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Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The
anthropogenic production of antibiotics, and its release in the microbiosphere results in
a disturbance of these networks, antibiotic resistance tending to preserve its integrity.The
cost of such adaptation is the emergence and dissemination of antibiotic resistance genes,
and of all genetic and cellular vehicles in which these genes are located. Selection of the
combinations of the different evolutionary units (genes, integrons, transposons, plasmids,
cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection
is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in
doing so the higher hierarchical unit might acquire critical traits for its spread because of the
exploitation of the lower hierarchical unit. This interactive trade-off shapes the population
biology of antibiotic resistance, a composed-complex array of the independent “population
biologies.” Antibiotics modify the abundance and the interactive field of each of these
units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance
genes, but probably also many other genes with different primary functions but with
a resistance phenotype present in the environmental resistome. Antibiotics influence
the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly
acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial
lineages and clones and contribute to local clonalization processes. Antibiotics amplify
particular genetic exchange communities sharing antibiotic resistance genes and platforms
within microbiomes. In particular human or animal hosts, the microbiomic composition
might facilitate the interactions between evolutionary units involved in antibiotic resistance.
The understanding of antibiotic resistance implies expanding our knowledge on multi-level
population biology of bacteria.
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Antibiotics produced by natural organisms play a role in their
interactions shaping the lifestyle and homeostasis of bacterial pop-
ulations and communities (Waksman, 1961; Davies, 2006; Fajardo
and Martínez, 2008; Aminov, 2009). Such interactions might be
of antagonistic nature as the production of antibiotics serves to
inhibit other bacterial populations. Inhibition does not necessarily
intend to kill competitive bacterial organisms, but rather prevent
undesirable local overgrowth of partners in shared ecosystems.
The diffusion of antibiotics in the environment assures an “exclu-
sive zone” at a certain distance from the producer population. At
the borders of such a zone, the potentially competing organisms
are confronted with very low antibiotic concentrations, proba-
bly sufficient to decrease their growth rate, but not to kill the
competing neighbor. In this sense, it is highly possible that the
production of antagonistic (allelopathic) substances by microor-
ganisms has more a defensive than offensive nature (Chao and
Levin, 1981). In addition, mutual inhibition is frequently desir-
able for the maintenance of healthy species diversity in a particular
ecosystem (Czárán et al., 2002; Becker et al., 2012; Cordero et al.,

2012). It is of note that natural antibiotic production, decreasing
the growth rate of the competing population, not only restricts
its local predominance, but also assures that this population is
preserved, as antibiotic-promoted cessation of growth is a highly
effective system to avoid antibiotic killing.

However, the production of natural antibiotics might only have
functions unrelated with inter-bacterial antagonisms. Antagonism
might arise in particular contexts as a side-effect of cell-to-cell
signaling effects resulting in self-regulation of growth, viru-
lence, sporulation, motility, mutagenesis, SOS stress response,
phage induction, transformation, lateral gene transfer, intra-
chromosomal recombination, or biofilm formation (Goh et al.,
2002; Ubeda et al., 2005; Linares et al., 2006; Yim et al., 2007;
Martínez, 2008; Couce and Blázquez, 2009; Kohanski et al., 2010;
Allen et al., 2011; Baharoglu and Mazel, 2011; Pedró et al., 2011;
Looft and Allen, 2012; Looft et al., 2012).

Natural antibiotic resistance modulates the effect of the natural
production of antibiotics, so antibiotic production and antibiotic
resistance act as two complementary sides of the same process
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assuring the homeostasis of microbial populations and commu-
nities. In fact, communities with a cohesive habitat association
might act as units in terms of antibiotic production and resistance.
In these clusters, antibiotics are frequently produced by few bac-
terial organisms, whereas other members of the club are resistant
(Cordero et al., 2012).

As in the case of natural antibiotic production, natural antibi-
otic resistance might not only focus on“defense against antibiotics”
or“self-protection”in antibiotic producers. In fact, this“defense”is
frequently a side-effect of other functions of the“natural resistance
mechanisms,” including nutrition, metabolism, detoxification of
noxious substances, and catabolic processes (Dantas et al., 2008;
Martínez, 2008; Alvarez-Ortega et al., 2011; Martínez and Rojo,
2011; Qu and Spain, 2011).

The so-called “intrinsic resistome,” the ensemble of non-
acquired genes and functions normally present in bacterial cells
which influence the susceptibility to antibiotics, might account for
3% of the bacterial genome (Fajardo et al., 2008). Obviously, such
a huge number of “defensive”genes reflects the unspecific nature of
their functions in which antibiotic resistance is concerned (Fajardo
et al., 2008; Alvarez-Ortega et al., 2011). That does not mean that
these genes were not submitted to horizontal gene transfer before
the crisis provoked by the industrial antibiotics pollution, illus-
trating that besides direct selection by clinical antibiotics other
factors contribute to dissemination and maintenance of antibiotic
resistance genes in bacterial populations (Biel and Hartl, 1983;
Aminov and Mackie, 2007; Mindlin et al., 2008; Allen et al., 2009;
D’Costa et al., 2011). In any case, it has been recently suggested that
the close identity of resistance genes (and resistance platforms)
from clinical strains and environmental strains might indicate
recent exchange events (Forsberg et al., 2012). From this perspec-
tive, natural antibiotics and antibiotic “resistance” mechanisms
have a natural regulatory role in shaping both population biology
and evolutionary biology of bacterial organisms. However, the
amount of active antibiotic determining this physiological natural
“antibiotic environment” is extremely low (Halling-Sørensen et al.,
1998). Of course antibiotic-producer organisms are endowed with
“mechanisms for self-protection,” which have been considered
as the origin of modern functions involved in clinical antibiotic
resistance (Benveniste and Davies, 1973). However, phylogenetic
studies suggest that current clinical resistance genes are not found
in antibiotic producers, and its emergence in clinical strains can-
not be explained by recent horizontal gene transfer from these
organisms. Nevertheless, they might have been historically sub-
mitted to duplications and frequent horizontal gene transfer, so
that “modern” resistance genes might have evolved along com-
plex evolutionary processes pre-existing the industrial release of
antibiotics. In fact many identical “resistance genes” are found in
environmental and clinical organisms (Cantón et al., 1999; Fors-
berg et al., 2012). In any case, what we denominate “antibiotic
resistance” for clinical microorganisms is extremely rare in nature;
other kinds of “resistance” genes, those of the “intrinsic resistome,”
able to protect cells from tiny concentrations of natural antibiotics,
dominate in the wild environments.

The main problem that we are examining in this manuscript
derives from the huge escalation of the amount of antibi-
otics released into the microbial environments as an effect of

anthropogenic action, greatly exceeding the amount of natu-
ral antibiotics signaling and controlling the homeostasis of the
bacterial world. Moreover, the amount of antimicrobials of
anthropogenic origin entering into the environment assures the
presence of every possible antibiotic concentration in contact
with bacteria. The consequences of such an extensive release of
inhibitory and regulatory molecules have an important impact on
the population biology and evolutionary biology of bacteria.

POPULATION BIOLOGY OF THE UNITS OF SELECTION
The units of selection define the evolutionary individuals (Lewon-
tin, 1970; Brandon, 1987; Mayr, 1997; Okasha, 2004; Dupré and
O’Malley, 2007; Lloyd, 2008; Doolittle and Zhaxybayeva, 2010;
Baquero, 2011; Rodriguez-Valera and Ussery, 2012). But what
is selected in the case of antibiotic resistance? Possible units of
selection in antibiotic resistance are discrete genetic sequences,
genes, operons, functional genetic modules, mobile genetic ele-
ments (MGEs) as integrons, transposons, integrative–conjugative
elements (ICEs), plasmids, or at the cellular and supra-cellular
levels, genomes and cells (organisms), clones, clonal complexes,
species, communities, and ecosystems. Note that all these pos-
sible units belong to different hierarchical levels, ranging from
the relatively simple to the complex, as resistance genes are part
of integrons, integrons part of transposons, transposons part of
plasmids, plasmids part of cells, cells part of clones, clones part
of species, and so on. Each unit is a “vessel” for the other(s),
affecting not only its potential dissemination but also its rate of
introgressive descent and evolution (Doolittle and Zhaxybayeva,
2010; Baquero, 2011; Bapteste et al., 2012; Cordero et al., 2012).
The investigation of such a trans-hierarchical landscape clearly
requires a multi-level population genetic approach (Baquero and
Coque, 2011; Day et al., 2011; Cordero et al., 2012).

What we propose in this work is essentially a mental heuristic
exercise. Let us imagine that we are aware of a kind of replicators
called genes but we still ignore the existence of cells. We could
observe changes in the frequency and variety of genes, and we
might consider populations of genes, submitted to evolutionary
dynamics and natural selection. If we were only conscious of the
existence of transposons, we would establish population biology
of transposons. If we considered plasmids, we would refer to the
pan-plasmidome, the plasmid population harbored by a particular
microbiome or a particular bacterial group (Fondi and Fani, 2010;
Mizrahi, 2012). This would apply for every unit of selection. We
would of course be able to observe changes in the abundance and
variety of each unit involving a resistance trait as a consequence of
the presence of antibiotics in the environment. Each unit of selec-
tion is a self-interested entity (Rankin et al., 2011b) exploiting the
higher hierarchical unit for its own benefit (resistance plasmids
exploit successful bacterial clones), but the higher unit might
acquire critical traits for its spread because of the exploitation
of the lower hierarchy unit (bacterial clones, bacterial communi-
ties, or microbiomes might be successful because of resistance
plasmids, ICEs, or elements within those; Castillo et al., 2005;
Mizrahi, 2012; Novais et al., 2012b). This trade-off of interac-
tions shapes the global population biology of antibiotic resistance.
In a certain sense, this multi-level perspective represents a “sec-
ond line of complexity” in the classic view of antibiotics-driven
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natural selection processes, from the selection of a resistant cell to
multi-level selections. Such processes should increase the absolute
density (number) of all pieces involved in antibiotic resistance,
and consequently might favor their interactions and emergence
of novel combinatorial patterns (Baquero, 2004). Prediction of
which pieces and patterns will evolve is a crucial issue for the
management of multiantibiotic resistance, and might be possible
if we have the right data (Martínez et al., 2007; Baquero, 2011;
Partridge, 2011).

ANTIBIOTICS AND POPULATIONS OF RESISTANCE GENES
Have antibiotics increased the abundance of highly effective resis-
tance genes in the bacterial world? Confronted with antibiotics,
bacterial populations might adapt by selecting “more effective”
mutants of wild genes endowed with other functions, but pro-
viding low level of resistance. Such process is favored by gene
duplication, so that wild genes having a “small effect” on resis-
tance could increase in number to increase protection. It is of
note that this process might be much more frequent than muta-
tion (Näsvall et al., 2012). A high number of gene-copies might
in fact transitorily accumulate during selection, producing a full
resistance phenotype. The question is if such gene duplications
might contribute to the emergence of novel resistance genes. Once
the permanence of a functional copy of a given gene is guar-
anteed, the second (or n-) copy has the evolutionary freedom
(liberation from purifying selection) to be modified, eventually
leading to a variant or novel gene (Kondrashov et al., 2002; Näs-
vall et al., 2012). It is of note that not all genes have equal chances
of duplication, and certainly there are adaptive genes with a
higher potential variability, containing highly variable regions
interspersed among well-conserved, “segmentally variable genes,”
as ABC transporters involved in multidrug resistance (Zheng et al.,
2004). Mutational changes in genes, leading to novel resistance
genes, are facilitated under circumstances of enhanced mutagen-
esis in the host strain. Hyper-mutable bacteria (“mutators”) are
enriched in allelic variants of resistance genes, eventually provid-
ing wider resistance spectrum, as in the case of beta-lactamases
(Baquero et al., 2005). Indeed organisms with enhanced muta-
tion rates (frequently involving failures in the mismatch repair
system) see their possibility of survival increased, and inside
these strains, other genes could be modified to provide antibi-
otic resistance. Note that hyper-mutation and gene variation at
large, might result from the effects of the antibiotic themselves
(Blázquez et al., 2012).

Indeed, intra- and inter-bacterial gene movement and recom-
binational events between genetic platforms contribute to the total
amount of resistance genes. In fact, the “biological success” of a
resistance gene is dependent on its wider genetic context (Walsh,
2006; Wozniak and Waldor, 2010; Bertels and Rainey, 2011).
Moreover, hybrid resistance genes resulting from recombinational
events are not infrequent in nature (Goffin and Ghuysen, 1998;
Maiden, 1998; Novais et al., 2012b). Under antibiotic exposure,
bacterial pathogens in humans and animals (and commensals)
might fix and further refine acquired resistance genes originated
in areas less exposed to antimicrobials, as in the soil (including the
rhizosphere!), or water bodies (including sewage!) (Aminov, 2009;
Lupo et al., 2012).

If antibiotics have polluted the entire globe, including wild
environments, specialized antibiotic resistance genes, identical to
those found in hospitals, can be found everywhere else, including
the most remote and wild regions (Gilliver et al., 1999; Osterblad
et al., 2001; Sjölund et al., 2008; Allen et al., 2009; Quinteira et al.,
2011; Stalder et al., 2012). However, the variety of natural bacterial
genes that can provide antibiotic resistance in a heterologous host
is much larger than that actually found in human pathogens (Dan-
tas et al., 2008). Why only a very small fraction of “resistance genes”
present in the“global resistome”have entered in human pathogens
is a poorly addressed question. Of course genes from phyloge-
netically remote organisms should have functional connectivity
and concert with the host systems, and that certainly constitutes
an important bottleneck for their acceptance (Halary et al., 2010;
Martínez, 2011). However, relatively “independent” functionally
connected gene clusters (Zheng et al., 2005) determining resistance
might be better tolerated and eventually fixed (Popa et al., 2011).
In any case, as stated recently (Skippington and Ragan, 2011), the
network and evolutionary dynamics that allow the stoichiometric
participation of horizontally transferred genes in cellular net-
works remains poorly addressed, even though new bioinformatic
advances have recently been made available (Cohen et al., 2012).

Considering potential sets of “acceptable” resistance genes able
to evolve in bacterial populations, eventually only the “fittest
genes” resulting from competition among genes might finally
reach high densities. Competition is expected to occur mostly
among orthologs or paralogs (for instance resulting from recent
duplications) occupying the same functional niches (Kondrashov
et al., 2002; Francino, 2012). Antibiotics could have enriched
the more efficient adaptive genes among competing genes (for
instance the more detoxifying ones; Novais et al., 2010b). However,
the “fittest genes” are not necessarily those with the best intrinsic
activity in terms of providing antibiotic resistance. Different resis-
tance genes impose different biological costs for the host strain. As
it was stated above, successful novel resistance genes should be fit
in a particular genetic context, that is, the epigenetic compatibility
of a new gene with the host genome is critical in the acquisition
of resistance (Sánchez and Martínez, 2012). Such fitness bottle-
neck will select, in combination with the detoxifying efficiency,
the novel successful genes.

Alternatively, the quantitative success of a particular gene (as
blaTEM−1 in Escherichia coli, or blaZ in Staphylococcus aureus)
might result only from a “founder effect” (Livermore, 2000; Mar-
tinez et al., 2009), that is, the first gene that by chance conferred
a selective advantage in particular conditions was fixed and that
resulted in a successful wide spread. This founder effect in human
and animal pathogens might have occurred because of multiple
selective events in environmental organisms exposed to dynamic
landscapes. In fact, founder effects are expected to occur in a con-
tinuous and cumulative way (Aguilée et al., 2009). In turn, such
emergent events might have been facilitated by changes in envi-
ronmental conditions (as animal crowding in farms) resulting in
local fluctuations in the size of particular bacterial populations,
thus favoring acquisition by lateral genetic transfer of adaptive
traits from environmental bacteria (Balloux, 2010). Similarly, the
changes in the environment, the landscape dynamics, influence
the probability of founders fixation, as well as the possibilities
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for extinction and re-emergence (Aguilée et al., 2011). It is not
impossible that many resistance genes, even those rarely found
or never found in the clinical environment, could have also been
enriched by environmental antibiotic exposure (Martinez et al.,
2009; Sommer et al., 2009).

How can we explain that the same resistance gene of plausi-
ble environmental origin (as blaCTX−Ms or blaCMYs) appears to
have been captured in separate events by different gene-capturing
elements as ISEcp, ISCR1, or IS26? (Barlow and Hall, 2002; Tole-
man et al., 2006; Valverde et al., 2009; Partridge, 2011). There is a
contemporary enrichment in organisms as Enterobacteriaceae of
captured gene(s) with apparently the same function, and a bloom
of a diversity of new genes coding for resistance to beta-lactams
(Cantón and Coque, 2006; Coque et al., 2008; Poirel et al., 2012).
This might be due to a dense interactive field resulting from an in
the number of environmental species (donors) where it originated
from, as well as an environmental increase in population density
of a variety of “good recipients” as E. coli or Klebsiella pneumo-
niae. Recipients increase could result from both the augmentation
of the total number of Enterobacteriaceae in the gut microbiota
of mammals, probably due to antibiotic exposure, and the mas-
sive release of human-and animal sewage to the environment (see
later).

Other less-successful resistance or pre-resistance genes might
not be relevant in the clinical setting, but constitute an increasing
reservoir of unpredictable consequences, and undoubtedly might
influence the population ecology of bacteria. On the other hand,
the selection of variant genes might occur at very low antibiotic
concentrations (Henderson-Begg et al., 2006; Gullberg et al., 2011)
particularly among natural concentration gradients (Baquero and
Negri, 1997; Negri et al., 2000; Hermsen et al., 2012). It can be sug-
gested that the overall increase in the amount of resistance genes on
Earth also has a positive effect in maintaining the desirable home-
ostasis of bacterial populations in a heavily antibiotic-polluted
environment.

An interesting point in gene population biology is the question
of why a number of resistance genes maintain their full sequence
integrity through myriads of replications in spite of an appar-
ently insufficient level of antibiotic selection. Even considering that
they are co-selected with genes under active selection (for instance
being part of the collection of gene cassettes of an integron), their
functionality seems to be better preserved than could be expected.
This might suggest that the current function of a number of clas-
sic “resistance genes” is something other than antibiotic resistance
(exaptation; Alonso and Gready, 2006; Petrova et al., 2011; Sánchez
and Martínez, 2012).

Resistance genes tend to be collected in particular clones and
clustered in common genetic platforms (Partridge and Hall, 2004;
Ktari et al., 2006; Partridge, 2011; Potron et al., 2013), probably
following the “genetic capitalism principle,” that is, the more resis-
tant clones and the most fit resistance-providing platforms are
selected, and then their ability to acquire novel adaptive traits is
favored (Lawrence, 1997; Baquero, 2004). As we will see along this
review, the extensive antibiotic-promoted selection of resistant
bacterial organisms is a selection of the “vehicles” where antibi-
otic resistance genes are located, and the selection of “vehicles”
assures the selection of the genes that they contain. Consequently,

the total amount of resistance genes should increase under selec-
tion. Interestingly, some “vehicles” (as MGEs are more frequently
associated with resistance genes than others. As complementary
explanations, we can recall here the founder effect (advantages for
the first gene-capturing MGEs), the influence of genes and plat-
forms on the overall fitness of the recipient cells, or the higher
prevalence of particular MGEs in the organisms more exposed to
antibiotics, heavy metals, biocides, or other ecological stressors
(Stokes and Gillings, 2011).

ANTIBIOTICS AND POPULATIONS OF RESISTANCE
INTEGRONS
Have antibiotics increased the abundance, in the microbial world,
of integrons able to capture resistance genes? Integrons possess
a site-specific recombination system able to integrate, rearrange,
and express adaptive genes, including antibiotic resistance genes
(Mazel, 2006; Partridge, 2011; Stokes and Gillings, 2011; Moura
et al., 2012). These genetic platforms are ancient structures (several
hundred million years old) that were already involved in the initial
outbreaks of antibiotic resistance in the 1950s (Liebert et al., 1999;
Mazel, 2006; Revilla et al., 2008). The same type of integrons, now
carrying a diversity of antibiotic resistance genes, are preserved in
the current bacterial world, and have installed themselves in nat-
ural environments along extended periods of time (Petrova et al.,
2011; Stokes and Gillings, 2011; Stalder et al., 2012). Integrons
evolution often results in the local array of resistance genes, and
other genes of adaptive nature (Labbate et al., 2009; Moura et al.,
2012; Stalder et al., 2012), which increases the possibilities of their
selective multiplication.

In other words, exposure to antibiotics, biocides, or heavy met-
als and a high multiplicity of other different environmental factors
results in an increase of cells containing integrons (Gaze et al.,
2005, 2011; Wright et al., 2008; Stalder et al., 2012). Moreover,
exposure to different antibiotics (aminoglycosides, beta-lactams,
fluoroquinolones, trimethoprim, metronidazole) facilitates exten-
sive gene cassette recombination; occasionally involving the
SOS-triggered IntI1 integrase over-expression (Guerin et al., 2009;
Hocquet et al., 2012). Other recombinational events (often medi-
ated by ISs) influence shuffling of resistance genes contained in
different integrons, giving rise to multi-resistance regions (Par-
tridge, 2011) and further facilitating the evolution and selection
of the upper-level host vehicles (Domingues et al., 2012). In fact,
integrons are not mobile, but are frequently associated with
transposons and/or plasmids and therefore should increase in
abundance as a result of conjugation or transposition events medi-
ated by Tn21-like and IS26-like elements. For instance class 1
integrons located in Tn402, which are often part of Tn501-like
transposons on conjugative plasmids, have greatly contributed to
the spread of integrons among γ and β-proteobacteria (Tato et al.,
2010; Partridge, 2011).

The frequent association of integrons with a variety of special-
ized DNA recombination systems enhances both transferability
and genetic diversification. For instance, insertion sequences (IS)
of the IS110/IS492 family as IS4321 and IS5075 (members of
IS1111 subgroup) target the terminal inverted repeats of Tn21
family transposons (Partridge and Hall, 2003; Novais et al., 2010a).
The outcome is the initiation of a non-standard transposition
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resulting in only a single copy appearing in the transposed prod-
uct (Cain et al., 2010; Martinez et al., 2012). Such mobilization
of integrons by specialized transposition is a powerful mecha-
nism for integrons spread in both environmental competent and
non-competent bacteria (Domingues et al., 2012; Stokes et al.,
2012). Also, IS-mediated mobilization of relevant antibiotic resis-
tance genes contained in the integron contributes to enhance gene
expression and mosaic genetic diversity, which should be reflected
in higher possibilities of dissemination. That is the case for inser-
tion sequences targeting the pseudo-palindromes of integron attC
sites, as the IS1111-attC group elements of the IS110/IS492 family
(Tetu and Holmes, 2008), or IS4-like elements as IS1999 (Aubert
et al., 2006; Post and Hall, 2009; Poirel et al., 2010). Note that the
antibiotic-mediated selection of strains, plasmids, or transposons
containing integrons necessarily implies selection of IS sequences,
and therefore the capture of resistance genes and the combina-
torial evolution of resistance platforms. In fact, ISs mobilizing
adjacent sequences by rolling-circle (RC) transposition as, ISEcp1
and the insertion sequence common regions (ISCRs), favor the
capture and mobilization of a full series of antibiotic resistance
genes leading to complex multi-resistance class 1 integrons (del
Pilar Garcillán-Barcia et al., 2001; Garcillán-Barcia and de la Cruz,
2002; Aubert et al., 2006; Toleman et al., 2006; Poirel et al., 2010).

ANTIBIOTICS AND POPULATIONS OF RESISTANCE
TRANSPOSABLE ELEMENTS
Have antibiotics increased the abundance of resistance trans-
posable elements in the microbiosphere? Transposable elements
encode an enzyme, transposase, which is required for excis-
ing and inserting the mobile element. Transposases (revised in
Hickman et al., 2010 and references herein) seem to be the most
abundant genes in known sequenced genomes and environmental
metagenomes (Aziz et al., 2010).

Among transposases, class II dsDNA transposases constitute
the most common group, followed by serine and tyrosine recom-
binases and RC transposases which are linked to different MGEs
(IS, composite transposons, class II transposons, bacteriophages,
and genetic islands). The wide spread and maintenance of dif-
ferent classes of transposable elements in bacterial populations
has been obviously favored by antibiotic selection because of their
association with antibiotic resistance genes. However, most of the
contemporary antibiotic resistance transposable elements belong
to a few families that have been detected in ancient isolates, often
linked to alternative functional roles, thus suggesting antibiotic
resistance might have overshadowed previous selection forces.

For instance, some transposable elements, as IS or compos-
ite transposons, as Tn5 or Tn10, confer growth rate advantages
under different conditions of nutrient availability, enabling pop-
ulations to rapidly adapt to different physiological conditions
(Biel and Hartl, 1983; Hartl et al., 1983; Blot et al., 1994). Also,
the highly specialized targeting system of Tn7 able to selec-
tively direct transposition into both mobile and stationary DNA
pools (see later), avoids the occurrence of deleterious insertions
and allows the host population or community to recruit genes
through a variety of mobile DNAs, thus favoring the adaptation
of diverse groups of bacteria to survive or adapt to different con-
ditions (Parks and Peters, 2009; Parks et al., 2009). Selection by

different ecological conditions and stressors (including antibi-
otics) multiplies the chances for expansion, recombination, and
diversification (Partridge and Iredell, 2012; Seputiene et al., 2012).

The main group within dsDNA transposases corresponds to
DDE transposases (designation given due to the presence of a
highly conserved catalytic triad of two aspartate (D) and one glu-
tamate (E) residue), originally identified in the retrovirus integrase
and having a role during the transfer of the DNA strand. Most
IS families use this catalytic reaction for transposition with the
exception of IS1/IS110 and the RCR IS91-like elements. IS-DDE
transposases have been detected in more than 70 bacterial gen-
era, more than one third being iso-elements (>95% of identity at
protein level, >90% at DNA level). They are frequently located
on plasmids associated with composite transposons containing
antibiotic resistance genes (Merlin et al., 2000).

Tn7 poses an unique fine-tuned regulated transposition array
(TnsABCDE) involved in the regulation of transposition (the core
machinery coding for TnsA, TnsB, TnsC) and the mobilization
of the element (TnsE, TnsD; Parks and Peters, 2009, Parks et al.,
2009). Such regulation allows Tn7 to use two target-site selec-
tion pathways and move to different hosts. Tn7 belongs to a
family of MGE that encodes a transposase and an ATP-utilizing
protein (TnsC) that controls the activity of such transposase and
often its target site selection. Members of the ATP-subunit super-
family comprise widespread AbR transposons that differ in the
transposase (also a DDE enzyme) and the number of proteins
in the transposition module (for revision see Craig, 2002). Some
examples are Tn1825/Tn1826, Tn552-IS21, and Tn402–Tn5053
(Craig, 2002). All are widely distributed and they are related with
trimethoprim and heavy metals resistance (Kholodii et al., 2003;
Partridge, 2011). Please note that in this case trimethoprim resis-
tance is the currently recognizable phenotype, but the genes might
have been selected before trimethoprim exposure for other reasons
(Alonso and Gready, 2006).

Members of the Tn3 family are mainly derivatives of trans-
poson subfamilies Tn3 (Tn3, Tn5393, Tn5403) or Tn501 (Tn21,
Tn501, Tn1721) and all of them were already detectable in
ancient bacteria from permafrost (Tolmasky, 1990; Graidy, 2002;
Kholodii et al., 2003; Mindlin et al., 2008). Members of the Tn501
subfamily of Tn3 transposons could have been enriched by mer-
cury exposure, as they carry mercury-detoxifying genes. These
genes probably originated in hydrothermal environments, where
geochemically derived mercury is at high concentrations (Boyd
and Barkay, 2012). Mercury-transposons provide target sites for
Tn501-type transposons, and include a diversity of Tn21, Tn1696,
and Tn501 related elements carrying class 1 integrons. Enrich-
ment of Tn3-type transposons by environmental pollutants, as
heavy metals, might have contributed to increase the connectivity
with organisms and genetic platforms harboring resistance genes,
eventually included in integrons (most frequently of class 1), and
have converted this family in the “flagship” of floating resistance
genes (Liebert et al., 1999; Partridge and Hall, 2004; Partridge and
Iredell, 2012).

Beside classic antibiotic resistance gene cassettes, emerging
beta-lactamase genes as blaVIM, blaIMP blaVEB, or blaGES are
located in integrons on different Tn501 derivatives (Partridge,
2011). Other widespread “new” beta-lactamase genes have been
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directly recruited by host-specific Tn3-like transposons as Tn1440
carrying blaKPC (a Tn5403-like transposon from Klebsiella which
belongs to the Tn3 subfamily; (Naas et al., 2008).

Such process of gene capture contributes to further increase
the number of these transposons, which in turn will facilitate its
diversification and eventually novel resistance gene recruitments.
Indeed the capture of blaTEM1a by Tn2 led to, in a landscape of high
consumption of aminopenicillins in the 60s and 70s of the past
century, a huge amplification of this transposon, now widespread
in all environments. Other transposons were less-successful, as
Tn1 (with blaTEM−2), and Tn3 (carrying blaTEM−1a; Novais et al.,
2010a; Bailey et al., 2011), probably because of the reduced num-
bers and connectivities (influencing success) of the vehicles in
which they were located (plasmids, clones; Cain et al., 2010; Novais
et al., 2010a; Partridge, 2011).

Transposable elements also increase in number by inserting
extra copies in the host genomes. Of course this might cause an
“intergenomic conflict,” as such insertions might affect chromoso-
mal balance and produce mutations, being so, transposons might
be a “bitter–sweet” pill for host bacteria (Toleman and Walsh,
2011). This is why genomes have evolved suppressors limiting
transposon spread (Pomiankowski, 1999). Eventually, equilibrium
is reached by diminishing the transposition frequency. Successful
transposons as Tn3 have this kind of “transposition immunity” to
ensure a maximum of two copies per replicon.

On the other hand, transposition might compete with the
host genome replication. Some transposases as that of Tn7 (and
possibly Tn917) can bind to “processivity factors” involved DNA
replication; competition for this interaction could limit their pro-
liferation. However, a benefit for the transposons appear to be
derived from the fact that the interaction of transposases with
processivity factors favors “target site selection,” so that activation
of transposition with Tn7 (transposon excision and insertion)
does not occur until an appropriate target has been identified,
most frequently mobile plasmids, providing Tn7 with a means of
spreading to a new host (Parks et al., 2009).

As in the case of integrons, transposable elements are very
ancient on Earth, but the very same molecular structures are found
in modern resistance-bearing transposons (Bisercić and Ochman,
1993; Mindlin et al., 2005; Vishnivetskaya and Kathariou, 2005;
Petrova et al., 2009; Aziz et al., 2010). The acquisition of resis-
tance genes seems to have occurred preferentially by particular
transposable elements that were afterward amplified by antibi-
otics. Interestingly, a number of transposons carrying resistance
genes have been recovered from ancient permafrost and seem to
have been selected before the antibiotic era (Mindlin et al., 2008).
Widespread transposons in our days, as those belonging to Tn7
or Tn3 superfamilies, certainly have a very ancient origin. Most
probably they were selected by pre-antibiotic forces, increasing
their absolute amount, followed by their spread and diversifi-
cation in different plasmids and organisms. Exposure to early
chemotherapeutic agents has reinforced these evolutionary events.

ANTIBIOTICS AND POPULATIONS OF RESISTANCE MOBILE
GENETIC ELEMENTS (PLASMIDS, ICEs)
Have antibiotics increased the abundance of plasmids and
ICEs carrying resistance genes in bacterial populations and

communities? Conjugative plasmids and ICEs are quite similar
genomic objects, in fact they appear to be short-term variants of
identical backbone elements (Guglielmini et al., 2011); the main
difference is that the replication of ICEs occurs only by integra-
tion in the host’s chromosome (Wozniak and Waldor, 2010). For
instance a close relationship resulting from a common phylogeny
can be found between IncA/C plasmids and SXT/R391 ICEs (Woz-
niak and Waldor, 2010; Toleman and Walsh, 2011). Note that
the traditional association of highly transmissible elements with
plasmids is not necessarily true.

Plasmids are abundant in nature and consistently isolated from
microbial communities of different habitats with and without
anthropogenic exposure (Coombs, 2009; Sobecky and Hazen,
2009). In fact, contemporary resistance plasmids are based on
plasmid backgrounds existing in the pre-antibiotic era (Datta and
Hughes, 1983; Hughes and Datta, 1983). Maintenance of plasmids
and ICEs in bacterial populations results from both the selfish
features that promote acquisition and persistence within bacte-
rial populations (“the parasitic hypothesis”) and the beneficial
effects they confer to individual bacterial hosts and communities
(“the evolvability hypothesis”; Werren, 2011). MGEs are increas-
ingly being considered within this multi-hierarchical model, as
clonal-, species-, or community-specific mobile elements (Carat-
toli, 2009; Garcillán-Barcia et al., 2009; Lim et al., 2010; Shearer
et al., 2011; Heuer et al., 2012; Williams et al., 2012; Clewell
et al., 2013; Guglielmini et al., 2013). Between and also within
these hierarchical levels, plasmids may eventually evolve toward
mutualism (Rankin et al., 2011b). Plasmids might assure their
permanent linkage with a particular host, bacterial lineage, or
multi-specific community by post-segregation killer strategies that
cause the death of non-carrying bacterial offspring. This is caused
by toxin–antitoxin (TA), restriction-modification (R-M), or clus-
tered regularly interspaced short palindromic repeats (CRISPR)
systems, and also probably by “plasmid domestication,” which is
produced by changes either in the plasmid and host genome that
lead to a more stable coexistence (Bouma and Lenski, 1988; Jones,
2010; Marraffini and Sontheimer, 2010; García-Quintanilla and
Casadesús, 2011).

The diversity of bacterial communities, the relative popula-
tion densities of their components, the spatial separation, and
nutrient availability greatly influence plasmid host-range, content,
and transferability (Coombs, 2009). It is interesting to suggest
that the selective processes exerted by antibiotics will modify
bacterial diversity and population densities, forcing the coexis-
tence of plasmids and particular hosts, favoring recombination
and other processes that lead to plasmid domestication (Boyd
et al., 1996). The robustness of interactions between particular
plasmids and particular clones is shaped by epistatic processes
(Silva et al., 2011; San Millán et al., 2012) mediated by nucleoid-
associated transcriptional regulators (Doyle et al., 2007; Yun et al.,
2010; Fernández-Alarcón et al., 2011; Humphrey et al., 2012) and
the clonal interferences that might result from these interactions
(Hughes et al., 2012). A robust interaction is reflected in a non-cost
or even negative-cost coexistence, and will tie the fate of plasmid
density to the abundance of their specific bacterial hosts, resulting
in a necessary“in-host”plasmid evolution linked to“with plasmid”
host evolution (Dionisio et al., 2005; Halary et al., 2010).
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A major topic in plasmid population biology is the consid-
eration of advantages and inconveniences of plasmid or ICE
broad-host-range. It is of note that host-range does not nec-
essarily mean transfer ability to a particular host or long-term
maintenance in bacterial populations, but stable replication in a
new host (De Gelder et al., 2007; Suzuki et al., 2010). Certainly,
broad-host-range conjugative plasmids favor the penetration of
adaptive traits as “new” antibiotic resistance genes (Fernández-
Alarcón et al., 2011; Sen et al., 2011; Hamprecht et al., 2012; Heuer
and Smalla, 2012) and, in turn, antibiotics can favor the abundance
of these plasmids promoting transfer and by selection of plasmid
containing bacteria (Lang et al., 2012). The frequent observation of
different systems of replication (recognizing host primases) in the
same plasmid suggests adaptive ways of increasing host-range (Del
Solar et al., 1996; Clewell et al., 2013). Globally spread plasmids
identified in hospitals, soils, agriculture, and marine habitats have
a complex mosaic structure that reflects inter-genomic historical
adaptations to phylogenetically distant bacterial hosts (Schlüter
et al., 2007; Norberg et al., 2011; Heuer et al., 2012; Partridge and
Iredell, 2012). In addition, broad-host-range plasmids lacking
transfer systems can be transferred to phylogenetically close or
distantly related bacteria by helper conjugation systems located
in narrow-host-range plasmids containing a conjugation system
(Smorawinska et al., 2012).

Long-term maintenance and dispersion of broad-host-range
plasmids in bacterial populations and communities seems to
be related with the local availability of hosts (De Gelder et al.,
2007), but also with the “social interactions between plasmids”
eventually leading to unbearable costs for their hosts (Smith,
2012). Eventually, exclusion mechanisms between plasmids (one
plasmid excludes the incoming one) might be softened by inter-
plasmid recombination that might result in hybrids able to
evade exclusion. CRISPR is a genetic interference system by
which bacteria with CRISPR regions carrying DNA copies of
previously encountered plasmids can abort the replication of
plasmids with these sequences. Hypothetically that might favor
plasmid dispersal among different strains, providing a weak
selective advantage for the host cell (Levin, 2010), although an
increased benefit could be predicted for host coalitions, as genetic
exchange communities (GECs; see later). This system also controls
phages, but the possible populational interactions (competition–
cooperation) between phages and plasmids have scarcely been
investigated.

Antibiotic exposure might have increased the absolute number
of plasmids with resistance determinants in bacterial populations
due to the selection of clones harboring them. The possibility that
broad-host conjugative plasmids have been submitted to a more
effective enrichment than narrow-host plasmids (because of selec-
tion in multiple hosts and environmental compartments) poses an
interesting question. Eventually, the biological cost of resistance
plasmids for the host could be compensated by higher transmis-
sion (Garcillán-Barcia et al., 2011). As Stokes and Gillings pointed
out, an increase in the general tempo of resistance genes dissemi-
nation is highly probable, due to selection of cells with inherently
higher rates of lateral transfer (Stokes and Gillings, 2011).

Finally, we can consider bacteriophages as mobile mediators
of inter-bacterial transfer of resistance genes. Also in this case

antibiotics might modulate phage–bacteria population dynamics
by processes as “phage-antibiotic synergy,” a non-SOS mechanism
of virulent phage induction caused by exposure to sub-inhibitory
concentrations of beta-lactams (Comeau et al., 2007; Allen et al.,
2011; Looft et al., 2012). Antibiotics promote the number of
phages and pro-phages linked to antibiotic resistance platforms,
favoring dissemination of these platforms, and consequently
amplifying the dissemination of resistance and virulence genes
(Allen et al., 2011).

ANTIBIOTICS AND POPULATIONS OF BACTERIAL CLONES
AND SPECIES
Bacterial clones are constituted by isolates that have a close com-
mon phylogenetic origin. High-risk clones are defined as clones
with an enhanced ability to colonize, spread, and persist in a variety
of niches, which acquire adaptive traits that increase pathogenicity
or antibiotic resistance (Baquero and Coque, 2011). They consti-
tute the main vehicles dispersing antibiotic resistance at a global
scale (Willems et al., 2011; Woodford et al., 2011). Examples of
these high-risk clones are E. coli ST131 (phylogroup B2), ST155
and ST393 (phylogroup B1), or ST69, ST405, and ST648 (phy-
logroup D); K. pneumoniae ST258, ST14 or ST37; Enterococcus
faecium, ST18, ST17, ST78; Enterococcus faecalis ST6; S. aureus,
ST45, ST5, ST8, ST30, or ST22. A number of these clones were
ancient lineages, well-adapted to colonization and transmission
between particular hosts, that acquired antibiotic resistance and
consequently enhanced capabilities of dispersal (McBride et al.,
2007; Brisse et al., 2009; Chambers and Deleo, 2009; Willems
et al., 2012). Multiplication and spread of highly successful clones
implies multiplication and spread of all the antibiotic resistance
genes and platforms they contain, increasing their absolute num-
bers. In fact, it is not unusual that a single successful clone might
contribute to the spread of different plasmids, genetic platforms,
and resistance genes, both in Gram-positives (Chambers and
Deleo, 2009) and in Gram-negatives (Carattoli, 2009; Andrade
et al., 2011; Woodford et al., 2011; Novais et al., 2012a; Partridge
and Iredell, 2012). Such multi-lateral collaboration probably con-
tributes to the local ecological success of variants arising in these
clones, leading to a clonal diversification (clonalization) which
assures a long-term permanence in complex adaptive landscapes,
following the “never put all the eggs in the same basket” principle
(Wiedenbeck and Cohan, 2011; de Regt et al., 2012; Freitas et al.,
2013). Focusing only on mutational evolution, it has been sug-
gested that there is an acceleration of emergence of bacterial antibi-
otic resistance in connected microenvironments (Zhang et al.,
2011; Hallatschek, 2012) but this might also occur in the case of
gene flow.

Local clonalization might result in a restricted gene flow
among resulting subpopulations (Willems et al., 2012). However,
recombinational events might spare those regions required for
adaptation to local microniches, assuring divergence, and be main-
tained for other regions (ecological speciation with-gene-flow; Via,
2012). The increased recovery of isolates belonging to high-risk
clonal complexes of important human pathogens as E. coli, S.
aureus, E. faecalis, or E. faecium, that cause both human infec-
tions and mucosal colonization, and even the expansion of these
clones to novel hosts is most probably related with the acquisition
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of antibiotic resistance genes (Hidron et al., 2008; Baquero, 2012;
Novais et al., 2012a, 2013)

An interesting question is if the selection of particular clones
because of antibiotic resistance might decrease the overall clonal
diversity as might be inferred from recent studies (Ghosh et al.,
2011). Actually, that might be compensated by clonal diversifi-
cation, in a “ex pluribus unum/ex unibus plurum” evolutionary
dynamics (Baquero, 2011). It is easy to conclude that any outbreak
produced by antibiotic resistant bacteria will locally enrich the
involved evolutionary units, facilitating further events of antibi-
otic resistance development and possibly transmission (Chambers
and Deleo, 2009; Freitas et al., 2013).

ANTIBIOTICS AND POPULATIONS OF BACTERIAL
COMMUNITIES
Imbedded into the high complexity of the microbiomes, of
humans and animals, in the soil or in the water sediments, it
is possible to recognize “clubs” of bacterial clones and species
where genes and genetic platforms circulate via lateral trans-
fer, the GECs. In a very restrictive manner, Skippington and
Ragan (2011) have recently defined a GEC as a group of organ-
isms (entities) in which each entity has over time both donated
genetic material to, and received genetic material from every
other entity in that GEC, via a path of lateral gene transfer.
What do the members of such clubs have in common? Network
modeling and co-occurrence statistical approaches indicate that
lifestyle and shared environments, functional complementarities,
and most probably, continued physical clustering (granularity)
determine the size and connectivity of GECs (Freilich et al.,
2010; Smillie et al., 2011; Faust and Raes, 2012; Faust et al.,
2012). In many cases, this also means a closed shared phy-
logeny (Skippington and Ragan, 2012). In fact, GECs members
are linked not only by genetic exchanges, but also by metabolic
and functional cooperation, providing a certain ecological com-
partmentalization inside particular microbial megasystems (as
intestinal microbiota; Faust and Raes, 2012; Faust et al., 2012). We
can consider here some kind of cooperative “niche construction”
(Laland et al., 1999; Kylafis and Loreau, 2011). Genetic trans-
fer, particularly considering mixed-granular “surface-associated
populations” with a kind of “lattice reciprocity” (Zhong et al.,
2010, 2012) might assure a “collective” adaptation of such func-
tional GEC units, increasing relatedness among members and
fixing common evolutionary boundaries (Nogueira et al., 2009;
Rankin et al., 2011a,b). The development of more studies on the
“physics” of genetic transfer, is certainly advisable, for instance,
to investigate to what extent genetic transfer can be influenced
by mixing movements or the viscosity or fluidity of the sur-
rounding medium, as in the intestinal content (particularly during
enteric diseases) or in water bodies, influencing cell-to-cell con-
tacts and therefore GECs integrities (Zhong et al., 2010; Jeffery
et al., 2012).

An important topic is the possibility of “multiclonal GECs”
as a form of organization of the lifestyle of a particular species
or closely phylogenetically related coalitions in changing envi-
ronments (Skippington and Ragan, 2012), where different sub-
specific ecotypes exploiting neighbor nano-niches (Wiedenbeck
and Cohan, 2011) and taking advantage of a common “public

good” are frequently encoded by conjugative elements (Norman
et al., 2009; Rankin et al., 2011b). The distribution among GECs
members of such plasmid-mediated “public goods” is favored
by common characteristics in the consortium, as nearly iden-
tical immune phenotypes mediated by CRISPR, or common
DNA uptake mechanisms or quorum sensing responses. Plasmid-
mediated common benefits will probably lead to GEC-plasmid
coevolution (Skippington and Ragan, 2012). Along the same line,
addiction-type TA complexes can spread on plasmids, favoring
coexistence and/or competition in spatially structured environ-
ments (Rankin et al., 2012) highlighting the role of kin effects
in GECs selection (taking “kin” in a wider sense than just intra-
specific ties). It is of note, however, that possibly most organisms
and environments might act as conduits for resistance gene flow
(Stokes and Gillings, 2011), acting as “sources” from where resis-
tance genes are directed to GECs, acting as “sinks,” according
to the Perron et al. (2007) metaphor. The possibility of “go-
between” organisms traveling from GECs of different microbiotic
systems (humans, animals, rhizosphere, and water sediments)
should be taken into consideration, as they might contribute
to the inter-environmental globalization of antibiotic resistance
genes. The existence of “ubiquitous” organisms or species able
to transit in different environments has been suggested (Fondi
and Fani, 2010; Freilich et al., 2010; Tamames et al., 2010). Can-
didates for efficient “go-between” organisms are groups of the
same bacterial species but specialized in particular environments,
as the case of human or animal-adapted versus environmental
E. coli clades, where probably only ecological barriers prevent gene
flow (Freilich et al., 2010; Luo et al., 2011). Mixing of human
or animal derived water effluents into the environment, a prac-
tice that is surprisingly perpetuated even in modern societies
will facilitate conduits for resistance gene flow (Baquero et al.,
2008; Czekalski et al., 2012; Lupo et al., 2012). Such flow occurs
because of the confluence of human microbiota from different
human hosts, different animals and the indigenous environmental
microbiota.

Among these GECs, the most relevant for the transmis-
sion of antibiotic resistance are those including species from
Gammaproteobacteria (as E. coli) and Firmicutes (as Enterococ-
cus; Antonopoulos et al., 2009; Freilich et al., 2010; Skippington
and Ragan, 2011; Faust et al., 2012). These groups of organ-
isms are enriched in the microbiota during antibiotic exposure
(Antonopoulos et al., 2009; Sommer et al., 2009). Antibiotic-
mediated reduction in number or loss of some species, favors
bacterial species able to explore and temporarily exploit empty
niches due to short generation times (Allen et al., 2011; Looft and
Allen, 2012). Antibiotic exposure will increase the absolute num-
ber (overgrowth) of GECs-associated organisms, for instance, by
antibiotic exposure of the infant gut (Fouhy et al., 2012; Looft and
Allen, 2012). Probably the same might occur in environmental
GECs submitted either to antibiotic pollution or sanitation proce-
dures (Baquero et al., 2008). For instance, metagenomic analysis
indicates that drinking water chlorination could concentrate pop-
ulations containing insertion sequences, integrons, and antibiotic
resistance plasmids (Shi et al., 2013). These effects will contribute
to the dissemination of resistance genes and the genetic platforms
in which they are located.
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The identification of GECs among members of the “microbial
guilds” in the three identified major microbiome “enterotypes”
(Arumugam et al., 2011) needs to be investigated. These major
enterotypes (clusters of species) should probably be tightly main-
tained into host populations, and therefore the local spread of
antibiotic resistance genes could serve to maintain their integrity
in an antibiotic-polluted environment. At the same time, low-
abundance enterotype-species, but providing critical functions,
could have low possibilities of getting resistance genes in the
absence of GECs. Consequently, a deep and permanent contam-
ination by antibiotic resistance genes of the normal microbiota
of humans and animals is a reasonable possibility. Complex
microbiota of humans and animals are reproducible systems,
not only along time in the same individual, but also across
individuals. These systems are frequently based in a microbi-
otic “core” composed by organisms belonging to a relatively
small number of phylogroups, and probably metabolically linked
with the host (Dethlefsen et al., 2006; Ley et al., 2006; Marchesi,
2011). Newborns have a sterile gut, but the human micro-
biota is “reproduced” with a relatively low number of variations
on each of them (Baquero and Nombela, 2012; Vallès et al.,
2012). Possibly there is also an “epidemiology of bacterial con-
sortia” even in hospitals, which remains to be investigated.
Exposure to antimicrobial agents might affect the frequency
and absolute number of GECs; in a number of cases, antibi-
otic resistance might contribute to the temporal stability and
resilience of microbiomes in an antibiotic-polluted environ-
ment (Allison and Martiny, 2008; Antonopoulos et al., 2009).
Of course that occurs at the expenses of maintenance and
spread of the full range of antibiotic resistance evolutionary
units.

Finally, we cannot discard individual variations in the microbi-
otic communities caused by diet, host genetics, particular illnesses,
inflammation, or infectious agents including viruses and para-
sites which might lead to microbial communities more prone
to capture and propagate antibiotic resistance (Marchesi, 2010;
Claesson et al., 2012; Looft and Allen, 2012). For instance, a
high-fat diet determines the composition of the murine gut micro-
biome independently of obesity, with an increase of Proteobacteria
and Firmicutes, heavily involved in resistance gene mobilization
(Hildebrandt et al., 2009; Tagliabue and Elli, 2012). In several
microbiota communities studied in the elderly, the proportion of
phylum Proteobacteria, very active in the mobilization of antibi-
otic resistance genes and vehicles, was ten times higher than
average (20 versus 2%; Claesson et al., 2011). E. coli numbers are
higher in the microbiota of women with excessive weight gain than
in women with normal weight gain during pregnancy (Santacruz
et al., 2010).

A number of surgical interventions (as surgery for morbid obe-
sity) increases Proteobacteria even in a higher proportion (50
times increase; Li et al., 2011; Graessler et al., 2012). Unfortu-
nately, these populational microbiotic shifts favoring the active
populations and communities contributing to the emergence, dis-
persal and maintenance of antibiotic resistance might also occur
as a consequence of undernutrition (10 times increase in Pro-
teobacteria, 46 versus 5% in healthy children in Bangladesh;
Monira et al., 2011). Possibly the deleterious effect of antibiotics

in promoting antibiotic resistance will be significantly increased.
Finally, it could be considered, under certain circumstances, as
during the colonization of the neonatal intestinal tract, that
rapidly growing populations might be more prone to the dis-
semination of antibiotic resistance. Also the unexpected possi-
bility of resistance gene exchange between Actinobacteria (Bifi-
dobacterium belongs to this group!) and Gammaproteobacteria
has been recently shown under the same conditions (Tamminen
et al., 2012).

ANTIBIOTICS IN THE ANTHROPOCENE: EFFECTS ON GLOBAL
ECOLOGY AND EVOLUTION
Evolution is a natural trend of complex systems, and might be
accelerated by changing and stressful conditions. The Anthro-
pocene is the current human-dominated geological epoch where
nature is changed and stressed by the action of humans
(Zalasiewicz et al., 2011; Biermann et al., 2012). Industrial antibi-
otics are a paradigmatic example of substances exerting a powerful
effect of anthropogenic origin on the bacterial communities of the
microbiosphere. Not only most of these substances are unspecif-
ically killing bacterial organisms, and selecting for resistance, but
directly influence the mechanisms of genetic variation (muta-
tion, recombination, transposition, modularization, gene transfer;
Baquero, 2009; Gillings and Stokes, 2012).

Such effects on microorganisms will be further enhanced by a
diversity of other anthropogenic effects as the release of biophar-
maceuticals, biocides, heavy metals, industrial and agricultural
residues, and plastic materials or changes in the environmental
conditions. The mixing of bacterial populations (human organ-
isms with other human, animal, or environmental organisms),
that makes the emergence and spread of resistance possible is
also favored by poor sanitation, facilitating contact of human
or animal sewage with the soil. Some of these effects might
escalate with other anthropogenic effects as destruction of diver-
sity in food animals (Baquero, 2012) or even global warming
(Baquero et al., 2008; Baquero, 2009; Balbus et al., 2013). The
fight against antibiotic resistance should focus not only on act-
ing on its appropriate usage in human and veterinary medicine,
but by considering possible initiatives at ecological and evolu-
tionary levels, as eco-evo drugs and strategies (Baquero et al.,
2011) in accordance with the environmental distribution of bac-
terial organisms (Tamames et al., 2010), in the scope of progre-
ssing toward a protective and restorative planet medicine
(Baquero, 2009).
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