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Since the discovery of ammonia-oxidizing archaea (AOA), new questions have arisen
about population and community dynamics and potential interactions between AOA and
ammonia-oxidizing bacteria (AOB). We investigated the effects of long-term fertilization on
AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of
these questions. Sediment samples were collected from low and high marsh habitats in
July 2009 from replicate plots that received low (LF), high (HF), and extra high (XF) levels of
a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated
plots were included as controls (C). Terminal restriction fragment length polymorphism
analysis of the amoA genes revealed distinct shifts in AOB communities related to
fertilization treatment, but the response patterns of AOA were less consistent. Four AOB
operational taxonomic units (OTUs) predictably and significantly responded to fertilization,
but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene
sequences within the Nitrosospira-like cluster dominated at C and LF sites, while
sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some
clusters of AOA sequences recovered primarily from high fertilization regimes, but other
clusters consisted of sequences recovered from all fertilization treatments, suggesting
greater physiological diversity. Surprisingly, fertilization appeared to have little impact on
abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB
in response to long-term fertilization, and also suggest a missing link between community
composition and abundance and nitrogen processing in the marsh.
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INTRODUCTION
Oxidation of ammonia to nitrite is a critical process in nitrogen
cycling and is carried out by a suite of distinct microorganisms
within the bacterial and archaeal domains. The fate of nitrogen
is of particular importance in nitrogen-sensitive coastal systems,
such as estuaries and salt marshes, where primary productivity is
typically nitrogen-limited (Valiela and Teal, 1974; Howarth, 1988).
Nitrogen-cycling processes in salt marshes, therefore, play a sig-
nificant role in the health and preservation of coastal habitats, yet
our understanding of the ecology of the organisms responsible
and their responses to perturbations is still evolving.

Over the last decade, researchers have made great progress in
describing the diversity and distribution of ammonia-oxidizing
bacteria (AOB) in estuaries (see review by Bernhard and Boll-
mann, 2010) and to a lesser extent in salt marshes (Dollhopf
et al., 2005; Moin et al., 2009). Surveys of 16S rRNA genes and
ammonia monooxygenase genes (coding for the enzyme respon-
sible for the first step in ammonia oxidation) in estuaries and salt
marshes indicate highly similar AOB communities in geograph-
ically distinct habitats that are typically dominated by sequences
most closely related to Nitrosospira spp., although representative

AOB have yet to be obtained in pure culture. Most studies have also
reported salinity to be a major factor regulating the distribution
and diversity of AOB in these coastal systems (Francis et al., 2003;
Bernhard et al., 2005; Ward et al., 2007). However, with the recent
discovery of ammonia-oxidizing archaea (AOA; Könneke et al.,
2005; Treusch et al., 2005) and their apparent wide distribution
in many habitats, the relative importance of AOB to nitrification
and their potential interactions with AOA have been brought into
question.

The diversity and distribution of AOA have begun to be
explored in estuaries and salt marshes, but, unlike the AOB, no
consistent patterns or common regulatory factors have been iden-
tified. Although archaeal amoA gene sequences from both the
water column/sediment and soil/sediment clusters as described
in Francis et al. (2005) have been recovered from estuaries and salt
marshes, to date, most archaeal amoA genes fall into the water col-
umn/sediment cluster, but the diversity of sequence types is quite
high (Bernhard and Bollmann, 2010). Furthermore, factors that
have been identified as potentially regulating their distribution
are many, including salinity, temperature, pH, dissolved oxygen,
nitrogen, and net primary productivity (Beman and Francis, 2006;
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Sahan and Muyzer, 2008; Santoro et al., 2008; Moin et al., 2009).
Thus, our understanding of AOA communities and what regulates
their diversity and distribution, and ultimately, their activity in
these important coastal ecosystems is still rudimentary.

Manipulating the environment and following changes in com-
munities can be a powerful approach to help tease apart important
regulatory factors. Using this approach, Lage et al. (2010) identi-
fied changes in AOB communities in relation to short-term N and
P additions in a salt marsh. Others have taken a similar approach
in soil systems to study changes in AOB communities (Chu et al.,
2007, 2008; Shen et al., 2011), and have generally reported signifi-
cant shifts in activity, community composition, and/or abundance.
However, studies of AOA in response to fertilization have yielded
conflicting results (Kelly et al., 2011; Verhamme et al., 2011;
Wu et al., 2011).

In this study, we explored the diversity and distribution of AOA
and AOB in a series of salt marsh plots that have received differ-
ent levels of commercial fertilizer for nearly 40 years. The plots
were originally fertilized to study the capacity of salt marshes
to remove and retain nutrients (Valiela et al., 1973). Significant
effects of fertilization on other components of the marsh, includ-
ing vegetation (Valiela et al., 1975, 1976), invertebrates (Meany
et al., 1976; Sarda et al., 1996), diatoms (Van Raalte et al., 1976),
and nitrogen-cycling processes (Van Raalte et al., 1974; Hamersley
and Howes, 2005) have been documented. More recently, Bowen
et al. (2011) reported little evidence of fertilization impacts on
bacterial and denitrifying communities in the marsh. To further
the work of Bowen et al. (2011) on describing effects of fertiliza-
tion on microbial communities, we report the first investigation of
fertilization impacts on nitrifying microorganisms in the marsh.
Two of the questions addressed by our study are: (1) Are there
major shifts in AOA and AOB communities that correspond with

fertilization treatments? and (2) Do specific populations of AOA
or AOB respond predictably to fertilization?

Known effects of experimental enrichment on the nitrogen
cycle in salt marsh sediments lead to a prediction that there must
be significant responses by ammonia oxidizers to the supply of
nitrogen entering salt marsh ecosystems. We know that denitrifi-
cation rates increase as N supply increases (Hamersley and Howes,
2005), and concentrations of ammonium are consistently higher
in fertilized plots relative to those in control plots (Hamersley
and Howes, 2005). Since denitrification in the fertilized salt marsh
sediments is supported largely by in situ oxidation of ammonium
(Hamersley and Howes, 2005), we anticipated an increase in abun-
dance of ammonia oxidizers accompanied by shifts in community
composition.

MATERIALS AND METHODS
SITE DESCRIPTION
This study was conducted in the Great Sippewissett Marsh, Fal-
mouth, MA, USA (Figure 1). Circular plots (10 m diameter) of
salt marsh vegetation have been fertilized every 2 weeks during the
growing season since the early 1970s (Valiela et al., 1973, 1975).
Three different levels of mixed NPK fertilizer were applied to each
set of two replicate plots: low (LF; 8.4 g/m2/week), high (HF;
25 g/m2/week), and extra high (XF; 75 g/m2/week). The fertilizer
is a commercially available sewage sludge fertilizer (10% N, 6%
P, 4% K by weight). Forty percent of the N is inorganic, but only
28% is immediately soluble (Valiela et al., 1973). An additional two
replicate plots were left unfertilized as controls (C). The rates of
fertilization correspond to nitrogen loading rates of 12 (C), 182
(LF), 532 (HF), and 1572 (XF) kg N/ha/year (Fox et al., 2012), and
include atmospheric deposition on the marsh surface. The plots
are located within an experimental area of 10 ha. Areas within
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FIGURE 1 | Map of study plots in the Great Sippewissett Marsh, Falmouth, MA, USA. C, control plots with no fertilizer added; LF, low fertilization; HF, high
fertilization; XF, extra high fertilization (levels of fertilization can be found in Section “Materials and Methods”).
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the plots receiving frequent (daily) tidal inundation and domi-
nated by Spartina alterniflora are designated as low marsh habitat.
Areas above mean high tide and dominated by S. patens (in con-
trol plots) or Distichlis spicata (in XF plots) and are designated
as high marsh habitat. More detailed information regarding
recent vegetation cover within the plots is reported elsewhere
(Fox et al., 2012).

SAMPLE COLLECTION
Duplicate sediment cores (6.5 cm in diameter) were collected from
low marsh habitat in each of eight experimental plots described
above in July 2009 during low tide. Within the C and XF plots, two
additional cores were collected from the high marsh habitat. Cores
were kept on ice in the dark for several hours during transport to
the lab. Salinity was measured by a handheld refractometer from
pore water extracted from each core by centrifugation.

DNA EXTRACTION
Subsamples (ca. 0.5 g) were taken from sediment cores at a
depth of 0–2 cm, and stored at −80◦C. DNA was extracted
using the PowerSoil DNA Isolation Kit (MO BIO, Carlsbad, CA,
USA) according to the manufacturer’s protocol. DNA concentra-
tions were measured spectrophotometrically using a SmartSpec
spectrophotometer (Bio-Rad, Hercules, CA, USA) and fluoromet-
rically using a Quant-It fluorometer (Invitrogen, Grand Island,
NY, USA). Extracted DNA was also assessed by gel electrophore-
sis (1% agarose) with 0.1 μl/ml of ethidium bromide. All DNA
extractions were performed on duplicate 0.5 g aliquots of sedi-
ment and the better of each extraction (assessed by quality and
quantity) was selected for downstream analysis.

TRFLP ANALYSIS
Archaeal amoA genes were amplified with Arch-AmoAF and Arch-
AmoAR (Francis et al., 2005). Betaproteobacterial amoA genes
were amplified with amoA-1F and amoA-2R-TC (Rotthauwe et al.,
1997; Nicolaisen and Ramsing, 2002). Each 20 μl reaction con-
tained 1× DreamTaq Buffer with KCl and (NH4)2SO4 (Fermentas,
Inc., Glen Burnie, MD, USA), 320 ng/μl of bovine serum albumin,
3.75 mM of MgCl2, 0.2 mM of dNTPs, 0.5 U of DreamTaq DNA
Polymerase (Fermentas), 0.4 μM of each primer, and approxi-
mately 2–10 ng DNA. Each forward primer was labeled at the 5′
end with 6-FAM (Eurofins MWG Operon, Huntsville, AL, USA)
and all reactions were carried out in an iCycler (Bio-Rad). Archaeal
amoA genes were amplified with the following cycle conditions:
30 s of initial denaturation at 95◦C, followed by 35 cycles of 95◦C
for 15 s, 54◦C for 20 s, and 72◦C for 45 s, and ending with a final
elongation at 72◦C for 5 min. Betaproteobacterial amoA genes
were amplified with the same parameters except the annealing
temperature was 57◦C.

Polymerase chain reaction (PCR) products were digested with
10 U of AciI (NEB), 2 μl of 10× NEBuffer 3 in a 20-μl reac-
tion volume for 6 h at 37◦C. Following ethanol precipitation,
10 μl of formamide, 5 μl of filter-sterilized MilliQ water, and
0.2 μl of GeneScan 500 Size Standard (Applied Biosystems, Foster
City, CA, USA) were added to the samples. Samples were analyzed
at the Cornell University Life Sciences Core Laboratories Center
using an Applied Biosystems 3730xl DNA Analyzer. Community

fingerprints were analyzed using GeneMarker 1.4 (SoftGenetics,
State College, PA, USA). Only terminal restriction fragments
(TRFs) that correspond to a sequence either in our sequences
reported here or from GenBank were included in the final com-
munity analyses. Although including only TRFs represented by a
known sequence likely underestimates the community diversity in
the terminal restriction fragment length polymorphism (TRFLP)
analysis, particularly for the less well-described archaeal amoA
diversity, we believe it minimizes artifacts that may significantly
skew the analysis.

amoA GENE CLONING AND SEQUENCING
Archaeal and betaproteobacterial amoA genes were amplified and
cloned as previously described (Moin et al., 2009). A total of 14
clone libraries were constructed. Betaproteobacterial and archaeal
amoA libraries were constructed from plots 3 (C), 5 (LF), 9 (HF), 6
(XF) in the low marsh and plots 7 (C) and 6 (XF) in the high marsh.
An additional archaeal amoA clone library was constructed from
low marsh in plot 8 (XF) for comparison between plots and an
additional betaproteobacterial amoA clone library was constructed
from a duplicate core collected from low marsh in plot 3 (C).
Each library consisted of 96 randomly selected clones. Approxi-
mately 48–96 clones from each library were sequenced using the
T3 primer and aligned in ARB (Ludwig et al., 2004). In silico TRF
sizes were determined for all sequences.

REAL-TIME PCR ANALYSES
Betaproteobacterial amoA genes were quantified as described in
Bernhard et al. (2007). Archaeal amoA genes were quantified
as described in Moin et al. (2009). Bacterial 16S rRNA genes
were quantified as described in Bernhard et al. (2012). Average
amplification efficiencies from at least three separate runs were
101.3 ± 13.3% (betaproteobacterial amoA genes), 107.4 ± 5.2%
(archaeal amoA genes), and 91.7 ± 4.5% (bacterial 16S rRNA
genes). We calculated copy numbers of amoA genes per gram of
sediment by correcting the number of copies detected in each
PCR for the DNA extraction volume obtained from a known
amount of sediment for each sample. We also normalized amoA
gene copies to μg DNA (measured fluorometrically) and to copies
of bacterial 16S rRNA genes. We detected no significant differ-
ences in amount of DNA among fertilization treatments (ANOVA,
P = 0.2)

STATISTICAL ANALYSIS
ANOVA, t-test, Pearson correlation, and multiple regression anal-
yses were performed in InStat v3.0b (GraphPad, La Jolla, CA,
USA). Data from duplicate cores in each plot were averaged prior
to statistical analyses. Gene abundance data were log transformed
prior to analyses to alleviate heteroscedasticity.

Non-metric multidimensional scaling (NMS) was used to ordi-
nate arcsine transformed TRFLP data with Sørensen’s distance
measure (Bray–Curtis), using a stability criterion of 0.00001. All
ordinations used the Autopilot mode set to slow and thorough,
and a suggested iterative optimization procedure (McCune and
Mefford, 1999). Final stress, final instability, number of iterations,
difference from Monte Carlo test, recommended dimension-
ality, and final ordination scores were used to evaluate the
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results. Ordinations were rotated to maximize the correlation of
fertilization rates on axis 1.

SEQUENCE ANALYSIS
Sequences were compared to published sequences in GenBank
using the Basic Local Alignment Search Tool (blastn) to iden-
tify related sequences and aligned using the sequence editor and
Fast Align in ARB. All alignments were checked manually and
regions of ambiguous alignments were excluded from the analysis.
Phylogenetic relationships were analyzed by the neighbor-joining
algorithm with the Kimura two-parameter correction in ARB.
Confidence in tree topology was assessed by 100 bootstrap repli-
cates using PHYLIP v.3.69. Sequences were checked for chimeras
by comparing phylogenetic placement in trees constructed with
the 5′ and the 3′ ends of the sequence. Pairwise sequence compar-
isons were calculated in ARB and operational taxonomic units
(OTUs) were defined as sequences sharing ≥95% nucleotide
sequence identity using MOTHUR (Schloss et al., 2009). Cov-
erage of each clone library was calculated with the equation:
C = 1 − (n/N) where n = number of singleton sequences and
N = total number of sequences analyzed. A total of 526 betapro-
teobacterial amoA sequences and 310 archaeal amoA sequences
were included in the final analysis. Sequence data have been
submitted to the GenBank database under accession numbers
JX283750–JX284059 (archaeal amoA) and JX306111–JX306636
(betaproteobacterial amoA).

RESULTS
Salinity ranged from 23.6 ± 4.4 in the LF plots to 26.8 ± 1.8 psu
in the C plots in the low marsh habitat and was not significantly
different among fertilization treatments. In the high marsh plots,
however, salinity was significantly lower (P = 0.0004) at the XF
plots (11.7 ± 2.7 psu) compared to salinity in the control plots
(31.0 ± 0.3 psu). Other variables, such as ammonium and sulfide,
vary considerably among plots and a summary of these differ-
ences can be found elsewhere (Hamersley and Howes, 2005; Bowen
et al., 2011).

SHIFTS IN AOB COMMUNITY COMPOSITION
Terminal restriction fragment length polymorphism analysis of
betaproteobacterial amoA genes revealed a total of 12 TRFs and an
average of 8.3 TRFs per sample. TRF 130 and 192 were the most
abundant overall. Only one TRF (472) was not identified in our
sequence dataset, but this TRF represents Nitrosomonas eutropha,
so we included it in our analysis.

Analysis of betaproteobacterial amoA TRFLP patterns using
NMS ordinations revealed distinct communities related to fertil-
ization in both the low and high marsh habitats (Figure 2A). In
the low marsh, there was generally a linear shift from AOB com-
munities in control plots to AOB communities in XF plots, with
AOB communities from LF and HF plots falling in between those
from C and XF plots.

Correlation of ordination axis scores with environmental vari-
ables indicated that axis 1 was most strongly correlated with
fertilization rate (r = 0.76, P < 0.004) and N loading rate (r = 0.76,
P = 0.004), followed by salinity (r = −0.61, P = 0.03). Axis 2 was
not significantly correlated with any of the variables.
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FIGURE 2 | Non-metric multidimensional scaling ordinations based on

TRFLP profiles for betaproteobacterial amoA genes (A) and archaeal

amoA genes (B). Low marsh samples are represented by open symbols;
high marsh samples are represented by filled symbols. Polygons
(white-filled for low marsh, gray-filled for high marsh) are drawn around
replicate samples in each plot. The percent variability explained by each axis
is indicated parenthetically.

Coverage of the betaproteobacterial amoA gene clone libraries
ranged from 89.8 to 100% and we detected a total of 12 OTUs
that closely matched the TRFs (Figure 3). Sixty-one percent of
the sequences were affiliated with the uncultured Nitrosospira-like
cluster, with the remainder affiliated with the Nitrosomonas cluster.

RESPONSES OF AOB POPULATIONS TO FERTILIZATION
We evaluated relative abundance of each TRF in relation to fertil-
ization rates to characterize responses of specific AOB populations.
Four TRFs were significantly correlated with fertilization rates
(Table 1), with TRF492 showing the strongest positive response
to fertilization. Distribution of sequences among the fertilized
treatments corroborated the TRF patterns. For example, all 31
sequences representing TRF 492 in OTUs 9 and 10 were recovered
exclusively from HF and XF plots.
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algorithm with the Kimura two-parameter correction. Bootstrap values >50%

are shown at the internal nodes. Each polygon represents sequences from a
single OTU with the TRF sizes of the sequences (number of base pairs
determined in silico) indicated parenthetically. TRF sizes representing ≥85%
of the sequences in the cluster are shown in bold.

We also observed a striking shift in the distribution of
Nitrosospira-like and Nitrosomonas-related sequences related to
fertilization rates (Figure 4A). Ninety-one percent of the
Nitrosospira-like sequences were recovered from C and LF sites,
while Nitrosomonas sequences were found mostly in HF and XF
sites.

SHIFTS IN AOA COMMUNITY COMPOSITION
A total of 12 AOA TRFs were identified among all plots. TRF
383 was the most abundant overall in both the low and high

marsh habitats (23.9 and 39.9% relative abundance, respectively)
and 29.8% of the sequences recovered from all the sites had this
predicted TRF. This is also one of two TRFs (along with TRF
257) representing sequences most closely related to Nitrosopumilus
maritimus (Figure 5). TRF52 was identified from sequence data
(Figure 5), but was not included in the TRFLP profile because we
could not discriminate actual signal from background for TRFs
smaller than 70 bp.

Non-metric multidimensional scaling ordination of archaeal
communities based on TRFLP data suggest some effect of
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Table 1 | Pearson’s correlation coefficients (r ) describing the

relationships between abundance ofTRFs and fertilization rates.

TRF size Correlation with

fertilization rates

Lineage

AOB

TRF130 (0.50) Nitrosospira-like

TRF403 0.55 Nitrosomonas aestuarii/marina

TRF472 0.42 Nitrosomonas eutropha

TRF492 0.76 Nitrosomonas ureae/oligotropha

AOA

TRF160 0.48 Nitrosopumilus group 1

Only significant correlations (P ≤ 0.05) are shown. Negative correlations are
indicated parenthetically.

fertilization treatment, but the patterns were not robust
(Figure 2B). There were distinct AOA communities in the con-
trol and XF plots in the high marsh sites, but the patterns among
the low marsh samples were less convincing. Furthermore, unlike
the results for AOB communities, we found no significant correla-
tions of ordination scores for axis 1 (or 2) with fertilization rates,
N loading rates, or salinity.

Analysis of archaeal amoA gene sequences revealed 15 OTUs
(Figure 5). Although a few of the phylogenetic clusters were
characterized by a unique TRF, there was generally less agree-
ment between AOA TRF and OTU distribution compared to
AOB. The majority of sequences were affiliated with the water
column/sediment cluster as designated by Francis et al. (2005),
more recently defined as the Nitrosopumilus cluster described
by Pester et al. (2012); Figure 6). Twenty-one sequences fell
within the Nitrososphaera cluster as identified by Pester et al.
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FIGURE 6 | Abundance of betaproteobacterial and archaeal amoA

genes and ratios of amoA genes relative to levels of fertilization.

(2012), a subset of the soil/sediment cluster. Coverage of archaeal
amoA gene diversity in the clone libraries ranged from 92.9
to 100%.

RESPONSE OF AOA POPULATIONS TO FERTILIZATION
Contrary to patterns observed for AOB, only one TRF showed
a significant correlation with fertilization rates (Table 1). How-
ever, there were more distinct patterns within the sequence data
(Figure 4B). We identified a subcluster of 109 sequences within
the Nitrosopumilus cluster that was composed exclusively (with the
exception of a single sequence) of sequences recovered from XF
plots. We also observed a similar pattern for sequences affiliated
with the Nitrososphaera cluster.

AOA AND AOB ABUNDANCE
Abundance of betaproteobacterial amoA genes ranged from
4.5 × 103 to 1.3 × 107 gene copies/g sediment, and was one
to three orders of magnitude lower than archaeal amoA abun-
dance (Figure 6). Although abundance was highest in the XF plots,
the differences among mean values were not significant and lin-
ear regression analysis also confirmed no significant fertilization
effect.

Abundance of archaeal amoA genes ranged from 2.0 × 105 to
1.2 × 109 gene copies/g sediment (wet weight) and were not signif-
icantly different among fertilization treatments. Linear regression
analysis also confirmed no significant fertilization effect. Ratios
of AOA:AOB abundance ranged from 0.5 to 3.1 × 104 and were
highest at the XF plots (Figure 6), although the differences were
not significant.
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To account for possible differences in DNA extraction effi-
ciencies, we normalized AOB and AOA amoA gene abundances
to numbers of bacterial 16S rRNA gene copies and to μg DNA
(Table 2). Patterns of abundance for normalized data were vir-
tually identical to patterns based on copy numbers per gram of
sediment (data not shown).

DISCUSSION
The effects of long-term fertilization in the Great Sippewissett
Marsh have been documented for many of the major bio-
logical components of the marsh over the past four decades,
elucidating fundamental mechanisms driving salt marsh ecol-
ogy and environmental change. However, studies investigating
the effects of fertilization on microbial communities have been
lacking. Understanding how microorganisms respond to fertil-
ization is important not only for predicting how microbially
mediated ecosystem services may be altered by anthropogenically
driven changes to the environment, but also for increasing our
understanding of fundamental ecological principles that drive
community dynamics. Just recently, Bowen et al. (2011) pub-
lished the first study on microbial responses in the same plots
that were sampled in our study and, rather surprisingly, found
no fertilization effect on the composition of total bacterial or
denitrifying communities. However, it is possible that there are
differential responses among some microbial groups that were
not detected in the analysis by Bowen et al. (2011), warrant-
ing additional studies within the marsh microbial community,
particularly given the significant differences reported for some
nitrogen-cycling processes in the marsh (Van Raalte et al., 1974;
Hamersley and Howes, 2005). Our investigation of ammonia-
oxidizing microorganisms in the marsh suggest, in fact, a complex
pattern of responses that provide further insights into mechanisms
controlling nitrifying populations and communities in coastal
ecosystems.

AOB COMMUNITY COMPOSITION AND RESPONSE TO FERTILIZATION
We found significant shifts in AOB communities that corre-
sponded to fertilization, which is in agreement with several
previous studies of AOB in fertilized soils and sediments (Chu
et al., 2007; Shen et al., 2011; Wu et al., 2011). Our results, how-
ever, are somewhat contrary to the recent study by Lage et al.
(2010) who found shifts in salt marsh AOB community compo-
sition only when a single nutrient (N or P) was applied, but not
when both were applied together. Since the fertilizer applied in
our study is a complex mix, it is difficult to attribute changes in
community composition to a particular nutrient. However, our

fertilization rates were 4–12 times higher than those used by Lage
et al. (2010), and may account for the differences in community
response.

The distribution of sequences we recovered for the betapro-
teobacterial amoA gene was generally similar to distributions
found from other estuarine and salt marsh studies, with the
majority of sequences falling into the Nitrosospira-like cluster (see
Bernhard and Bollmann, 2010 for review). Sequences within this
cluster were recovered from all fertilization treatments as well
as both marsh habitats, suggesting that AOB within this clus-
ter are either physiologically diverse or have high physiological
plasticity.

Conversely, all of the OTUs within the Nitrosomonas group
were restricted by marsh habitat or fertilization treatment, with the
exception of OTU 7, suggesting that Nitrosomonas-related AOB in
the marsh are more specialized compared to their Nitrosospira
counterparts. Particularly striking was the lack of sequences
from control or LF sites among OTUs affiliated with the Nitro-
somonas aestuarii/marina and the Nitrosomonas ureae/oligotropha
clusters. Other studies of AOB in fertilized or polluted sedi-
ments have also found AOB communities to be dominated by
Nitrosomonas-related sequences (Beman and Francis, 2006; Cao
et al., 2011a,b).

Identification of specific AOB populations that showed con-
sistent response to fertilization may help to better characterize
the ecophysiology of uncultured AOB, and may serve as impor-
tant clues to assist in the ultimate cultivation of these culturally
recalcitrant AOB. The differential responses of specific AOB pop-
ulations also suggest mechanisms for niche-differentiation within
this relatively constrained phylogenetic group. Such distinct and
reproducible patterns of AOB community composition in relation
to fertilization also support the use of AOB as bioindicators, as has
been previously suggested (Dang et al., 2010).

AOA COMMUNITY COMPOSITION AND RESPONSE TO FERTILIZATION
The lack of a consistent response of the AOA community compo-
sition to fertilization was somewhat unexpected given the fertil-
ization history and significant differences in nitrogen-processing
rates previously reported. However, results from other stud-
ies of AOA community composition in response to fertilization
report a similar lack of response. Wu et al. (2011) found that
long-term fertilization (22 years) with urea did not alter AOA
communities in a paddy soil, and Verhamme et al. (2011) found
that AOA communities in soils were not different from controls
after short-term (28 days) ammonium additions. We detected
distinct AOA communities related to fertilization in the high

Table 2 | Mean (±SE) betaproteobacterial (AOB) and archaeal amoA (AOA) gene abundances presented as gene copies per μg DNA or

normalized to copies of bacterial 16S rRNA genes in plots receiving different levels of fertilization.

Fertilization AOA/μg DNA AOB/μg DNA AOA: bacterial 16S rRNA AOB: bacterial 16S rRNA

Control 5.8 ± 2.8 × 106 5.9 ± 5.3 × 104 4.1 ± 2.1 × 10−3 2.3 ± 1.8 × 10−5

LF 2.0 ± 1.1 × 106 1.1 × 104 ± 6.8 × 103 9.2 ± 3.9 × 10−4 5.1 ± 2.2 × 10−6

HF 1.3 × 106 ± 6.0 × 105 2.1 ± 1.5 × 105 4.1 ± 1.9 × 10−4 4.7 ± 1.8 × 10−5

XF 3.5 ± 1.5 × 107 3.2 ± 1.7 × 105 4.12 ± 1.4 × 10−2 2.1 ± 1.1 × 10−4
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marsh, but because the salinity in the XF high marsh plots was
significantly lower than in the control plots, the shift in AOA
communities in the high marsh may be due to differences in
salinity rather than fertilization. Salinity has been shown previ-
ously to correlate with changes in AOA abundance (Moin et al.,
2009) and community composition (Sahan and Muyzer, 2008). It
is also possible that the AOA community may respond to fertil-
ization at other times of the year as their requirements change
with seasonal environmental changes. Seasonal shifts in AOA
communities have been reported in some estuaries (Sahan and
Muyzer, 2008).

Although we did not detect robust patterns among the AOA
communities related to fertilization rates based on TRFLP data,
we identified some patterns among the sequence data suggesting
a possible fertilization effect. OTUs 3, 4, 5, and 6 (Nitrosop-
umilus group 1 in Figure 5) were composed exclusively (with
one exception) of sequences recovered from XF sites, suggesting
that these AOA may be well-adapted to high nutrient condi-
tions. Unfortunately, some of the TRFs representing OTUs within
Nitrosopumilus group 1 were also found in other OTUs, thus
obscuring any patterns related to fertilization in the TRFLP anal-
ysis. Sequences representing the Nitrososphaera group were also
dominant among XF plots, but the number of sequences in this
group was relatively small compared to other groups. Additionally,
the sequences we recovered from both Nitrosopumilus group 1 and
the Nitrososphaera group were closely related to AOA recovered
from environments that were not nutrient-enriched, indicating
that the sequences in these clusters are not necessarily indicative
of high nutrient conditions.

Environmental factors identified as potentially important in
regulating AOA community composition are many and include
salinity, temperature, pH, nitrite, dissolved oxygen, net primary
productivity, and some heavy metals (reviewed in Erguder et al.,
2009). However, common factors regulating AOA communities in
coastal systems have not clearly emerged, suggesting that AOA may
be a more physiologically diverse group relative to the AOB and
may respond differentially to changing environmental conditions.
Other studies in marine environments suggest that AOB and AOA
respond to different environmental cues (Hollibaugh et al., 2011;
Bouskill et al., 2012), but exactly what the cues for AOA are in salt
marshes remain unclear.

AOA AND AOB ABUNDANCE
Abundances of AOA and AOB were within the ranges of abun-
dances reported in other estuarine and salt marsh studies (Bern-
hard and Bollmann, 2010). However, we were somewhat surprised
by the lack of robust and consistent fertilization effects on
either AOA or AOB abundance, particularly given what we know
about increases in nitrogen-processing rates in the fertilized plots.
Although we did detect a significant fertilization effect for AOA,
the pattern of abundance was not compelling, suggesting some-
thing other than fertilization is regulating abundance. Others
have reported significant changes in AOA and AOB abundance
in response to fertilization in agricultural soil systems (Chu et al.,
2008; Kelly et al., 2011; Shen et al., 2011; Wu et al., 2011), but Lage
et al. (2010) reported no effect of fertilization on AOB abundance
in a salt marsh. The lack of a compelling change in abundance

in our fertilized plots is that AOA and AOB may be limited by
some other factor, such as pH, oxygen, or sulfide. Sulfide levels
can be quite high in salt marsh sediments due to tidal flooding,
and effects of sulfide on nitrification are well-documented (Joye
and Hollibaugh, 1995; Caffrey et al., 2010). Periods of anoxia may
also be quite frequent and may further limit nitrification and thus,
abundance of nitrifiers.

The lack of a consistent and robust response of AOA and AOB
abundance to differences in fertilization may also be due to the
complex nature of the fertilizer applied. Differential responses of
AOA and AOB populations to different components of the fer-
tilizer may diminish any effects on overall abundance. Studies
that isolate individual environmental factors may be necessary
to determine the effects of specific components on the AOA
and AOB.

CONCLUSION
Our results revealed differential responses of AOA and AOB com-
munities and abundance to long-term fertilization in a New
England salt marsh and provide some insight into population
dynamics, particularly among AOB, and potential regulatory
factors of nitrifiers in the marsh. AOB communities showed
robust and consistent responses to fertilization, while responses
of AOA communities were less clear, possibly reflecting differ-
ences in physiological tolerances. However, abundance patterns
of AOA and AOB showed minimal responses to fertilization
treatments, suggesting that factors other than nutrients, such as
redox conditions, may limit abundance of these organisms in the
marsh.

We find it notable that in spite of what we know about nitro-
gen cycling in the marsh, there was no compelling response of
AOA or AOB abundance or AOA community composition to long-
term fertilization. This leads us to suspect that either the methods
are not inclusive of all nitrifiers in the marsh or that some tar-
geted populations are not obligate nitrifiers. Additionally, since
the metabolic pathway for ammonia oxidation in archaea has not
been fully elucidated, it is possible that the archaeal amoA gene
is not an appropriate marker for characterizing AOA populations.
However, given the equally surprising results reported by Bowen
et al. (2011) showing no response of denitrifying communities
using different methods to analyze samples from the same plots
used in our study, we are forced to consider that we are missing a
critical link between community composition and abundance and
nitrogen processes in the marsh.
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