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these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus
and Clostridium. Batch fermentation studies demonstrated that isolates had the ability
to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol
and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product
in glucose-fermenting cultures at pH 10 with yields of 0.205-0.304 g of ethanol/g of
glucose. While a xylose-fermenting strain yielded 0.189g of ethanol/g of xylose and
0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7 glycerol-fermenting
isolates produced PDO (0.323-0.458 g of PDO/g of glycerol) and ethanol (0.284-0.350¢g
of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were
identified as minor by-products in fermentation broths. These results suggest that the
deep biosphere of the former Homestake gold mine harbors bacterial strains which could
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INTRODUCTION

Lignocellulosic biomass represents an inexpensive, abundant, and
renewable biological resource that has great potential for the pro-
duction of biofuels (Himmel et al., 2007). Many factors, such
as the highly resistant nature of lignin and the crystallinity of
cellulose along with structural complexity make lignocellulose
recalcitrant toward biological and chemical degradation (Zheng
et al., 2009). Alkaline pretreatment breaks lignin-carbohydrate
bonds in lignocellulosic biomass and has been used extensively
to increase the enzymatic digestibility of switchgrass and prairie
cordgrass, which are promising biomass feedstocks especially in
South Dakota (Gonzalez-Hernandez et al., 2009; Karunanithy
and Muthukumarappan, 2011). However, the major problem
associated with alkali pretreatment is that it raises the pH of
medium containing biomass to the highly alkaline (>10) range,
which is not optimal for fermenting microorganisms such as
Saccharomyces cerevisiae and Zymomonas mobilis that perform
fermentation only under acidic pH (5.0) conditions (Zaldivar
et al., 2001; Zheng et al., 2009). At industrial scale of biomass
fermentation, large pH shifts (highly alkaline) require signifi-
cant use of acids, resulting in an increased amount of waste salt
products that must be disposed of appropriately. Furthermore,
S. cerevisine and Z. mobilis are of limited use in fermentation
of biomass with high pentose content, as they cannot ferment

be used in bio-based production of ethanol and PDO.
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pentose sugars unless they are genetically engineered to express
the desired pathways (Zaldivar et al., 2001). Although, ethanol
producing strains of Escherichia coli can degrade pentose and hex-
ose sugars, the fermentation reactions are generally carried out at
pH 7. Therefore, E. coli is also not suitable for fermentation of
alkali-treated biomass (Zaldivar et al., 2001). From this perspec-
tive, novel bacteria with different spectra of abilities, such as those
that can ferment glucose and xylose sugars under alkaline condi-
tions, will lead to a cost-effective and environmentally friendly
bioethanol production process.

Another problem associated with bioconversion of feedstocks
such as soybean, vegetable, canola, and waste oils and animal
fats into biofuels is the generation of glycerol as a major by-
product (Yazdani and Gonzdlez, 2007; Yazdani et al., 2010). For
example, it has been shown that for every 100 kg of biodiesel or
bioethanol produced, the amounts of crude glycerol produced
are 4 and 10kg, respectively (Barbirato et al., 1998; Maervoet
et al., 2011). With increased emphasis placed on bioethanol and
biodiesel production, there is also an increase in the amount of
crude glycerol produced. In Europe, the amount of waste glyc-
erol produced was more than 700 kilotons in year 2008. In the
US, the amount of crude glycerol produced has reached approx-
imately 251 kilotons per year (Valdivieso, 2010). Crude glycerol
contains several impurities (alcohol, salts, and heavy metals) and
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for small-scale biofuels industries, purification of this crude glyc-
erol is not economical. As more and more crude glycerol is
produced from the biofuel industries, methods to use this waste
product effectively will be advantageous to further minimize the
cost of production of biofuels. One such method is microbial
transformation of waste glycerol to valuable products such as
1,3-propanediol (PDO) which offers a promising alternative to
manage waste glycerol.

PDO is a very valuable chemical that is used in the synthesis
of various polyesters, polyurethane, lubricant, solvent, and as a
precursor in the chemical and pharmaceutical industries (Saxena
etal, 2009; Maervoet et al., 2011). Although conventional chemi-
cal methods do exist for the synthesis of PDO, the process is quite
expensive due to use of high pressure, temperature, and expen-
sive catalysts along with generation of toxic intermediates. Thus,
anaerobic microbial conversion of crude glycerol to produce PDO
is an area of extensive research and provides a way to capital-
ize on the surplus of waste glycerol (Thompson and He, 2006).
However, so far only a few bacterial species belonging to gen-
era Clostridium, Klebsiella, Enterobacter, Lactobacillus, Citrobacter,
and Bacillus have been shown to convert glycerol into PDO under
anaerobic conditions (Zhao et al., 2006; Willke and Vorlop, 2008;
da Silva et al., 2009; Saxena et al., 2009). Considering the rapidly
growing market for PDO and to deal with the problem of waste
glycerol, there is increasing need to isolate and characterize new
strains of bacteria that can ferment glycerol into PDO.

It is apparent that there are several constraints associated
with biofuels production such as limited availability of bac-
terial strains that can ferment alkali-treated biomass or fer-
ment glycerol to commodity chemicals (e.g., ethanol, PDO).
Considering these limitations, we have isolated glucose-, xylose-,
or glycerol-fermenting bacteria from the extreme deep bio-
sphere environment of the former Homestake gold mine, Lead,
SD. There are very few reports on subsurface isolates utilizing
glucose for ethanol production (Alain et al., 2002; Slobodkin
et al., 2003; Slobodkina et al., 2008) but the information on
xylose and glycerol fermenting deep subsurface microbes is rel-
atively scarce. Deep subsurface microbes, Tepidibacter thalassicus
and Clostridium tepidiprofundi sp. nov., fermented glucose into
ethanol, acetate, and H, (Slobodkin et al., 2003; Slobodkina
et al., 2008). Another strain, Caminicella sporogenes gen. nov.,
sp. nov., produced H,, acetate, butyric acid and ethanol when
grown on glucose as a substrate (Alain et al., 2002). In this
study we characterized the biotechnological potential of seven
strains for ethanol and PDO production using laboratory batch
fermentation studies.

MATERIALS AND METHODS

SITE DESCRIPTION AND SOIL COLLECTION

The Homestake mine (44°35'2074”N, 103°75082”W; Lead, SD)
is the deepest mine (2.4km deep) in North America and had
the largest gold deposits ever found in the Western Hemisphere
(Rastogi et al., 2009b). This former gold mine is now known
as Sanford Underground Research Facility (SURF). A detailed
description of the mine is located at http://www.dusel.org/. In
May 2008, a composite soil sample was collected at a depth of
1.34km from the Ross shaft as described earlier (Rastogi et al.,

2010a,b). A schematic cross section, location of sampling site,
and elemental composition of the soil samples used in the present
study have been described elsewhere (Rastogi et al., 2009b).

ENRICHMENT AND ISOLATION OF GLUCOSE-, XYLOSE-, AND
GLYCEROL-FERMENTING BACTERIA

The glucose and xylose fermentation medium contained (per
liter): 0.1 g nitriloacetic acid, 1 ml FeCls solution (0.03%), 0.05 g
CaCl,-2H,0, 0.1 g MgSO4-7H,0, 0.005g methionine, 1.8g of
85% H3POy4, 0.05g yeast extract, 0.01 g casamino acids, 0.01g
KCl, 0.3 g NH4Cl, and 1 ml of Nitsch’s trace element solution
(Rastogi et al., 2009a). The pH of the medium was adjusted
to 10 using 10 M NaOH/glycine mixture to specifically enrich
alkaliphilic fermentative bacteria. After autoclaving, the medium
was supplemented with filter-sterilized solutions of D-xylose or
D-glucose as a source of carbon to achieve a final concentra-
tion of 5g/L of these sugars. For enrichment and isolation of
glycerol-fermenting bacteria, the medium contained the follow-
ing components (per liter): 7 g K;HPOu, 2 g KH,POy, 2 g NH4Cl,
2 g MgS04.7H,0, 0.5g NaCl, 6.61g (NH4),SO4, 40 g glycerol,
and 1 g yeast extract, and the pH of the medium was adjusted to
7. The glycerol fermentation medium was derived from the study
of Zheng et al. (2008).

One gram of soil sample was aseptically added to 125-ml
serum bottles containing 100ml of pre-sterilized xylose, glu-
cose, or glycerol fermentation medium. The serum bottles were
sealed with butyl rubber stoppers, crimped with aluminum seals,
and sparged with ultra-pure Ny for 15min to remove the
dissolved and head space oxygen for creating anaerobic condi-
tions (Sani et al., 2010). All enrichments were performed by
incubating the serum bottles at 37°C in an incubator shaker
(120 rpm) for 2—4 days. Triplicate serum bottles were used for
each enrichment experiment, and controls included were: (1)
soil samples autoclaved at 121°C, (2) soil-free controls, and (3)
carbon source-free controls. Growth of enrichment cultures was
monitored periodically by measuring total cell protein using a
quantitative colorimetric Coomassie assay (Sani et al., 2001) and
cultures showing growth were transferred into fresh fermentation
medium. This process was repeated five times prior to initiating
the isolation of pure cultures by deep agar plate technique from
mixed enrichments. In brief, 100 ul of fifth-generation mixed
enrichment cultures was added to 100 ml of sterile and lukewarm
xylose, glucose, or glycerol agar medium, mixed well and poured
immediately into petri plates. Triplicate agar plates from each
enrichment culture were incubated under anaerobic conditions in
BBL® Gas-Pak® containers (Becton Dickinson) for 2—4 days in the
dark at 37°C. After incubation well-separated colonies that were
embedded into agar were picked and inoculated into serum bot-
tles containing fresh medium having a particular carbon source
(glucose, xylose, or glycerol).

16S rRNA GENE SEQUENCE ANALYSIS OF GLUCOSE-, XYLOSE-, AND
GLYCEROL-FERMENTING BACTERIA

Total DNA was extracted from 10 ml of pure cultures of glucose-,
xylose-, and glycerol-fermenting isolates. PCR amplification of
nearly full-length 16S rRNA genes from each isolate was carried
out using the primer set 8f/1492r and amplification conditions as
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described earlier (Rastogi et al., 2009a). Sequencing of 16S rRNA
genes was performed commercially, and similarity searches for
sequences were performed by BLAST (N). Sequences were aligned
using the CLUSTALW, and phylogenetic trees were constructed
using the neighbor-joining method (1000, bootstrap replicates)
by MEGA v 3.1 (Kumar et al., 1993). All 16S rRNA sequences
generated in this study have been deposited in GenBank under
accession numbers GQ254068—-GQ254079.

MEASUREMENT OF TOTAL CELL PROTEIN, METABOLITES, AND
SUBSTRATE CONSUMPTION

The isolates were grown anaerobically in serum bottles contain-
ing 100 ml liquid medium with a particular carbon source xylose,
glucose or glycerol. After the exponential phase of growth, the
cells from seed cultures were re-inoculated into serum bottles
containing 100 ml medium with the same carbon source, and
anaerobic conditions were created. The inoculated bottles were
incubated at 37°C under shaking conditions (120 rpm) for 6 days.
Samples were withdrawn periodically and analyzed for soluble
intermediates and end products. Samples were prepared for high-
pressure liquid chromatography (HPLC) by centrifuging 1-ml
cultures at 10,000 rpm, and the resulting supernatant was fur-
ther filtered using 0.2 wm pore size membrane filters (Gelman
Acrodisc). HPLC employed a 300 mm Aminex HPX 87H column
(Bio-Rad Laboratories, Inc., Hercules, CA) on a HP 1100 Series
HPLC system equipped with a refractive index detector (Agilent
Technologies, Santa Clara, CA). Samples (10 l) were injected
onto a heated column (65°C) and eluted at 0.6 ml/min using
5mM H;SOy4 as mobile phase. The identification of fermenta-
tion product PDO was confirmed using HPLC and 1D proton
nuclear magnetic resonance as described earlier (Dharmadi and
Gonzalez, 2005; Murarka et al., 2008). All experiments were per-
formed in duplicate and control serum bottles with no carbon
source were also included.

DETERMINATION OF SPECIFIC GROWTH RATES AND YIELD
COEFFICIENTS

Bacterial growth rate is a time-dependent variable in cultures. In
each sample discrete growth rate measurements were calculated
for each time step. Equation 1 was used to obtain each discrete
growth rate datum point as described earlier (Chhatwal, 2008).

1 X;
O

In Equation 1 “|1;” represents the calculated growth rate (in hr—!)
and “X;” is the measured cell mass concentration (g/L). The “/”
subscript is a counter variable for each time step. Similarly, “X,”
represents cell concentration at time ¢t = 0. The variable “t” is
time (hour). The arithmetic mean of data obtained was then
calculated and represented as specific growth rate, “p”.

Yield coefficients (g of biomass [X] or product [P] formed per
g of substrate [S] consumed) were defined based on the amount
of consumption of xylose, glucose, or glycerol. Growth yields were

calculated from Equation 2.

AX

Y = —— 2
X/s AS (2)

Product yields on substrate were calculated from Equation 3.

Y, i 3
PIS = A 3)
RESULTS AND DISCUSSION

MOLECULAR IDENTIFICATION OF GLUCOSE-, XYLOSE-, AND
GLYCEROL-FERMENTING BACTERIA

A total of eight bacterial strains were purified from three dif-
ferent enrichment cultures and were used to ferment glucose,
xylose, or glycerol. Figure 1 shows the phylogenetic identification
of these isolates and the type of enrichment culture from which
they have been purified. All isolates were found affiliated with
phylum Firmicutes and grouped within the Clostridiaceae and
Bacillaceae families. A majority of isolates (7 out of 8) were closely
related to Clostridium sp. except a single isolate (DUSELGlu2)
that closely grouped with sequences from Bacillus sp. These find-
ings were in agreement with earlier studies from the Homestake
mine, where Clostridium sp. has been shown to be the most pre-
dominant member (up to 62.3%) followed by Bacillus sp. (32.7%)
in cellulose-degrading enrichment cultures (Rastogi et al., 2009a).
Clostridium spp. have been shown to ferment glucose, xylose, or
glycerol to produce various alcohols (e.g., ethanol, butanol), acids
(e.g., lactic, acetic, butyric acids), and PDO (Balasubramanian
et al., 2001; Ni and Sun, 2009; Jiang et al., 2010; Maervoet et al.,
2011). Although several Bacillus species have been reported to
produce ethanol (Romero et al., 2007; Ou et al., 2009), none
of them has been shown to ferment glucose into ethanol espe-
cially under alkaline pH conditions as observed in the case of the
DUSELGIu2 strain that belonged to genus Bacillus based on 16S
rRNA phylogenetic analysis (Figure 1).

BATCH FERMENTATION OF XYLOSE BY DEEP-MINE ISOLATE

Xylose fermentation by DUSELXyl3 strain was studied in anaero-
bic batch cultures. After alag of 6 h, DUSELXyI3 strain started uti-
lizing xylose as carbon source, which was evident by a net increase
in total cell protein and a decrease in xylose concentration in
fermentation broth (Figure 2A). During the exponential growth
phase, xylose fermentation produced acetic acid that decreased
the pH of fermentation broth from 10 to 4.5 (Figure 2A). It is
possible that low pH conditions generated in the fermentation
broth might have affected metabolic pathways involved in xylose
utilization and probably inhibited them. This was in line with
batch fermentation profile of DUSELXyl3 strain which revealed
this strain fermented only about 43% of the initial xylose con-
centration during 150 h of incubation (Figure 2A). HPLC analysis
revealed that DUSELXyl3 produced acetic acid (1.56 g/L, data not
shown) as a primary metabolite rather than ethanol (0.52 g/L)
at the end of fermentation. DUSELXyl3 produced 0.189g of
ethanol/g of xylose which was about 37% of theoretical yield for
complete conversion of sugar to ethanol.

BATCH FERMENTATION OF GLUCOSE BY DEEP-MINE ISOLATES

Glucose-fermenting strains DUSELGlul, DUSELGlu2, and
DUSELGlu4 demonstrated similar batch fermentation profiles
with respect to product formation, substrate consumption, and
pH shifts in fermentation broth. For example, within 40h of
fermentation, DUSELGlu4 completely utilized the glucose that
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FIGURE 1 | Phylogenetic tree showing the relationship of 16S rRNA gene
sequences retrieved from xylose-, glucose-, or glycerol-fermenting
DUSEL strains with reference sequences of Clostridium and Bacillus sp.
obtained from GenBank. The type of enrichment medium from which a

Clostridium roseum (Y18171)
DUSELG]Iy4 (Glycerol)
DUSELGIy3 (Glycerol)
Clostridium diolis (AJ458418)
DUSELGIy1 (Glycerol)
Clostridium beijerinckii (X68180)
Clostridium diolis W1 (DQ831125)
Clostridium sp. (Y15984)
Clostridium acetobutylicum (S46735)
DUSELGIul (Glucose)
100/ 81| Clostridium tertium (Y18174)
100 ' Clostridium sp. (EU869238)
Clostridium sartagoforme (F1384380)
100 Clostridium disporicum (DQ855943)
Clostridium sp. (F1384390)
Clostridium quinii (NR_026149)
DUSELGIu4 (Glucose)
DUSELGIu5 (Glucose)
DUSELXYyI3 (Xylose)

Bacillus firmus (AJ491843)

Clostridiaceae

Firmicutes

Brevibacillus sp. (AY372923)

Bacillus benzoevorans (Y14693)
Bacillus sp. (AJ544783)
DUSELGIu2 (Glucose)
Bacillus circulans (EU116046)
Bacillus circulans (EF100968)
Bacillus circulans (AY724690)
Bacillus sp. (AJ973278) Bacillaceae
‘ Bacillus sp. (FJ215785)
Bacillus circulans (D78312)
Bacillus sp. (AM489494)
Escherichia coli (J01859)

particular strain was isolated has been indicated in parenthesis along with the
strain name in bold. E. coli (JO1859) was selected as out-group to root the
tree. The scale bar represents 0.02 substitutions per nucleotide position.
Bootstrap values which were <75% are not shown.

was available in the broth indicating that glucose can be readily
fermented into ethanol in a short span of time. In all three
glucose-fermenting strains, ethanol (0.205-0.304g ethanol/g
glucose) was detected as the primary product at the end of
fermentation with small amounts of acetic acid (0.593-0.742 g/,
data not shown), and lactic acid (0.013-0.45g/L, data not
shown). Interestingly, the concentration of lactic acid dropped
below the limit of detection at the end of fermentation in
DUSELGlul and DUSELGIlu4 strains, while in DUSELGIlu2
strain, it turned out to be the third fermentation product along

with ethanol and acetic acid. All three glucose-fermenting isolates
showed similar ethanol yields and specific growth rates (Tables 1
and 2). Based on a theoretical maximum yield of 0.51 g ethanol/g
sugars (Krishnan et al., 1999), the yield of ethanol in DUSELGlu2
strain was 0.304 g of ethanol/g of glucose which was 60% of
theoretical maximum yield.

The specific growth and metabolite product profiles of both
xylose- and glucose-fermenting deep-mine strains showed that
ethanol was not a growth-associated metabolite as it was formed
after the exponential phase of growth (Figures2A and B for
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FIGURE 2 | Profiles of total cell protein, substrate consumption,
change in pH, and product formation during the fermentation by
DUSELXyI3 (A), DUSELGIu4 (B), and DUSELGIy4 (C).

DUSELXyl3 and DUSELGlu4, respectively). In previous stud-
ies, strains of E. coli, Klebsiella oxytoca, and Zymomonas mobilis
have been shown to produce very high amounts (23-63g/L)
of ethanol from xylose and glucose fermentations (Yomano
et al, 1998; Dien et al, 2003). Noticeably, these studies
have used mutant/recombinant strains over-expressing a desired
metabolic pathway, specialized growth media, sugar mixtures,

and inoculation protocols. Our data on the fermentation of glu-
cose, xylose, and glycerol by deep-mine isolates were generated
under un-optimized minimal medium and culture conditions
using wild-type strains. Therefore, detailed comparisons of deep-
mine strains with earlier reports were not possible. Nonetheless,
recombinant E. coli strains have been shown to produce 0.5g
ethanol/g of glucose in LB medium (de Carvalho Lima et al,
2002). Noticeably, our wild-type DUSELGIlu2 strain produced
0.304 g ethanol/g of glucose in a minimal fermentation medium
(Table 2). Furthermore, metabolically engineered S. cerevisiae
strains have been shown to produce 0.35-0.38 g ethanol/g of
xylose (Eliasson et al., 2000).

BATCH FERMENTATION OF GLYCEROL BY DEEP-MINE ISOLATES

All three glycerol-fermenting isolates, DUSELGIly1l, DUSELGly3,
and DUSELGlIy4, displayed similar growth, substrate consump-
tion, and product formation characteristics. The growth profile
was very rapid and reached an exponential phase within 10h
of fermentation (Figure 2C for DUSELGIy4). Once the fermen-
tation reached a stationary phase at 66 h, only about 10% of
the initial glycerol concentration was consumed by these isolates
leading to the formation of PDO (1.44-1.64g/L) and ethanol
(1.18-1.27 g/L) as the major fermentation products. Due to the
formation of acidic products (e.g., acetic and succinic acid), the
pH of the fermentation broth decreased rapidly from 7.0 to
5.2 during exponential growth phase. Unlike acetic acid which
appeared as a byproduct (0.09 g/L) along with PDO and ethanol
at the end of fermentation, the concentration of succinic acid
dropped below the limit of detection at the end of batch fer-
mentation (data not shown). Specific growth and metabolite
product profiles suggested that PDO was a growth-associated
product (concentration increased with increase in cell growth—
Figure 2C). HPLC analysis of fermentation broths also detected
two peaks which were not identified and further investigations of
these peaks are needed to ensure the identities of all end prod-
ucts that were formed during glycerol fermentation. These peaks
may represent 2-3, butanediol, butanol, or butyric acid as pre-
vious studies have shown such intermediates in the oxidative
and reductive pathways for the fermentation of glycerol in major
PDO producers such as Clostridium, Klebsiella, Lactobacillus, and
Citrobacter (Biebl, 1991; Maervoet et al., 2011; Rodriguez et al.,
2012).

Molecular analysis based on 16S rRNA sequence suggested that
all glycerol-fermenting isolates were closely related to Clostridium
sp. (Figure 1). Interestingly, bacterial strains belonging to genus
Clostridium have been shown as the best “PDO producers”
and extensively used in bio-based production of PDO because
of their appreciable substrate tolerance, yield, and productiv-
ity (Gonzélez-Pajuelo et al., 2006; Chatzifragkou et al., 2011;
Wilkens et al., 2012). DUSELGly4 demonstrated a higher specific
growth rate of 0.048 h~!, ethanol yield of 0.35 g/g, and PDO yield
of 0.458 g/g in comparison with other two glycerol-fermenting
deep-mine strains (Figure 2C, Tables 1 and 2). The PDO yield
of DUSELGIy4 (0.458 g PDO/g of glycerol) was comparable to
other reported species such as K. pneumoniae M5al 0.41g/g
(Chengetal., 2006) and 0.496 g/g C. butyricum (Gonzalez-Pajuelo
et al., 2004). Overall these results suggest that DUSELGly isolates
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Table 1 | Growth rates and yield coefficients of xylose-, glucose-, and glycerol-fermenting deep-mine isolates.

Isolate DUSELXyl3 DUSELGIu1 DUSELGIu2 DUSELGIu4 DUSELGIy1 DUSELGIy3 DUSELGIy4
Substrate used in fermentation Xylose Glucose Glucose Glucose Glycerol Glycerol Glycerol
Specific growth rate w(h™") 0.025 0.030 0.032 0.038 0.031 0.037 0.048
Growth yield® (Yy,s) 0.006 0.006 0.007 0.008 0.007 0.007 0.007

pH (initial — final) 10.0 — 4.50 10.0 —4.76 10.0 - 3.7 10.0 — 4.65 7.0 -5.22 7.0 -5.32 7.0 -5.22

Calculations were done as described in “Materials and Methods"” under “Determination of Specific Growth Rates and Yield Coefficients” section.

@Growth yield (Yx,s)—g of biomass produced per g of substrate (xylose, glucose, or glycerol) consumed.

Table 2 | Products and yield coefficients of xylose-, glucose-, or glycerol-fermenting deep-mine isolates.

Isolate Substrate used Fermentation end products Yield coefficients
in fermentation
Major Minor Ethanol yield® (Yer/s) PDO vyield® (Ypp/s)

DUSELXyI3 Xylose Acetic acid and Ethanol None 0.189 NA

DUSELGIu1 Glucose Ethanol Acetic acid 0.205 NA

DUSELGIu2 Glucose Ethanol Acetic acid and Lactic acid 0.304 NA

DUSELGIu4 Glucose Ethanol Acetic acid 0.293 NA

DUSELGIy1 Glycerol PDO and Ethanol Acetic acid and succinic acid 0.284 0.323

DUSELGIy3 Glycerol PDO and Ethanol Acetic acid and succinic acid 0.298 0.367

DUSELGIy4 Glycerol PDO and Ethanol Acetic acid and succinic acid 0.350 0.458

Calculations were done as described in “Materials and Methods"” under “Determination of Specific Growth Rates and Yield Coefficients” section.

@Ethanol yield (Ygr,s)—g of ethanol formed per g of substrate (xylose, glucose, or glycerol) consumed.

bPDO Yield (Ypp 15)—g of PDO formed per g of glycerol consumed.
NA—not applicable.

characterized in this study can ferment glycerol to PDO at pH 7
with comparatively good yield.

CONCLUSIONS

The former Homestake gold mine represents a promising source
for bioprospecting high-value microbes and microbial enzymes
including those capable of degrading lignocellulosic biomass.
Fermentation capabilities of glucose- and xylose-fermenting
strains at alkaline pH have application in ethanol produc-
tion from alkali-treated biomass. In an earlier study, we have
shown that soil samples that were used to enrich and iso-
late glucose-, xylose-, and glycerol-fermenting strains contained
high amounts of toxic metals such as As, Cd, Cu, and Pb
due to mining activities (Rastogi et al., 2009a,b). Although, we
did not study glycerol fermentation in the presence of toxic
metals, isolation of fermenting strains from soil with high
levels of toxic metals indicates that these bacteria would be
adapted to tolerate toxic heavy metals. These newly isolated
deep-mine strains, if they have metal-tolerance, would be of
particular biotechnological interest as heavy metals are gen-
erally present as impurities in crude glycerol (Johnson and
Taconi, 2007). DUSEL strains also showed potential for the
production of major industrial products including acetic acid
(e.g., by DUSELXyl3) and PDO. The efficiency of these strains
could be further improved by optimizing growth media com-
position and culture conditions. In addition, pH-controlled
batch experiments should be run to show the capabilities of
ethanol production by these mine isolates at high pHs. A better

understanding of the inhibition effect of ethanol, PDO, and
pH on growth rates of deep-mine isolates will be required to
overcome any inhibitory effect that these might have on sugar
fermentation.

Deep-mine strains will also be evaluated to test their
ability to ferment all three carbon sources (xylose, glu-
cose, and glycerol). Molecular characterization of deep-mine
strains using techniques such as DNA-DNA hybridization
or using other phylogenetic marker genes are also needed.
Further elucidation of metabolic pathways leading to the for-
mation of ethanol, acetic acid, or PDO will be desirable
for the construction of recombinant strains for industrial
applications.
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