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Zetaproteobacteria are among the most prevalent Fe(II)-oxidizing bacteria (FeOB) at deep-
sea hydrothermal vents; however, knowledge about their environmental significance is
limited. We provide metagenomic insights into an iron mat at the Lo’ihi¯ Seamount, Hawai’I,
revealing novel genomic information of locally dominant Zetaproteobacteria lineages.These
lineages were previously estimated to account for ∼13% of all local Zetaproteobacteria
based on 16S clone library data. Biogeochemically relevant genes include nitrite reductases,
which were previously not identified in Zetaproteobacteria, sulfide:quinone oxidases, and
ribulose-1,5-bisphosphate carboxylase (RuBisCo). Genes assumed to be involved in Fe(II)
oxidation correlate in synteny and share 87% amino acid similarity with those previously
identified in the related Zetaproteobacterium Mariprofundus ferrooxydans PV-1. Overall,
Zetaproteobacteria genes appear to originate primarily from within the Proteobacteria and
the Fe(II)-oxidizing Leptospirillum spp. and are predicted to facilitate adaptation to a deep-
sea hydrothermal vent environment in addition to microaerophilic Fe(II) and H2S oxidation.
This dataset represents the first metagenomic study of FeOB from an iron oxide mat at a
deep-sea hydrothermal habitat.
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INTRODUCTION
Microbial Fe(II) oxidation is widespread in the deep-sea and is
thought to play a significant role in rock and mineral weathering
(Edwards et al., 2004). The microbial influence on the global iron
cycle, and consequently on other linked biogeochemical cycles,
such as carbon, has remained poorly understood, although several
studies have recently started to investigate key habitats with large
potential to host Fe(II)-oxidizing bacteria (FeOB; Edwards et al.,
2003, 2004; Rassa et al., 2009; Emerson and Moyer, 2010; Emerson,
2012). Among these habitats are 125,000 seamounts world-
wide, which often host extensive hydrothermal vent systems and
Fe-rich mats of microbial origin (Wessel et al., 2010; McAllister
et al., 2011).

Compared to the most commonly studied marine hydrother-
mal systems, located at mid-ocean ridge (MOR) spreading cen-
ters, the Lō’ihi Seamount hydrothermal system has unique fluid
chemistries. For example, vent fluids at Lō’ihi are highly enriched
in CO2, CH4, NH4, PO4, Fe, and Mn, but depleted in H2S (Karl
et al., 1988; Sedwick et al., 1992; Wheat et al., 2000; Edwards et al.,
2004; Glazer and Rouxel, 2009). The high concentration of dis-
solved CO2 buffers the hydrothermal fluids at a lower pH (5.3–5.5)
compared to what is most commonly observed at MOR systems
(Sedwick et al., 1992; Edwards et al., 2004). The low sulfide con-
centration results in high hydrothermal Fe concentrations and
extensive iron oxide mats by comparison to many MOR systems,
where Fe predominately occurs as FeS instead. The summit of
Lō’ihi intersects the Oxygen Minimum Zone (OMZ). The low
O2 concentration in bottom seawater at ∼1,000 m depth (O2

∼50 μM) associated with this OMZ and the high Fe concentra-
tions (up to 500 μM) in warm hydrothermal fluids (below 100◦C)
present beneficial conditions for FeOB, who have to compete with
the abiotic oxidation of Fe (Glazer and Rouxel, 2009).

The Lō’ihi Seamount supports abundant FeOB, and is domi-
nated by Fe(II)-oxidizing Zetaproteobacteria, as shown in various
studies (Emerson and Moyer, 2002; Rassa et al., 2009). The isola-
tion of the first Zetaproteobacterium Mariprofundus ferrooxydans
PV-1 from an iron mat at a cool (23◦C) diffuse vent site at the Lō’ihi
Seamount, has initiated evaluation of the ecological significance
of this class in biocorrosion (Emerson et al., 2007; Weiss et al.,
2007; Singer et al., 2011). Since then Zetaproteobacteria have been
predominantly found in diverse marine environments and their
involvement in microbially mediated Fe(II) oxidation is widely
accepted (Handley et al., 2010; Dang et al., 2011; Meyer-Dombard
et al., 2012). Continued discoveries of Zetaproteobacteria in marine
Fe(II) oxidizing niches raise the question whether Zetaproteobac-
teria could be the dominant marine FeOB. However, cultivation
of these FeOB present various difficulties to date. Molecular
and functional assays to study the biogeochemistry and ecology
of Fe(II) oxidation, the molecular mechanism of Fe(II) oxida-
tion, and the cultivation of environmentally representative groups
of Zetaproteobacteria all have remained elusive and have conse-
quently called for cultivation-independent molecular techniques.
Full-length Zetaproteobacteria 16S rRNA sequences have so far
been published from 11 regions in the world oceans and show
that this class appears to follow a strong biogeographic distri-
bution (McAllister et al., 2011). The distribution of operational
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taxonomic units (OTUs) appears to be more strongly correlated
with geographic occurrence than with environmental parameters,
such as temperature, pH, or total Fe concentration (McAllister
et al., 2011). The genome of Mariprofundus ferrooxydans PV-1
has provided insights into the genomic underlyings of Fe(II)-
oxidizing Zetaproteobacteria (Singer et al., 2011), but analysis of
FeOB-associated iron oxyhydroxide stalks suggests that PV-1 plays
a minor role at most sites (Emerson and Moyer, 2010). This study
discusses the (meta-)genomic content of new Zetaproteobacteria
lineages dominant at the Lō’ihi Seamount, Loh clone SPL-4, and
Loh clone SPL-7, delivers genomic and proteomic comparisons
to PV-1, and attempts to evaluate the environmental potential of
Zetaproteobacteria at Fe-rich seamounts in the global oceans.

MATERIALS AND METHODS
ENVIRONMENTAL SAMPLE SOURCE
Iron oxide-coated microbial biomats were collected by suction
sampler using the submersible vehicle Pisces V at the Spillway
site (Marker 34; 18.91 N, 155.26 W, 1271.95 m, Tmax = 63◦C)
at the Lō’ihi Seamount, Hawai’I, in 2003. DNA was extracted
using a phenol-chloroform extraction and purified using cesium
chloride density gradient centrifugation as described by (Moore
and Dowhan, 2002). The extracted and purified DNA was used
to construct a library of ∼8,000 fosmids (each ∼35 kbp) with
the Copy ControlTM Fosmid Library Production kit (Epicentre,
Madison, WI, USA) according to the manufacturer’s protocol
and stored at −80◦C. DNA was extracted at random from 384
fosmids (total library size ≈13.4 Mbp) with the BACMAXTM

DNA Purification Kit (Epicentre, Madison, WI, USA) in 2011.
The extraction protocol was amended by extending the incuba-
tion with the Plasmid DNA Safe mix from 20 min to 24 h under
the addition of extra Plasmid-Safe DNase and ATP to minimize
contaminating genomic DNA from the Escherichia coli fosmid
vector.

SEQUENCING AND ANNOTATION
DNA concentrations from individual fosmids were measured on
a Qubit 2.0 Fluorometer and pooled at equal molar amounts. The
pooled DNA was sequenced using conventional whole-genome
shotgun sequencing on a Roche 454 GS FLX Titanium sequencer
at the Core Genomics Center at the University of Pennsylva-
nia and yielded 1,492,332 reads (∼816 Mbp). Quality control
was performed with Prinseq v0.20.1 (maximum length: 450 bp;
minimum quality: 25; maximum homopolymer length: 9 bp;
maximum N-tail: 1 bp) (Schmieder and Edwards, 2011) and
fosmid vectors were discarded with a custom biopython script
(Cock et al., 2009). The remaining metagenome (∼423 Mbp)
was assembled with Mira using settings: de novo, genome, accu-
rate, 454 (Chevreux et al., 1999) and resulted in 3,988 contigs.
These 3,988 contigs were further assembled using Geneious
Pro v. 5.4.6 (Drummond et al., 2011) leading to 2,865 final
contigs with minimum length of 200 bp, average length of
1,956 bp, and average coverage of >25×. Annotation of these
final 2,865 contigs was performed on the RAST (Rapid Anno-
tation using Subsystem Technology) server version 4.0 (Aziz
et al., 2008). Manual curation was performed with the SEED
Viewer v. 2.0 (Overbeek, 2005). rRNA sequences were predicted

using BLASTN in CAMERA (Community cyberinfrastructure
for Advanced Microbial Ecology Research and Analysis; Sun
et al., 2011). Alignment and phylogenetic tree construction of
16S rRNA sequences were performed with the Geneious aligner
and PHYML tree builder using the Jukes-Cantor substitution
model and 100 bootstraps in Geneious (Guindon and Gascuel,
2003). This Whole-Genome Shotgun project has been deposited
at DDBJ/EMBL/GenBank under the accession AMFO00000000.
The version described in this paper is the first version, AMFO0-
1000000.

PHYLOGENETIC BINNING
RAST-annotated genes were aligned against the NCBI non-
redundant database using the BLASTX algorithm (E 10−5) for
community structure analysis. Final contigs of Zetaproteobac-
teria origin were determined by alignment against the genome
of Mariprofundus ferrooxydans PV-1 (AATS01000000) using the
BLASTX algorithm: Genes with best BLASTX matches to the
genome of PV-1 average to 62.15% average amino acid iden-
tity (AAid) (E 10−5). On this basis we selected all genes with
BLASTX hits of ≥60% AAid to PV-1 proteins to be preliminarily
binned as Zetaproteobacteria genes. Contigs exclusively harbor-
ing best BLASTX matches to PV-1 homologs at ≥60% AAid were
classified as Zetaproteobacteria contigs without further analysis.
Contigs including genes homologous to PV-1 genes, but also to
other bacterial classes were only included in our Zeta-subset if
they passed the following requirements: (1) Zetaproteobacteria
genes dominated in overall number and AAid or (2) remain-
ing non-Zetaproteobacteria genes could not be attributed to a
single phylogenetic class, which therefore excluded the possibil-
ity of chimeras (Treangen et al., 2011). This screening analysis
resulted in 853 genes on 86 contigs with 85.57% ANI to PV-
1. Ambiguous contigs, which may still belong to the genome
of this Zetaproteobacterium, but did not pass our screening fil-
ters discussed above, were not included in the discussion of this
study.

DNA AND PROTEIN SEQUENCE ANALYSIS
DNA sequence synteny was evaluated with the Artemis Compari-
son Tool (ACT; Carver et al., 2005). Protein subcellular localization
analysis was performed with PSORT (Nakai and Horton, 1999)
and Gneg-mPLoc (Shen and Chou, 2010). Signal peptides and
distinction between the general export pathway (Sec) and the
twin-arginine translocase (Tat) mechanism were predicted on
the basis of Hidden Markov Models (HMMs) using PRED–TAT
(Bagos et al., 2010). Motif analysis was performed in the Pfam
database using MOTIF Search on the GenomeNet network of
Kyoto University available at (http://www.genome.jp).

RESULTS
PHYLOGENY
In total, the dataset harbors five environmental 16S rRNA
sequences (>500 bp), two of which are nearly full-length
Zetaproteobacteria sequences (Table 1; Figure 1). Based on this
phylogenetic marker, Zetaproteobacteria are well represented at
Marker 34, Lō’ihi, which is in line with earlier studies based on
polymerase chain reaction (PCR)-dependent 16S rRNA analyses
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Table 1 | Best BLASTN hits of 16S rRNA sequences (>500 bp) in the Lō’ihi iron mat metagenome (retrieved 01/2013).

Closest relative in GenBank Class Accession no. Contig Length [bp]

SPL OTU 1 clone 10 Zetaproteobacteria JF320745 592 1,415

Uncultured bacterium clone Poh_5 Zetaproteobacteria JF320730 1645 1,427

Methylomicrobium alcaliphilum Gammaproteobacteria FO082060 202 1,147

Methylobacter psychrophilus Gammaproteobacteria NR_025016 2858 770

Uncultured bacterium clone Ld1-14 Actinobacteria GQ246409 2406 1,485

Zetaproteobacteria relatives are marked in bold letters. 16S rRNA sequences from potential fosmid vector contamination (Escherichia coli) are not listed here.

FIGURE 1 | Maximum-likelihood tree with 100 bootstrap

cycles of full-length 16S rRNA gene sequences of all known

Zetaproteobacteria species to date and representatives from

other Proteobacteria classes as stated in (McAllister et al., 2011).

Coloring is by geographic origin within the Pacific Ocean: red – Lō’ihi

Seamount, blue – Vailulu’u Seamount/Tonga Arc/East Lau Spreading
Center/Kermadec Arc, green – Southern Mariana Trough. GenBank
accession numbers for published sequences are shown in parentheses.
The scale bar represents 9 nucleotide substitutions per 100
positions.
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(Moyer et al., 1995; Emerson and Moyer, 2002; Rassa et al., 2009).
rRNA sequences from other FeOB were not detected. On the basis
of their isolation from the Spillway (SPL) site at Lō’ihi, their phy-
logenetic placement in OTU groups 4 and 7, and because they
have not been cultured to date, we named the new Zetaproteobac-
teria lineages Loh clone SPL-4 and Loh clone SPL-7 (Figure 1). All
Zetaproteobacteria genes presented here are assumed to belong to
these two lineages.

16S rRNA genes from SPL-4 and SPL-7 are 91% identical to
each other, and 90 and 93% identical to the 16S rRNA gene of
Mariprofundus ferrooxydans PV-1, respectively. Closest relatives
from OTUs 4 and 7 have been sampled in the Northern and South-
ern Pacific, but were previously not considered dominant OTUs at
Lō’ihi (McAllister et al., 2011). Clones of OTU 7 have so far only
been detected at the Lō’ihi Seamount (Marker 34) representing
∼5% of all local Zetaproteobacteria; clones from OTU 4 have been
isolated from Markers 48 and 57 at Lō’ihi (∼8% of local Zetapro-
teobacteria), the Tonga Arc, and the East Lau Spreading Center, and
so far show a wider distribution in the Pacific oceans compared to
clones from OTU 7 according to (McAllister et al., 2011). Although
the biodiversity and biogeography study by McAllister et al. (2011)
is the most comprehensive to date, it is important to note that their
findings completely rely on results from clone libraries, the results
of which are likely to be significantly biased, for instance by Taq
DNA polymerase errors and PCR template concentrations (Chan-
dler et al., 1997; Acinas et al., 2005). Our findings could hence
portrait genomic traits that are shared by other Lō’ihi strains and
may be applicable to more ubiquitous Zetaproteobacteria.

BIOGEOCHEMICALLY RELEVANT GENES
Zetaproteobacteria genes were analyzed with respect to metabolic
potential and environmental significance to the iron mat
environment at Lō’ihi. We also attempted a broader descrip-
tion of the nature of the Zetaproteobacteria by comparative
(meta-)genomics with the genome of Mariprofundus ferrooxy-
dans PV-1.

NEW Zetaproteobacteria GENE FUNCTIONS
Genes of potential biogeochemical relevance, which have not been
described for a Zetaproteobacterium before, encode for nitrite
reduction (contigs 68 and 2306, Figure 2). The nitrite reduction
gene cluster on contig 68 is similar in gene content and synteny
to those in the genomes of denitrifying Thiobacillus denitrificans,
Pseudomonas aeruginosa, P. stutzeri, and P. denitrificans (Rinaldo
and Cutruzzolà, 2007), e.g., NirS-encoded cytochrome cd1 nitrite

FIGURE 2 | Genes encoding for nitrite reductase and heme d1 biosynthesis are represented by arrows in red. Numbers denote starting positions (bp) of
genes within the contig.

reductase (cd1NIR) shares 82% amino acid similarity (AASim)
with nitrite reductase from the versatile Thiobacillus denitrificans
ATCC 25259 (gb|AAZ96030.1). Contig 2306 encodes copper-
containing nitrite reductase NirK (CuNIR) with 80% and 70%
AASim to NirK in the ammonia-oxidizing Nitrosococcus halophilus
and Nitrosomonas europaea, respectively. nirK occurs in a cluster
next to genes encoding for cytochromes c, which have 68% and
66% AASim to NcgB and NcgC from Nitrosomonas europaea, as
well as next to two genes encoding for multicopper oxidases type
3, which have 63% and 68% AASim to NcgA.

The two types of dissimilatory NiRs containing either heme
cd1 or two types of Cu centers as prosthetic groups, encoded by
nirS and nirK, respectively, have not been shown to coexist in the
same bacterial species, assuming that both encode nitrite reducing
activity (Cutruzzolà, 1999; Jones et al., 2008). Hence either nitrite
reductases are not conserved among different Zetaproteobacteria
spp. or nirK and ncgABC are rather involved in nitrite detox-
ification, such as in Nitrosomonas europaea (Beaumont et al.,
2002). Nevertheless, nitrite reduction may be coupled to Fe(II)
oxidation and could render certain Zetaproteobacteria spp. fac-
ultative anaerobes. This would allow these strains to inhabit a
wider range of environments than PV-1, which is known to be
a strict microaerophile and can typically acquire energy only at
<5% of air-saturated values (Emerson and Merrill Floyd, 2005;
Weiss et al., 2007).

It is difficult to infer evolutionary paths of nitrite reductases,
because neither nirS nor nirK are reliable phylogenetic markers
(with nirS following 16S rRNA phylogenies more congruently).
Since both, nirS and nirK in the Zetaproteobacteria genes share
most comparable AASim to respective functional genes within
the Gammaproteobacteria, it remains elusive, which of these types
of nitrite reductase is more representative for the Zetaproteobac-
teria and whether one or both types of nitrite reductases were
introduced by horizontal gene transfer (HGT).

Nitrate and nitrite reduction are encoded by various other
organisms in this Lō’ihi mat environment. Among these organisms
are the hydrothermal vent-adapted, thermophilic, strictly aerobic
Marinithermus hydrothermalis, the sulfur-oxidizing endosym-
bionts of Riftia pachyptila (vent Ph05) and of Tevnia jericho-
nana (vent Tica), which both have very similar physiologies
(Gardebrecht et al., 2011), the purple sulfur bacterium Thiocys-
tis violascens DSM 198 (Kämpf and Pfennig, 1980), and the
widely distributed Thiobacillus denitrificans, a facultative anaer-
obe, which couples inorganic sulfur oxidation as well as anaer-
obic oxidation of Fe(II) to denitrification at circumneutral pH
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(Beller et al., 2006). It appears that most nitrate/nitrite reducing
organisms in our dataset are adapted to hydrothermal vent life
either following a free-living or endosymbiotic lifestyle and many
possess the ability to oxidize a form of sulfur, such as the Zetapro-
teobacteria, as well. Since the iron mat environment provides
aerobic and anaerobic niches, the ability to reduce nitrate/nitrite
is consequently a beneficial trait that can easily be coupled to the
oxidation of inorganic compounds, such as sulfide and iron, and
therefore allow survival under dynamic environmental conditions.

Besides nitrite reduction, new Zetaproteobacteria gene func-
tions include antibiotic biosynthesis monooxygenase (contig 285),
several exodeoxyribonucleases I (contigs 2596, 2709, 280, 68),
and three transposases. Otherwise, the genes available from PV-
1 and the SPL-strains are fairly comparable in function and
abundance. The gene novelty in the Zetaproteobacteria genes fit
with the lifestyle of facultative anaerobic microorganisms, which
inhabit mats at an Fe-rich hydrothermal vent environment and
are frequently exposed to contact with other bacteria. Differ-
ent Zetaproteobacteria lineages may adapt to their exact niche
via acquisition of diverse survival-enhancing genes, e.g., spe-
cific antibiotic biosynthesis or efflux, or more/less heavy metal
efflux pumps encoding genes, however, the overall main metabolic
potentials appear similar between strains.

COMPARATIVE GENOMICS WITH Mariprofundus ferrooxydans PV-1
Iron oxidation
The first Zetaproteobacteria gene candidates assumed to be
involved in neutrophilic microaeorophilic Fe(II) oxidation were
detected via protein extraction from an Fe(II)-oxidizing PV-1 cell
culture (Singer et al., 2011). The extracted molybdopterin oxi-
doreductase Fe4S4 region (MobB) and most of the surrounding
gene cluster (ZP_01451010- ZP_01451022) was also identified
in our dataset (contigs 12, 296) and shows that gene synteny
is well conserved, however, split over two contigs (Figure 3).
Cytochromes and MobB (contig 296) are more conserved than
succinate dehydrogenases (contig 12).

MobB in the SPL-strains shares 82% AASim with MobB in
PV-1, while it is 59% and 57% similar to MobB in Gallionella
capsiferriformans and Sideroxydans lithotrophicus, respectively.
This indicates that there are sequence and potentially structural
differences among MobB within the Zetaproteobacteria and in
comparison to other FeOB. Both MobB proteins, in PV-1 as well as
in the SPL-strains, contain Tat signal sequences and are predicted
to harbor transmembrane helices located in the inner membrane.
Based on their negative charge at pH 7, the soluble parts of
both MobB, including the Fe4S4 region, are predicted to face
the periplasm unlike previously described in (Singer et al., 2011).
MobB may therefore accept electrons shuttled from the outer
membrane to the periplasm during Fe(II) oxidation as depicted
in our revised conceptual iron oxidation model (Figure 4). Outer
membrane cytochromes are likely involved in the import of
electrons from ferrous iron into the cells of FeOB, such as in
Acidithiobacillus ferrooxidans (Bird et al., 2011). Both, PV-1 and
the SPL lineages, also harbor genes encoding type IV biogenesis
proteins PilAMNOPQ (contigs 592 and 1144), which may aid in
the direct contact of Fe-species, such as in Geobacter spp. (Mehta
et al., 2005).

As neither transcription factors, nor promoters were found in
the immediate gene neighborhood vicinity of the MobB gene clus-
ter, it remains unclear if it is in fact actively transcribed in the
organism or if transcription is dependent on other genes, which
are elsewhere in the genome, for instance involved in redox sens-
ing. Despite the disconnection between contigs 296 and 12 in
the SPL-strains, succinate dehydrogenases may still be part of the
electron transport chain shuttling electrons during Fe(II) oxida-
tion, however, may not necessarily be transcribed together with
the MobB gene cluster.

Carbon fixation
Genes from our SPL lineages encode for Form IAq ribulose-
1,5-biphosphate carboxylase (RuBisCo) large subunit (contig
280) with 77% AASim to Mariprofundus ferrooxydans PV-1
(ZP_01451219) and two RuBisCo activation proteins CbbO and
CbbQ (contig 280), which are 72% and 88% similar to respec-
tive genes in PV-1 (ZP_01451217, ZP_01451218), respectively.
Form IAq appears predominantly in obligate chemolithotrophs
and functions best in niches with medium to low CO2 con-
centrations (0.1–1%) and O2 present (Badger and Bek, 2007).
Form II RuBisCo proteins, which are present in our dataset,
could not be unambiguously allocated to the Zetaproteobacteria
genes, although RuBisCo large and small chain proteins (contig
135) are 87% and 90% similar to respective proteins encoded
on the PV-1 genome (ZP_01453295-96). Associated RuBisCo
activation proteins CbbQ and CbbO (contig 135) are 81 and
66% similar to CbbQ (ZP_01453297) and CbbO (ZP_01453298)
in PV-1. Form II RuBisCo enzymes have a low discrimination
threshold against O2 as an alternative substrate, poor affinity
for CO2, and therefore potentially take over when the organism
moves to a high-CO2 (1.5%) and low-O2 environment (Badger
and Bek, 2007).

At Marker 34, temperature differences between ambient seawa-
ter (2.6◦C) and hydrothermal efflux (27◦C) may create turbulent
eddies in the water column, which would expose cells to oscillating
anaerobic and microaerobic conditions, where CO2 levels are vari-
able (ranging from 2 mM to 20 mM) and dependent on positioning
within the chemocline interface (Badger and Bek, 2007; Glazer
and Rouxel, 2009). Utilization of both forms of RuBisCo proteins
could thus enable SPL-4 and SPL-7 to optimize the acquisition of
carbon under a wider range of CO2 and O2 concentrations inside
and outside the mat in this dynamic system.

Sulfide oxidation
Sulfide oxidation is encoded by a sulfide-quinone reductase
(contig 212), which is 83% AASim to sulfide-quinone reduc-
tase in PV-1 (ZP_01453072). The presence of a transcriptional
regulator two genes further upstream (most closely related to
ZP_01451744) suggests that sulfide:quinone oxidoreductase is
actively transcribed. Homologs of sulfide-quinone reductases
from the SPL-strains are most closely related to genes in L. fer-
rooxidans and other Leptospirillum spp., as well as S. lithotroph-
icus. Neither of these organisms was isolated from deep-sea
hydrothermal vents, but they are associated with mats dominated
by FeOB (Edwards et al., 2000; Emerson et al., 2007; Goltsman
et al., 2009).

www.frontiersin.org March 2013 | Volume 4 | Article 52 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Extreme_Microbiology/archive


“fmicb-04-00052” — 2013/3/18 — 12:10 — page 6 — #6

Singer et al. New Zetaproteobacteria from Lō’ihi, Hawai’I

FIGURE 3 | Artemis ComparisonTool (ACT) analysis of gene neighborhoods around Molybdopterin oxidoreductase Fe4S4 region (MobB) on contigs

296 and 12 from the SPL Zetaproteobacteria and in Mariprofundus ferrooxydans PV-1.

FIGURE 4 | Conceptual iron oxidation model at neutral pH in

Zetaproteobacteria revised from (Singer et al., 2011). Proteins
potentially involved in energy acquisition via Fe(ll) oxidation through
the outer and inner membrane as predicted from genomic and

protein structure and localization analysis. Besides Molybdopterin
oxidoreductase Fe4S4 region, proteins extracted from Fe(ll) oxidizing
Zetaproteobacteria cultures are discussed in (Barco et al., in
preparation).
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The Lō’ihi Seamount is mostly deplete of sulfide (e.g., no sul-
fur phases were observed in 2006), which is why Fe-oxides are
the most common form of Fe(III)-minerals (Glazer and Rouxel,
2009). An elevation in dissolved sulfide concentration has been
observed at Lō’ihi during an eruption in 1996 (Davis et al., 2003),
however, incidents like that represent the exception rather than
the norm. It was recently shown that the distribution of Zetapro-
teobacteria OTUs is more dependent on geographic factors, such
as distance than environmental chemistry (McAllister et al., 2011).
Because sulfide oxidation is an unfavorable metabolism at Lō’ihi
the maintenance of sulfide and sulfite oxidation genes should be
an evolutionarily unstable strategy. Hence it remains to be deter-
mined if all Zetaproteobacteria are capable of sulfide oxidation
and if these sulfide-quinone reductases are remainders of ancient
Zetaproteobacteria or have been introduced along with other genes
from FeOB, which may experience high sulfide concentrations
more frequently.

DISCUSSION
THE Zetaproteobacteria IN THE GLOBAL OCEANS
This study has provided novel insights into the physiology, ecol-
ogy, and genetics of novel Zetaproteobacteria strains cycling iron
and carbon at a deep-sea hydrothermal vent environment. Loh
clones SPL-4 and SPL-7 belong to OTUs 4 and 7, which were pre-
viously estimated to account for ∼13% of the Zetaproteobacteria
present at the Lō’ihi Seamount based on 16S clone library data
(McAllister et al., 2011). In our metagenomic dataset, which was
created from samples of the same environment and not amplified
prior to sequencing, these strains were dominant. The discrep-
ancy between PCR- and fosmid-based techniques exemplifies the
outcome of barely predictable biases, which should be taken into
account, especially when studying microbial diversity in Fe(II) oxi-
dizing environments. In addition, the fosmid kits used in our study
were accompanied by major difficulties upon insert retrieval and
led to a loss of 50% of the library, primarily due to vector contami-
nation (see Methods section). This loss could have been reduced if
whole genome sequencing on environmental DNA had been cho-
sen over the use of fosmid libraries. Thereby a significant amount
of genomic content missing from our dataset could have possibly
been retrieved and would have potentially revealed further molec-
ular fundamentals of the successful Zetaproteobacteria lifestyle
beyond those discussed in this study. Annotation of Zetapro-
teobacteria genes was difficult sometimes as current databases are
skewed toward Gammaproteobacteria, however, the combination
of screening filters, including BLAST searches, tetranucleotide pat-
terns and taxonomic classification models based on GLIMMER
interpolated context models (ICMs) was tested and enables reliable
detection of most Zetaproteobacteria genes.

Comparative genomics of SPL-4 and SPL7 with Mariprofun-
dus ferrooxydans PV-1, show that iron transporters, mat-specific
genes, diverse oxygen-level dependent forms of RuBisCo, sul-
fide:quinone reductases, transmembrane phosphate uptake trans-
porters, and heavy metal efflux pumps are well conserved and
support genome-wide relatedness of these deep-sea hydrother-
mal vent Zetaproteobacteria as predicted from their geographical
closeness. Furthermore, the SPL-strains also show parallels in
metabolic potential and gene relatedness to other hydrother-
mal vent-native organisms, especially to endosymbionts of R.
pachyptila and the physiologically similar endosymbiont of Tevnia
jerichonana. Shared metabolic functions include nitrite reduction,
sulfide oxidation, as well as genes typically found in mats, e.g.,
pili assembly genes. Interesting is the presence of five transposases
in the Zetaproteobacteria contigs, four of which are most closely
related to Leptospirillum spp. Unfortunately, these transposases
are mostly located next to genes of unknown function and do
not reveal information about which (if any) functions are poten-
tially transferred between iron-oxidizing organisms. However, the
transposed potential carried between FeOB may be of future
research interest as genomic similarities between iron oxidation
pathways among FeOB are scarce.

Although PV-1 and the SPL-strains are not closely related on
the basis of 16S rRNA, the present genomic data have revealed that
key metabolic pathways are often conserved as operon structures.
However, gene and protein sequences between the analyzed lin-
eages can be evolutionary divergent, for example MobB, assumed
to play a role in Fe(II) oxidation, as well as sulfide:quinone reduc-
tases, are conserved at 82% and 83% AASim. Succinate dehydroge-
nases, which are well conserved in gene synteny to respective genes
in PV-1 only share 65% AASim. This indicates that despite shared
geographical origin, similar adaptation strategies, and parallels in
metabolic potential, Zetaproteobacteria genomes may still differ
significantly, for instance in % ANI. Knowledge about how much
metabolic potential can vary between Zetaproteobacteria of dif-
ferent geographical origin and phylogenetic affiliation, and about
their global role in Fe(II) oxidation, will become available upon
the expansion of the Zetaproteobacteria (meta-)genome database.
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sampling of hydrothermal fluids
from Loihi Seamount after the 1996
event. J. Geophys. Res. 105, 19353–
19367.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships

that could be construed as a potential
conflict of interest.

Received: 05 November 2012; accepted:
22 February 2013; published online: 19
March 2013.
Citation: Singer E, Heidelberg JF, Dhillon
A and Edwards KJ (2013) Metage-
nomic insights into the dominant Fe(II)

oxidizing Zetaproteobacteria from an
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