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Natural and human-induced controls on carbon dioxide (CO2) in tropical waters may be
very dynamic (over time and among or within ecosystems) considering the potential role
of warmer temperatures intensifying metabolic responses and playing a direct role on
the balance between photosynthesis and respiration. The high magnitude of biological
processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P)
inputs into coastal lagoons waters may be a relevant component of the carbon cycle,
showing controls on partial pressure of CO2 (pCO2) that are still poorly understood. Here we
assessed the strength of N control on pCO2 in P-enriched humic and clear coastal lagoons
waters, using four experimental treatments in microcosms: control (no additional nutrients)
and three levels of N additions coupled to P enrichments. In humic coastal lagoons
waters, a persistent CO2 supersaturation was reported in controls and all nutrient-enriched
treatments, ranging from 24- to 4-fold the atmospheric equilibrium value. However, both
humic and clear coastal lagoons waters only showed significant decreases in pCO2 in
relation to the controlled microcosms in the two treatments with higher N addition levels.
Additionally, clear coastal lagoons water microcosms showed a shift from CO2 sources to
CO2 sinks, in relation to the atmosphere. Only in the two more N-enriched treatments did
pCO2 substantially decrease, from 650 μatm in controls and less N-enriched treatments
to 10 μatm in more N-enriched microcosms. Humic substrates and N inputs can modulate
pCO2 even in P-enriched coastal lagoons waters, thereby being important drivers on CO2
outgassing from inland waters.
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INTRODUCTION
Carbon dioxide (CO2) is one of most important greenhouse gas in
terms of global warming (IPCC, 2007; Royer et al., 2007; Solomon
et al., 2010). The terrestrial biomass represents a relevant global
stock of carbon (C), which is removed from the atmosphere by
primary production (Gough et al., 2008). However, a significant
part of this terrestrial organic matter leaches into aquatic ecosys-
tems, where it may be buried in bottom sediments (Downing et al.,
2008) or remineralized to CO2 by aquatic biological decomposi-
tion (Aufdenkampe et al., 2011). In the watershed, most natural
inland waters are relatively small, but their wide geographic dis-
tribution, high abundance, and common location at low altitudes
make them a typical fate for the water inflow from broad areas,
playing a crucial role on the global C cycle (Cole et al., 2007).

Coastal lagoons are ecosystems often altered by the human land
use (Marotta et al., 2010b), which show intense C fluxes (Duarte
et al., 2008; Marotta et al., 2010b) The terrestrial inputs from leach-
ing and groundwaters enhance CO2 in lakes by the contribution
of inorganic C (Raymond et al., 1997; Marotta et al., 2010b), or
organic substrates supporting the aquatic respiration (del Giorgio
et al., 1997; Jonsson et al., 2003). Photosynthesis and respiration
are the major metabolic pathways determining whether what level

organic matter is produced and destroyed (Cole et al., 2000).
Indeed, high terrestrial organic inputs may explain the positive
general trend reported between dissolved organic carbon (DOC)
and the partial pressure of CO2 (pCO2) in lake waters (Jonsson
et al., 2003). Several studies have showed positive relationships in
DOC and pCO2 in lakes in high latitudes and even globally (Sobek
et al., 2005) supporting the idea that lakes are an important source
of CO2 globally (Cole et al., 1994, 2007; Duarte and Prairie, 2005;
Tranvik et al.,2009). Mean areal rates of CO2 evasion from lakes are
higher at low latitudes, probably by the potential positive effect of
warmer conditions on the organic decomposition (Marotta et al.,
2009; Kosten et al., 2010). In this way, the degradation of organic
matter to CO2 by bacteria shows important fluxes in the carbon
cycling in natural aquatic ecosystems (Azam, 1998).

Additionally, the expansion of the human activities has intensi-
fied substantially the nitrogen (N) and phosphorus (P) input into
ecosystems, often resulting in the eutrophication of natural waters
(Vitousek and Mooney, 1997). These nutrients regulate aquatic
primary production and respiration (Cole et al., 2000; Biddanda
et al., 2001). Highly productive waters due to external inputs of
inorganic nutrients tend to be net autotrophic, acting as a net
sink for CO2 (Duarte and Agusti, 1998), while, those waters are
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highly enriched in organic substrates may show persistent CO2

supersaturation (Carpenter et al., 2001; Marotta et al., 2012).
Despite consistent evidences supporting the role of the limi-

tation by either P (Schindler et al., 2008) or N (Camacho et al.,
2003), N and P co-limitation may be also crucial on the bio-
logical metabolism in natural waters (Conley et al., 2009; Paerl,
2009). The biological N fixation can contribute to reduce the role
of N inputs to stimulate biological activity in P-enriched waters,
although more evidences is still needed for a better understanding
on N limitation in coastal lagoons waters, where P is commonly
enriched by domestic discharges.

In this study, we assessed the short-term effect of N additions
on pCO2 in P-enriched humic and clear coastal lagoons waters. We
tested the hypotheses that lake pCO2 is controlled by N availability
in P-enriched waters.

MATERIALS AND METHODS
STUDY AREA
The experiment was conducted using surface waters from two
tropical coastal lagoons situated at the same conservation area
(Restinga de Jurubatiba National Park) in the north of Rio
de Janeiro State (Brazil). Both coastal lagoons are elongated,
with their main axis perpendicular to the shoreline (maximum
depth <4.5 m; area <6.5 km2), oligotrophic (nutrients and chloro-
phyll a in the Table 1) and relatively close to each other (distant
6.8 km). The mean daily temperature in this area ranges from
20.7◦C in July to 26.2◦C in February. Despite high inter-annual
variability, the minimum and maximum monthly rainfall are typ-
ically observed in August (38 mm) and December (182 mm;
INMET, 1992). The tropical climate reflects in warm coastal
lagoons waters (>20◦C).

Carapebus coastal lagoon (22◦13′21.29′′S and 41◦36′53.22′′W)
has clear waters, while Comprida coastal lagoon (22◦16′44.55′′S
and 41◦39′24.76′′W) has highly humic and dark waters. The
dark color and high Color:DOC ratio in coastal lagoons waters
of this region commonly reflects a higher contribution of
terrestrial organic compounds from Restinga vegetation (Marotta
et al., 2010a).

EXPERIMENTAL DESIGN
Surface waters from both coastal lagoons were incubated in open-
air 3.0-l glass bottles (microcosms) directly exposed to sunlight
and other weather changes next to the studied coastal lagoons in
June 2003. Solar incidence was the same for all microcosms, as
they were placed close to each other, representing common light
conditions for surface waters near to the interface with the atmo-
sphere. However, the light attenuation indicated by Secchi depth

at the sampling time was different between both, almost threefold
above in Comprida lagoon than in Carapebus lagoon (1.6 and
0.5 m, respectively). No rainfall had been recorded during the
incubations and the water temperature inside the microcosms var-
ied between 25 and 30◦C during the experiment. The evaporation
contributed to negligence water level reduction inside microcosms,
which was compensated by adding filtered waters from the same
lake during the experiment.

The experiment was carried out over 15 days in highly P-
enriched treatments in which different amounts of N were added,
and the control (i.e., no N addition) per coastal lagoon. Three
replicates were used in each experimental treatment and the con-
trol totalizing 24 microcosms. 1.4 μM of P as KH2PO4 and
K2HPO4 (1:1 mass ratio to attenuate changes in pH) and 2.8, 28,
and 120 μM of N as KNO3 were daily added to +N+P, ++N+P
and +++N+P treatments, respectively. Nutrients were carefully
added during the morning. Total additions were 20 μM P and
40, 400, and 1600 μM N in +N+P, ++N+P and +++N+P
treatments, respectively, during the experiment. These concentra-
tions and the corresponding N:P ratio were chosen to simulate the
nutrient levels typically observed in urban coastal lagoons at the
same region outside the Restinga de Jurubatiba National Park. The
control microcosms showed only the low nutrient levels observed
in both environments (0.4 and 0.9 μM P and 58.1 and 45.2 μM
N, respectively in Carapebus and Comprida lagoons). All mea-
surements were performed by the end of the experimental time
(day 15).

ANALYTICAL METHODS
pH was measured with a precision of 0.01 pH units using a Analion
PM 608 pH meter and the total alkalinity following the Gran’s
titration (APHA, 1992). Temperature and salinity were measured
with a calibrated Thermosalinometer YSI-30. CO2 concentra-
tions in waters were determined using the pH-alkalinity method
(Mackereth et al., 1978) with appropriate corrections for temper-
ature, altitude, and ionic strength as Cole et al. (1994). pCO2

was calculated from Henry’s law with appropriate corrections for
temperature and salinity (Cole and Caraco, 1998) as in Marotta
et al. (2010a).

Water samples for total P and N analyses were previously frozen.
Total P concentrations were measured by the molybdenum blue
method with pre-digestion and total N concentrations by the sum
of Kjeldahl N and NOx forms (APHA, 1992). Chlorophyll a con-
centrations (a proxy for phytoplankton biomass) in water samples
filtered through Whatman GF/F filters (0.7 μm pore size) were
extracted with ethanol in the dark for 24 h before fluorimetric
determination, using an excitation wavelength of 433 nm and

Table 1 | Nutrients, chlorophyll a, color, DOC, Color:DOC ratio, salinity (PSU – practical salinity unity), and pH in surface waters of Carapebus and

Comprida coastal lagoons used in experimental microcosms. Values are means and units of each variable are described below.

Lagoon Total N

(μmol l−1)

Total P

(μmol l−1)

Chlorophyll

a (μg l−1)

Color

(430 nm)

DOC

(mg l−1)

Color:DOC ratio

(abs at 430 nm:mg l−1)

Salinity

(PSU)

pH

Carapebus 45.3 1.0 13.8 0.014 9.84 0.0014 5.1 7.84

Comprida 58.1 0.4 2.5 0.102 17.43 0.0058 0.1 5.66
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an emission wavelength of 673 nm (Varian Eclipse). Total sus-
pended solids (TSS) were analyzed by the difference of weight
before and after filtering and drying GF/F filters. Water sam-
ples filtered in these Whatman GF/F filters were also analyzed
for color at 430 nm (Strome and Miller, 1978) using a Beck-
man DU 80 spectrophotometer (Fullerton, CA, USA) in a 1-cm
quartz cuvette, and acidified to pH < 2.0 to determine DOC by the
high-temperature catalytic oxidation method using a TOC-5000
Shimadzu Analyzer. The bacterial production was estimated from
the rate of incorporation of 3H-leucine (Smith and Azam, 1992),
assuming a 3H-leucine dilution factor of 2 and a carbon:protein
ratio of 0.86 (Wetzel and Likens, 1991). A volume of 1.3 ml of
water from the microcosms and placed in an eppendorf (1.5 ml).
In all tubes, rejoinders were added 20 μl of 3H-leucine (5×
diluted standard solution, 159 mCi mol−1, Amersham), reach-
ing a final concentration of 20 nM and incubated for 45 min in
the dark. After the incubation period, were added in rejoinders,
90 μl of 100% trichloroacetic acid (TCA) stopping and starting
the reaction extraction. Each tube was washed sequentially with
5% TCA and 80% ethanol and 500 μl of scintillation cocktail
(Aquasol and Dupont) was added to each tube and the radioac-
tivity measured in a liquid scintillator. Bacterial production was
calculated by assuming a dilution factor of intracellular leucine
equal to 2, and a protein rate of carbon equal to 0.86 (Wetzel and
Likens, 1991).

STATISTICAL ANALYSIS
The data were log-transformed (except pH) to meet the assump-
tions of parametric tests, including significant Gaussian distri-
bution (Kolmogorov–Smirnov, p > 0.05) and homogeneity of
variances (Bartlett, p > 0.05). Hence, differences among exper-
imental treatments and the control were tested with one-way
ANOVA (significance p < 0.05) followed by the Tukey–Kramer
post hoc test (significance p < 0.05). All statistics were performed
using GraphPad Prism 5.01 for Windows.

RESULTS
Humic water microcosms from Comprida coastal lagoon showed
average pCO2 values 10-fold higher than clear waters from Carape-
bus coastal lagoon in the controls and treatments +N+P,++N+P,
+++N+P (Tukey–Kramer, p < 0.05; Figure 1). A compari-
son between control and the less N-enriched treatment (+N+P)
showed no significant difference in pCO2 among them, both in
clear and humic waters (one-way ANOVA, p > 0.05; Figure 1).
In contrast, these pCO2 values in control and +N+P treatments
were significantly higher (Tukey–Kramer, p < 0.05; Figure 1) than
those respective humic or clear water with higher N-additions
(++N+P and +++N+P), which were also not significantly dif-
ferent between them (one-way ANOVA, p > 0.05; Figure 1). CO2

supersaturation was persistent in all humic treatments but not in
clear water microcosms. The clear water microcosms presented a
shift from being a source of CO2 in the controls and +N+P treat-
ment to becoming a sink in ++N+P and +++N+P treatments
in relation to the atmosphere (Figure 1).

The humic water microcosms also showed no significant dif-
ference (one-way ANOVA, p > 0.05) for pelagic chlorophyll
a and TSS comparing controls and +N+P. Additionally, these

FIGURE 1 | Daily mean pCO2 after different N additions for humic and

clear waters, respectively from Lake Comprida and Lake Carapebus at

the last day of the experiment. Each solid circle indicates one microcosm
and the horizontal line the average. The four treatments are control (no
additional nutrients) and three N levels (+N, ++N, and +++N, respectively
40, 400, and 1600 μM N – KNO3) +P addition (+P 20 μM P – KH2PO4 and
K2HPO4). No significant differences among treatments and lake waters
were represented by equal lower case letters (Tukey–Kramer, p > 0.05). The
dashed line represents the pCO2 value at equilibrium with the overlying
atmosphere (380 μatm). Note that values are in log scale.

less N-enriched humic treatments (control and +N+P) showed
chlorophyll a significantly lower than ++N+P or +++N+P,
and TSS significantly lower only than +++N+P (Tukey–Kramer,
p < 0.05; Figures 2 and 3). However, the clear water microcosms
showed no differences between treatments when chlorophyll a
and TSS were all compared (one-way ANOVA, p > 0.05; Figures 2
and 3, respectively). Farther, humic water microcosms did not
show any periphytic biomass on the microcosm wall, while a
thick green periphytic biomass (non-pelagic microalgae) was
observed at the edges of the ++N+P and +++N+P treatments
microcosms.

Bacterial production increased with the amount of N added
in both humic and clear water lake microcosms. However, this
increase was significantly higher and more evident at the ++N+P
and +++N+P humic lake water microcosms (Tukey–Kramer,
p < 0.05; Figure 4).

DISCUSSION
Overall, the humic waters from Comprida coastal lagoon showed a
persistent CO2 supersaturation reaching higher pCO2 values than
the controls or respective treatments with clear waters from Cara-
pebus coastal lagoon. The humic nature of waters in Comprida
coastal lagoon reflects the terrestrial DOC supply to heterotrophic
bacteria in these ecosystems (Farjalla et al., 2009). Allochthonous
organic resources contribute to high respiration rates and subse-
quently pCO2 within most lake waters (Duarte and Prairie, 2005;
Cole et al., 2007). These results support the conclusion that, in that
humic coastal lagoons waters have higher pCO2 values than the
clear coastal lagoons, probably due to the more intense respiration
of organic substrates (Marotta et al., 2010a).
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FIGURE 2 | Pelagic chlorophyll a after different N addition for humic

and clear waters. Note that values are in log scale. Legend as described in
Figure 1.

FIGURE 3 |Total suspended solids (TSS) after different N addition for

humic and clear waters. Legend as described in Figure 1.

Furthermore, P-enriched microcosms with higher N addi-
tions showed higher bacterial production rates and algal biomass
(pelagic or periphytic chlorophyll a), suggesting that the N supply
might limit the heterotrophic and autotrophic metabolic activity
in P-enriched tropical coastal lagoon. Despite N2 fixation may be
sufficient to allow biomass to continue to be produced even with
extreme reductions in N inputs into lakes (Schindler et al., 2008;
Smith and Schindler, 2009), our experimental evidences confirm
that N might be a relevant control on eutrophication in coastal
waters as previously pointed out (Conley et al., 2009; Paerl, 2009).

FIGURE 4 | Bacterial production after different N addition for humic

and clear waters. Legend as described in Figure 1.

The CO2 balance was determined by higher N inputs, as higher
N treatments showed strong net decreases in pCO2, supporting the
potential role of aquatic primary producers on CO2 uptake (Carig-
nan et al., 2000). Both heterotrophs and autotrophs are stimulated
by the nutrient additions (Biddanda et al., 2001), although the
net autotrophy may be favored in the balance, a general trend
often reported for natural waters (Duarte and Agusti, 1998). Our
results contrasted with the persistence of CO2 supersaturation in
highly organic-enriched waters from whole-lake (Cole et al., 2000)
or mesocosm studies (Marotta et al., 2012) also assessing the effects
of experimental nutrient additions. One plausible explanation for
this discrepancy would be the absence of the bottom sediment
as an additional source of organic substrates to CO2 production
within the microcosms.

Increases in the phytoplankton biomass (pelagic chlorophyll a)
contributed to net CO2 decreases in highly N- and P-enriched
microcosms with humic waters of the Comprida coastal lagoon,
but not in those with clear waters of the Carapebus coastal
lagoon, where no significant differences in pelagic chlorophyll
a were reported among all experimental treatments or con-
trols. Indeed, the CO2 decrease observed in more N- and
P-enriched clear water microcosms was mainly related to the
presence of periphyton biomass on the walls, which was absent
in the humic water microcosms likely due to light attenua-
tion to primary production in their dark waters (Thomaz et al.,
2001). In humic waters, TSS increase might be related to the
phytoplankton growth, as the pCO2 decreased without any peri-
phyton growth on the microcosm walls. On the other hand,
higher concentrations of non-algal solids in suspension (TSS
not related to changes in chlorophyll a or any external partic-
ulate input) are a proxy for large-bodied zooplankton, which
can be strongly stimulated under eutrophic conditions by the
availability of algae (Cole et al., 2000). Despite the source of
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experimental bias related to any extrapolation from the periphy-
ton response on the microcosm walls to whole ecosystem scale,
our results support a potential relevance of N control under P-
enriched conditions on algae community. The strength of this
zooplankton control on phytoplankton, but not on periphyton
biomass in highly nutrient-enriched lake waters was previously
reported using experimental mesocosms in another lake at the
same studied region as in this work (Guariento et al., 2011). Thus,
the absence of common grazers on zooplankton in tropical coastal
lagoons, i.e., snails and fishes (Guariento et al., 2010), might have
contributed to the increase of the periphyton biomass in clear
water nutrient-enriched microcosms.

In conclusion, our hypothesis was confirmed as N is an
important driver on pCO2 in P-enriched coastal lagoons waters.
Higher experimental N enrichments promoted a significant pCO2

decrease in both humic and clear coastal lagoons waters. The N
inputs even under P-enriched conditions might lead to intense net
decreases in CO2 in coastal lagoons waters. Both inorganic N and
organic substrates inputs modulate the CO2 balance in freshwater
and brackish coastal lagoons.
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