and standard deviation of 4 replicates analyzed after the
time indicated. Thus four samples were analyzed after 5 s, another four after 10 s and so on.

have suggested UV irradiation may be necessary to dissociate
some metal-ligand complexes (Van Den Berg, 1984; Achterberg
et al., 2001a).

We found evidence to support the need for UV irradiation
with a seawater sample collected off the coast of Bruny Island,
Tasmania. This water was sampled without respecting trace metal

protocols, filtered, “copper-cleaned” with the Hi-Trap column,
and acidified, after which copper was added to produce a range of
standards. However, we were unable to obtain a linear calibration
curve, with the number of photons emitted staying approximately
constant across copper additions. Furthermore, the signal inten-
sity for the un-amended sample was very high. It is clear that
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in this case the chelating column was not effective at removing
copper ions, possibly due to presence of a strong ligand, as only
free copper is removed by the column. Figure 6 shows the effect
of UV irradiation on the signal intensity of a 20nM addition
made to this water. After 1h of irradiation the signal intensity
is increased 4-fold and stays approximately constant past this
time, suggesting successful release from organic copper-binding
ligands.

ANALYSIS OF COASTAL SEAWATER SAMPLES

The analysis of six seawater samples collected from Storm Bay,
Tasmania, illustrates the application of the plate-reader method
to real samples (Figure 7). The sampling sites are directly down-
stream from the Derwent estuary, which is highly contaminated
by trace metals including copper (Butler and Wangersky, 2006).
Despite the proximity to the Derwent estuary, copper concen-
trations in surface waters of Storm Bay are relatively low, and
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similar to oceanic concentrations (0.3-3 nM) (Buckley and Van
Den Berg, 1986; Coale and Bruland, 1990). One exception is a
sample adjacent to Bruny Island with a concentration of 6.2 nM.
We are not aware of any previous measurements of Cu in Storm
Bay, but Butler and Wangersky (2006) report Cu concentra-
tions in the Derwent River and estuary of 1.8-232 nM, consistent
with our results. In the Macquarie estuary on the west coast
of Tasmania, copper concentrations are between 10 and 50 nM
(Carpenter et al., 1991). The relatively low copper concentra-
tions measured in Storm Bay may be due to a strong oceanic
influence, as a storm had passed through the area 3 days before
sampling. This example demonstrates the efficiency of the plate
reader method, as sample analysis took only 3 h, including acid-
ification and filtration steps. The microplate-reader technique
is particularly well suited to large sample sets (more than 100
samples); the absence of a pre-concentration step and the short
detection time minimizes sample processing time.

POTENTIAL APPLICATIONS

The plate-reader method for copper analysis described here pro-
vides a rapid, simple, low-volume method with good precision at
relatively low concentrations suitable for work in freshwater and
saltwater. These characteristics of the method make it applicable
to a range of applied and basic research in the biological and envi-
ronmental sciences. The method could be useful in culture, meso-
cosm and aquaculture studies and in the analysis of pore-waters
or samples from benthic flux chambers. The method would also
be useful for environmental monitoring of surface waters at high
spatial and temporal resolution, or monitoring of wastewater
streams and storm water overflow. Significantly, the detection
limits of the method in freshwater and seawater are 13 and 7 times

greater than the respective ANZECC guidelines for freshwater
and marine ecosystems, 5.2 and 5.0 nM (ANZECC/ARMCANZ,
2000).

The detection limits reported here are not suitable for
determining copper in seawater at the lowest concentrations
found in the literature for the open ocean (e.g., <lnM).
This problem could be solved by the use of a dedicated,
trace metal clean instrument placed inside a laminar flow
hood to protect plates during their analysis and the use of
other types of plates, for example polyethylene or teflon. The
method could also be coupled with off-line pre-concentration
(Biller and Bruland, 2012) for measurement of ultra-trace level
samples.

Other optical methods for trace metal analysis using chemi-
luminescence, fluorescence, or spectrophotometric detection
may be amenable to adaptation to the microplate reader.
Iron (Achterberg et al., 2001b), cobalt (Sakamoto-Arnold and
Johnson, 1987), aluminum (Hydes and Liss, 1976), and zinc
(Grand etal., 2011), are good candidates for this method. A plate-
reader method could also be used for Cu speciation, following the
titration method of Zamzow et al. (1998).

CONCLUSIONS

With the use of our optimization conditions, which include detec-
tion after 255, concentrated reagents with appropriate volume
injected, and plate cleaning, we have obtained a low detec-
tion limit of 0.4nM in freshwater and 0.7 nM in seawater for
a 700 wL sample with a precision of 7%. These detection lim-
its permit a rapid, simple, and inexpensive determination of
copper concentration suitable for coastal seawater and river
water.
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