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Microorganisms transform inexpensive carbon sources into highly functionalized com-
pounds without toxic by-product generation or significant energy consumption. By
redesigning the natural biosynthetic pathways in an industrially suited host, microbial cell
factories can produce complex compounds for a variety of industries. Isoprenoids include
many medically important compounds such as antioxidants and anticancer and antimalarial
drugs, all of which have been produced microbially. While a biosynthetic pathway could be
simply transferred to the production host, the titers would become economically feasible
when it is rationally designed, built, and optimized through synthetic biology tools. These
tools have been implemented by a number of research groups, with new tools pledging
further improvements in yields and expansion to new medically relevant compounds. This
review focuses on the microbial production of isoprenoids for the health industry and the
advancements though synthetic biology.
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INTRODUCTION
Microbial biosynthesis of natural products provides advantages
over biomass extraction and chemical synthesis. The native hosts
of the natural products, usually plants, grow slowly with differ-
ences in the plant’s climate and geography, leading to detrimental
variations in the product concentration and composition (Chang
and Keasling, 2006; Asadollahi et al., 2008; Engels et al., 2008).
In addition, biomass extraction often requires substantial energy
and resource consumption for miniscule product recovery (Mar-
tin et al., 2003; Shiba et al., 2007; Ajikumar et al., 2008). Chemical
synthesis struggles to create the natural product’s integral com-
plexity (Chang and Keasling, 2006; Engels et al., 2008; Nakagawa
et al., 2011). It also requires significant amounts of energy while
producing toxic by-products (Chemler et al., 2006; Winter and
Tang, 2012; Wu et al., 2013). Microbial biosynthesis of natural
products can help avert these problems. The biosynthetic pathway
from the native host is redesigned in a tractable platform organ-
ism, often Escherichia coli or Saccharomyces cerevisiae, which serves
as a microbial cell factory (Shiba et al., 2007; Ajikumar et al., 2008;
Albertsen et al., 2011; Du et al., 2011; Misawa, 2011). The microbes
can utilize inexpensive carbon sources with short doubling times
to produce highly functionalized and value-added products with
no toxic by-products (Chemler et al., 2006; Ajikumar et al., 2008;
Tang and Zhao, 2009; Hong and Nielsen, 2012). Microbial biosyn-
thesis is well suited for the production of many natural products,
including isoprenoids.

Isoprenoids are important secondary metabolites for the health
industry. Built from five carbon isoprene units that are cyclized,
rearranged, and adorned in a multitude of ways, isoprenoids,
sometimes called terpenoids, include more than 40,000 struc-
turally unique compounds (Chang and Keasling, 2006; Ajikumar
et al., 2008; Farhi et al., 2011). Terpenoids are classified based
on their number of isoprene units. Monoterpenes consist of two

isoprene units, with sesquiterpenes, diterpenes, triterpenes, and
carotenoids (or tetraterpenes) built from three, four, six, and
eight isoprene units, respectively (Withers and Keasling, 2007;
Asadollahi et al., 2008; Misawa, 2011; Walter and Strack, 2011).
Important compounds for the health industry can be found in
many of the terpenoids classes, including the carotenoid lycopene,
the sesquiterpene artemisinin, the diterpene paclitaxel, and triter-
pene herbal medicines (Das et al., 2007; Ajikumar et al., 2008;
Asadollahi et al., 2008; Misawa, 2011).

Synthetic biology tools can help boost the delivery of iso-
prenoids to market. While the natural biosynthetic pathway
could be simply transferred to an industrially suited host, such
as E. coli or S. cerevisiae, the final titers of the desired prod-
uct would become economically feasible when the pathway is
rationally designed, built, and optimized (Klein-Marcuschamer
et al., 2007; Maury et al., 2008; Anthony et al., 2009). While rea-
sonable titers for the commercial-scale production are currently
unknown, a review indicates that 0.5 g/l is an adequate starting
point for high value compounds (Ajikumar et al., 2008). Innova-
tions in genomics and systems biology have facilitated the ability
to engineer biology for commercial applications through a set
of clear steps (Ajikumar et al., 2008; Keasling, 2012). First, the
metabolic pathways needed to produce the desired products are
selected. Second, a host suitable for industrial production and
genetic manipulation is chosen. Third, what must be redesigned
for the pathway and host to operate together is determined,
followed by optimization so that production can become com-
mercially relevant (Jarboe et al., 2010). These steps have been
implemented by a number of research groups for the creation
of biofuels, commodity chemicals, and products for the health
industry. This review focuses on the microbial production of iso-
prenoids for the health industry and the advancements through
synthetic biology. Four of the 10 isoprenoids discussed (Table 1)
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Table 1 | Isoprenoid production.

Isoprenoid Approach1 Microbial production

(fold improvement)

Microbe Natural source

and extraction

Chemical

synthesis

Amorphadiene2 Express heterologous pathway in

two operons and codon-optimize

amorphadiene synthase

24 mg caryophyllene

equivalent/l (300-fold)

(Martin et al., 2003)

E. coli Artemesia annua

0.01–1.0% of dry leaf

weight (Liu et al., 2006)

29–42% Overall yield

(Zhu and Cook, 2012)

Redesign the mevalonate pathway

to increase FPP and express

Artemisia annua’s amorphadiene

synthase and cytochrome P450

153 mg/l (500-fold) (Ro et al.,

2006)

S. cerevisiae

Identify the limiting reaction

enzymes and balance gene

expression through plasmid copy

number and promoter strength

293 mg/l (7-fold) (Anthony

et al., 2009)

E. coli

Overexpress every enzyme in the

mevalonate pathway as well as

modify fermentation conditions

40 g/l (250-fold) (Westfall

et al., 2012)

S. cerevisiae

Express heterologous pathway in a

strain of Streptomyces avermitilis

with minimized genome

30 mg/l (from 0 mg/l)

(Komatsu et al., 2010)

S. avermitilis

Truncate and deregulate HMG1 and

co-localize heterologous FDP

synthase and amorphadiene

synthase to the mitochondria

20 mg/l (20-fold) (Farhi et al.,

2011)

S. cerevisiae

Astaxanthin Overexpress native idi and gps

from Archaeoglobus fulgidus and

express the gene cluster crtBIYZW

from Agrobacterium aurantiacum

1.4 mg/g dcw (50-fold)

(Wang et al., 1999)

E. coli Haematococcus

microalgae 1.5–3.0% by

dry weight (Lorenz and

Cysewski, 2000)

Mixture of isomers,

not approved for human

consumption (Li et al.,

2011)

Overexpress idi and dxs and

balance expression of crtE, crtB,

crtI, crtY, and crtZ from Pantoea

ananatis and crtW148 (NpF4798)

from Nostoc punctiforme, which

were inserted into the chromosome

1.4 mg/g dcw (20-fold)

(Lemuth et al., 2011)

E. coli

Levopimaradiene Combinatorially mutate the

GGPPS–LPS pathway

700 mg/l (2,600-fold)

(Leonard et al., 2010)

E. coli Young Ginkgo biloba

trees 1–7 mg/g dry

weight (Matsuda and

Schepmann, 2008)

<3% Overall yield

(Matsuda and

Schepmann, 2008)

Lycopene2 Express Erwinia carotenoid

biosynthesis gene cluster and idi

from Haematococcus pluvialis

1.03 mg/g dcw (4.5-fold)

(Kajiwara et al., 1997)

E. coli Tomatoes

0.15–0.25 mg/g (Rath,

2009)

0.13 mg/g and 70%

trans configurations

(Olempska-Beer, 2006)

Redesign the global regulatory

system, the Ntr regulon

160 mg/l (from 0 mg/l)

(Farmer and Liao, 2000)

E. coli 94–96% trans

configurations

(Olempska-Beer, 2006)

Overexpress the catalytic domain of

HMG and disrupt ERG9

7.8 mg/g dcw (7-fold)

(Shimada et al., 1998)

C. utilis

(Continued)
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Table 1 | Continued

Isoprenoid Approach1 Microbial production

(fold improvement)

Microbe Natural source

and extraction

Chemical

synthesis

Overexpress genes identified by the

FSEOF strategy combined with

gene knockouts

12.32 mg/g dcw (4-fold)

(Choi et al., 2010)

E. coli

Overexpress and knockout genes

selected from a metabolic

landscape

16 mg/g dcw (4-fold) (Jin and

Stephanopoulos, 2007)

E. coli

Use “global transcription machinery

engineering” to improve

phenotypes

7.7 mg/l (1.8-fold) (Alper and

Stephanopoulos, 2007)

E. coli

Optimize DXP pathway with

“multiplex automated genome

engineering”

9 mg/g dcw (5-fold) (Wang

et al., 2009)

E. coli

Miltiradiene Fuse SmCPS and SmKSL as well as

BTS1 and ERG20

365 mg/l (340-fold) (Zhou

et al., 2012)

S. cerevisiae Salvia miltiorrhiza

<40 mg/g dry weight (Li

et al., 2012)

4 mg/ml of the precursor

salvianolic acid B (Gu

et al., 2008)

Patchoulol Replace the native ERG9 promoter

with the methionine repressible

MET3 promoter

16.9 mg/l (1.5-fold)

(Asadollahi et al., 2008)

S. cerevisiae Pogostemon cablin

30–40% total mass

(Hybertson, 2007)

6% Overall yield of the

precursor

norpatchoulenol (Kolek

et al., 2009)

Fuse the native farnesyl

diphosphate synthase and the

heterologous patchoulol synthase

and repress ERG9

40.9 mg/l (2-fold) (Albertsen

et al., 2011)

S. cerevisiae

Taxadiene Express genes for GGPPS,

taxadiene synthase, three

cytochrome P450 hydroxylases, and

three acyl/aroyl CoA dependent

transferases and build a five step

taxoid pathway

1 mg/l (100-fold) (Dejong

et al., 2006)

S. cerevisiae Taxus brevifolia

0.01–0.1% dry bark

weight (Hezari et al.,

1995)

18–20% Overall yield

(Mendoza et al., 2012)

Express genes for geranylgeranyl

diphosphate synthase from

Sulfolobus acidocaldarius and a

codon-optimized taxadiene

synthase from Taxus chinensis

8.7 mg/l (40-fold) (Engels

et al., 2008)

S. cerevisiae

Vary small pathway modules

simultaneously to determine the

optimally balanced complete

pathway (“multivariate modular

pathway engineering”)

1 g/l (15,000-fold) (Ajikumar

et al., 2010)

E. coli

Zeaxanthin2 Overexpress different combinations

of idi from Xanthophyllomyces

dendrorhous, dxr from Sulfolobus

acidocaldarius, and native dxs

1.6 mg/g dcw (3.5-fold)

(Albrecht et al., 1999)

E. coli Tagetes erecta’s red

flowers 23% dry weight

(Stankovic, 2004)

12% Overall yield of

racemic mix (Khachik and

Chang, 2009)

Use the “ordered gene assembly in

Bacillus subtilis (OGAB) method” to

determine optimal gene order

820 µg/g dcw (4.4-fold)

(Nishizaki et al., 2007)

E. coli

(Continued)
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Table 1 | Continued

Isoprenoid Approach1 Microbial production

(fold improvement)

Microbe Natural source

and extraction

Chemical

synthesis

α-Santalene Replace the native ERG9 promoter

with the glucose-responsive HXT1

promoter, delete the genes for lipid

phosphate phosphatase and

pyrophosphate phosphatase, and

overexpress a truncated

3-hydroxyl-3-methyl-glutaryl-CoA

reductase

0.21 mg/g dcw (3.4-fold)

(Scalcinati et al., 2012)

S. cerevisiae Santalum album 1–2%

by weight of oil (Jones

et al., 2011)

8% Overall yield

(Bastiaansen et al., 1996)

β-Carotene2 Overexpress different combinations

of idi from Xanthophyllomyces

dendrorhous, dxr from Sulfolobus

acidocaldarius, and native dxs

1.5 mg/g dcw (3.5-fold)

(Albrecht et al., 1999)

E. coli Mostly Dunaliella salina

300 mg/m2/day

(Hosseini Tafreshi and

Shariati, 2009)

85% Yield using

triphenyl-phosphine

oxide, which is harmful to

aquatic organisms

(USDA, 2011)

Replace the native promoters for

the chromosomal genes dxs,

ispDispF, idi, and ispB with strong

T5 bacteriophage promoters

6 mg/g dcw (24.5-fold) Yuan

et al., 2006)

E. coli

Dcw, dry cell weight.
1Acronyms are defined in the main text.
2Currently produced or produced in the near term by microbial biosynthesis.

are currently manufactured or will be manufactured in the near
future.

ISOPRENOID PATHWAY
Although isoprenoids include a wide range of compounds, they
are synthesized through a common metabolic pathway. The iso-
prenoid pathway (Figure 1) begins with the conversion of acetyl-
CoA to isopentenyl diphosphate (IPP). IPP is then isomerized
to dimethylallyl diphosphate (DMAPP), which forms geranyl
diphosphate (GPP), then farnesyl diphosphate (FPP), followed
by geranylgeranyl diphosphate (GGPP). At this point different
isoprenoids begin to branch off into individualized pathways
(Kajiwara et al., 1997; Schmidt-Dannert, 2000; Walter and Strack,
2011). Two distinct pathways exist for the production of the pre-
cursor compounds IPP and DMAPP, the mevalonate pathway, and
the methylerythritol phosphate (MEP) pathway. Thus, researchers
enjoy multiple options when selecting the metabolic pathway for
production of the chosen isoprenoid (Chang and Keasling, 2006).
Furthermore, the isoprenoid pathway has been expressed in a vari-
ety of hosts and assembled using genes from a diversity of sources
(Misawa and Shimada, 1997; Schmidt-Dannert, 2000; Das et al.,
2007; Nishizaki et al., 2007; Maury et al., 2008).

The IPP precursor supply has been engineered through sev-
eral techniques to improve the commercial viability of isoprenoid
biosynthesis. Martin et al. (2003) began their work on the synthe-
sis of the sesquiterpene artemisinin by assembling S. cerevisiae’s
mevalonate pathway into two operons that were co-expressed
in E. coli. Post-transcriptional processes made balanced expres-
sion of genes within operons difficult. To overcome this problem,
libraries of “tunable intergenic regions” (TIGRs) and recombined

control elements (RBS sequestering sequences, mRNA secondary
structures, and RNase cleavage sites) were screened to select
the E. coli strain that produced sevenfold more mevalonate
(Pfleger et al., 2006). Shiba et al. amplified the precursor flux
to the mevalonate pathway in S. cerevisiae by overexpressing
acetaldehyde dehydrogenase and incorporating Salmonella enter-
ica’s acetyl-CoA synthetase. This kept more carbon flow in the
cytosol, as opposed to the mitochondria, resulting in more meval-
onate (Shiba et al., 2007). To increase lycopene production by
boosting the precursor supply, a synthetic mevalonate path-
way was assembled in E. coli, which included yeast mevalonate
kinase (yMVK), human 5-phosphomevalonate kinase (hPMK),
yeast 5-diphosphomevalonate decarboxylase (yPMD), and E. coli
IPP/DMAPP isomerase (Rodriguez-Villalon et al., 2008). Due-
ber et al. (2009) created synthetic protein scaffolds to co-localize
mevalonate pathway enzymes, leading to a 77-fold improvement
in product titers. This approach demonstrated that high produc-
tion of mevalonate can be achieved with low enzyme expression
and reduced metabolic burden.

CAROTENOIDS
Carotenoids are among the first natural products whose titers
were improved through synthetic biology tools. Early work on the
microbial production focused on increasing the supply of interme-
diates in the first steps of the isoprenoid pathway. In 1997, the pro-
duction of carotenoids in E. coli was improved by a factor of 2.7, for
a total of 1.3 mg/g dry cell weight (dcw), by introducing heterolo-
gous genes for IPP isomerase (Kajiwara et al., 1997). Albrecht et al.
(1999) increased the nutrients β-carotene and zeaxanthin 3.5-fold,
to reach 1.5 and 1.6 mg/g dcw respectively, by overexpressing

Frontiers in Microbiology | Microbiotechnology, Ecotoxicology and Bioremediation April 2013 | Volume 4 | Article 75 | 4

http://www.frontiersin.org/Microbiotechnology,_Ecotoxicology_and_Bioremediation
http://www.frontiersin.org/Microbiotechnology,_Ecotoxicology_and_Bioremediation/archive


Immethun et al. Isoprenoid production and synthetic biology

FIGURE 1 | Isoprenoid pathway. Two distinct pathways for IPP production are shown together, but they exist in different organisms.

different combinations of the genes for IPP isomerase from
Xanthophyllomyces dendrorhous, GGPP synthase from Sulfolobus
acidocaldarius, and native DXP synthase. More than a 50-fold
improvement was made in the production of astaxanthin, used
to treat several degenerative nerve diseases, by boosting IPP and
GGPP formation as well as expressing the gene cluster crtBIYZW
from Agrobacterium aurantiacum in E. coli for a total of 1.4 mg/g

dcw (Wang et al., 1999). However, unhindered metabolite pro-
duction can lead to metabolic imbalance. Farmer and Liao (2000)
redesigned a global regulatory system in E. coli to allow lycopene
production only in the presence of sufficient glucose, as indicated
by acetyl phosphate availability. This control loop decreased the
metabolic imbalance, thus increasing the final yield of the nutri-
tional supplement. Shimada et al. (1998) also improved lycopene
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production by focusing on the later steps of the isoprenoid path-
way. In Candida utilis that expressed exogenous crtE, crtB, and crtI,
the gene ERG9, which diverts FPP to the ergosterol pathway, was
disrupted and the catalytic domain of HMG was overexpressed,
resulting in 7.8 mg lycopene/g dcw. Novel carotenoids were cre-
ated in E. coli through the expression of mutagenic libraries of
phytoene desaturase and lycopene cyclase, enzymes that regulate
branchpoints in the later stages of carotenoid biosynthesis. A wide
variety of metabolites, including 3,4,3′,4′-tetradehydrolycopene, a
fully conjugated carotenoid, and torulene, a new cyclic carotenoid,
were observed (Schmidt-Dannert et al., 2000).

More recently, powerful new techniques have been employed
to further improve carotenoid production. Jin and Stephanopou-
los (2007) constructed a lycopene production metabolic landscape
using E. coli strains that incorporated different combinations of
overexpression and knockout targets. From this landscape, the best
combination of genes increased lycopene production to 16 mg/g
dcw. β-carotene production reached 6 mg/g dcw by replacing the
native E. coli promoters for the chromosomal genes dxs, ispDispF,
idi, and ispB with strong T5 bacteriophage promoters. Modify-
ing chromosomal genes, instead of introducing high-copy vectors
to overexpress the target genes, decreased the metabolic burden
(Yuan et al., 2006). Lemuth et al. also used similar techniques by
balancing expression of crtE, crtB, crtI, crtY, and crtZ from Pantoea
ananatis and crtW148 (NpF4798) from Nostoc punctiforme, which
were inserted into the chromosome of E. coli. This plasmid-free
strain created astaxanthin as its only carotenoid at 1.4 mg/g dcw
(Lemuth et al., 2011). Using the “ordered gene assembly in Bacil-
lus subtilis (OGAB) method” to put together multiple genes in a
single step, Nishizaki et al. (2007) determined the optimum gene
order which subsequently produced 820 µg zeaxanthin/g dcw. The
“flux scanning based on enforced objective flux” (FSEOF) strategy
identified targets for gene amplification that were not intuitive.
When combined with gene knockouts, 12.32 mg lycopene/g dcw
was achieved (Choi et al., 2010). Alper and Stephanopoulos (2007)
randomly mutated the E. coli sigma factor σ70 to look for desired
complex phenotypes. This “global transcription machinery engi-
neering”(gTME) improved lycopene production.“Multiplex auto-
mated genome engineering” (MAGE) was proposed by Wang et al.
They modified 24 genetic components at once from a degenerate
pool of synthetic DNA, achieving a fivefold increase in lycopene
production in just 3 days (Wang et al., 2009).

ARTEMISININ
The microbial production of the potent anti-malaria drug
artemisinin has utilized a number of advances in the synthetic
biology field. Balancing metabolic flux with the codon-optimized
amorphadiene synthase gene improved the titer of amorphadi-
ene, an artemisinin precursor, beyond what had been accom-
plished by increasing IPP precursor supply (Martin et al., 2003).
Ro et al. (2006) redesigned the mevalonate pathway in S. cere-
visiae to increase production of FPP and introduced Artemisia
annua’s amorphadiene synthase and cytochrome P450 for the
final oxidation steps. The modifications resulted in 100 mg/l of
artemisinic acid (Ro et al., 2006). Anthony et al. (2009) achieved
the amorphadiene titer of 293 mg/l by identifying the limiting
reaction enzymes and balancing gene expression through plas-
mid copy number and promoter strength. Building upon all of

the previous works in the Keasling lab, production of >40 g/l
amorphadiene was achieved by overexpressing every enzyme
in the mevalonate pathway and modifying fermentation condi-
tions. Subsequently, the amorphadiene was chemically converted
to dihydroartemisinic acid, the precursor of the antimalarial
agent artemisinin (Westfall et al., 2012). A. annua’s amorphadi-
ene synthase, codon-optimized and placed under the control of
the rpsJ promoter, and the native FPP synthase were expressed
in a genome-minimized strain of Streptomyces avermitilis. This
approach led to heterologous biosynthesis of 30 mg/l of amorpha-
diene while not producing any of the major endogenous secondary
metabolites (Komatsu et al., 2010). Farhi et al. (2011) co-localized
heterologous FDP synthase and amorphadiene synthase to the
mitochondria to improve the amorphadiene titer by 20-fold, for a
total of 20 mg/l.

DITERPENES AND OTHER SESQUITERPENES
Biosynthetic pathways for various diterpenes and sesquiterpenes
have also been engineered for improved production through syn-
thetic biology. To maximize production of several sesquiterpenes,
Asadollahi et al. replaced the native ERG9 promoter, which is
responsible for diverting the terpenoid precursor FPP to a com-
peting pathway, with the methionine repressible MET3 promoter.
After optimizing methionine levels, 16.9 mg/l of patchoulol, the
starting compound in the chemical synthesis of the chemother-
apeutic drug paclitaxel (Taxol), was achieved (Asadollahi et al.,
2008). Scalcinati et al. chose to control ERG9 expression by cou-
pling it with the glucose-responsive HXT1 promoter. In addition
to using this promoter, the genes encoding lipid phosphate phos-
phatase and pyrophosphate phosphatase were deleted, and a trun-
cated 3-hydroxyl-3-methyl-glutaryl-CoA reductase (HMGR) was
overexpressed to produce α-santalene, a skin cancer chemopreven-
tative, at 0.21 mg/g dcw (Scalcinati et al., 2012). The native FPP
synthase and the heterologous patchoulol synthase were fused to
reduce metabolic diffusion distance between enzymes, increasing
patchoulol production twofold, to a total of 40.9 mg/l, in S. cere-
visiae (Albertsen et al., 2011). Miltiradiene, related to the Chinese
medicinal herb Salvia miltiorrhiza, was produced up to 365 mg/l
in a 15 l bioreactor, by fusing labdadienyl/copalyl diphosphate
synthase (SmCPS) and kaurene synthase-like (SmKSL) as well as
GGPP synthase (BTS1) and FPP synthase (ERG20) in S. cerevisiae
(Zhou et al., 2012). The capacity of downstream pathways can
also limit titers. The geranylgeranyl diphosphate synthase – levopi-
maradiene synthase (GGPPS – LPS) pathway was combinatorially
mutated to accommodate the engineered upsurge in precursors.
This approach led to a 2,600-fold increase, for a total of 700 mg/l,
of the diterpene levopimaradiene, used to produce the ancient
medicinal ginkgolides (Leonard et al., 2010).

PACLITAXEL
Application of synthetic biology tools to microbial production
of the cancer chemotherapy drug paclitaxel will decrease its cost
and increase its availability. Paclitaxel, known as Taxol, is a potent
chemotherapy drug, which is very difficult to chemically synthesize
(Chandran et al., 2011) and is extracted at very low efficiency
from the bark of the rare Pacific yew (Ajikumar et al., 2008).
Dejong et al. (2006) were the first to express genes for a portion
of the Taxol pathway in S. cerevisiae, but production levels of the
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Taxol intermediate, taxadiene, were low. Several changes to taxa-
diene synthesis in yeast were introduced, including an alternate
geranylgeranyl diphosphate synthase from S. acidocaldarius and
a codon-optimized taxadiene synthase from Taxus chinensis, ulti-
mately resulting in a 40-fold titer increase to 8.7 mg/l (Engels et al.,
2008). Using E. coli as a host, Ajikumar et al. (2010) divided the
metabolic pathway into smaller modules and varied the expres-
sion levels simultaneously to determine the optimally balanced
pathway without requiring high throughput screening. This “mul-
tivariate modular pathway engineering” resulted in the taxadiene
titer of 1 g/l. Although challenges remain for the biosynthesis of
Taxol and other compounds, the range of advancements in iso-
prenoid production by microbial biosynthesis shows promise for
increasing their availability at reduced cost.

CONCLUSION
The past decade has witnessed the potential of synthetic biology
to make the microbial isoprenoid production become indus-
trially relevant. However, further improvements in yield and

expansion to new medically important compounds can be attained
through the development of additional tools. An incomplete
understanding of the complexity of biosynthetic pathways limits
the ability to fully forward engineer microbial production (Nielsen
and Keasling, 2011; Stephanopoulos, 2012). Continued innova-
tions in systems biology to elucidate the complex regulatory
and metabolic networks will advance the predictive potential
of mathematical models, and therefore the ability to generate
optimized microbial cell factories (Jarboe et al., 2010; Nielsen
and Keasling, 2011; Keasling, 2012). Genome mining, scan-
ning genome sequences for natural functions, will accelerate
the rate of new compound discoveries. Improved enzyme engi-
neering will also support the de novo design of biosynthetic
pathways (Ajikumar et al., 2008; Jarboe et al., 2010). More-
over, biological devices built from well characterized and stan-
dardized genetic parts can be used to control metabolic path-
ways. Incorporation of these strategies would lead to engineered
microbes for industrial-scale production of medically important
compounds.
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