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The discovery and introduction of antimicrobial agents to clinical medicine was
one of the greatest medical triumphs of the 20th century that revolutionized the
treatment of bacterial infections. However, the gradual emergence of populations of
antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of
antimicrobials has today become a major global health concern. Antimicrobial resistance
(AMR) genes have been suggested to originate from environmental bacteria, as clinically
relevant resistance genes have been detected on the chromosome of environmental
bacteria. As only a few new antimicrobials have been developed in the last decade, the
further evolution of resistance poses a serious threat to public health. Urgent measures
are required not only to minimize the use of antimicrobials for prophylactic and therapeutic
purposes but also to look for alternative strategies for the control of bacterial infections.
This review examines the global picture of antimicrobial resistance, factors that favor its
spread, strategies, and limitations for its control and the need for continuous training of
all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as
well as human consumers, in the appropriate use of antimicrobial drugs.
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BACKGROUND
Arguably one of the greatest examples of serendipity in science
was the discovery of natural antimicrobials between Alexander
Fleming and Ernest Duchesne. Although Fleming generally holds
the reputation of the discovery of penicillin in 1928, a French
medical student, Ernest Duchesne (1874–1912), originally dis-
covered the antimicrobial properties of Penicillium earlier, in
1896. He observed Arab stable boys that kept their saddles in
a dark and damp room to encourage mold to grow on them,
which they said helped heal saddle sores. Curious, Duchesne
prepared a suspension from the mold and injected it into dis-
eased guinea pigs along with a lethal dose of virulent typhoid
bacilli and still all animals remained healthy. His work, how-
ever, was ignored because of his young age and unknown status
(Pouillard, 2002). In a way, with the success of the natural antibi-
otic penicillin and the synthetic antimicrobial sulfonamides in
the first half of the 20th century, the modern antimicrobial rev-
olution began. Since then, new natural antimicrobial compounds
were discovered and many semi-synthetic and synthetic antimi-
crobial drugs were created to combat bacterial infections. Thus,

antimicrobials have been extremely important corner stones of
modern medicine since the last half of the previous century.
Antimicrobial drugs have saved millions of people from life-
threatening bacterial infections and eased patients’ suffering.
Today, the treatment of bacterial infections is once again becom-
ing increasingly complicated because microorganisms are devel-
oping resistance to antimicrobial agents worldwide (Pouillard,
2002; Levy and Marshall, 2004; Alanis, 2005; Pallett and Hand,
2010).

A causal relationship has been demonstrated between the
increased use of antimicrobials in both human and veteri-
nary medicine, the greater movement of people, as well as
domestic and wild animals, the increased industrialization
and the increased prevalence of antimicrobial-resistant bacte-
ria (Holmberg et al., 1987; Cheng et al., 2012). Antimicrobial
resistance (AMR) was identified in pathogenic bacteria concur-
rently with the development of the first commercial antibiotic
produced by microorganisms, penicillin (Abraham and Chain,
1940). Although the first concerns about drug-resistant bacteria
appeared in hospitals, where most antimicrobials were being used
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(Levy, 1998), the importance of AMR was already recognized in
1969 both in humans and veterinary medicine as stated in the
Swan Report (Swann, 1969). Further research showed that the
origin and spread of AMR is, in fact, a very complex problem.
Hence, there cannot be a single solution for minimizing AMR;
rather a coordinated multi-disciplinary approach will be required
to address this issue (Serrano, 2005; Smith et al., 2009). We must
also recognize that wherever antimicrobials are used, AMR will
inevitably follow.

The purpose of this review is to highlight the problem of
resistance to antimicrobials with its consequences, including how
the spread of AMR could be limited. We highlight how the
numerous useful applications of antimicrobials led to AMR in

different ecological locations (Figure 1), aiming to unify the many
important aspects of this problem. Finally we advocate the need
for teaching and continuous training of all stake-holders (i.e.,
medical, veterinary, public health, and other relevant profession-
als) as well as human consumers of antimicrobial drugs, in the
appropriate use of antimicrobials.

THE HUMAN MEDICINE AND ANTIMICROBIAL RESISTANCE
EMERGENCE OF ANTIMICROBIAL RESISTANCE AND ITS COST
In human medicine AMR is as old as the clinical usage of antimi-
crobial compounds. Antimicrobial-resistant pathogens have been
observed soon after the introduction of new drugs in hos-
pitals where antimicrobials are intensively used (Levy, 1998).

FIGURE 1 | Schematic representation of the complexity of the potential

bacterial genetic web of communication between the various

microbiotas that are impacted by the use of antibiotics in a wide

context. The reservoirs where antimicrobials are applied are also suggested
as “hot spots” for horizontal gene transfer. The potentially most important

genetic links between the microbiotas of the various reservoirs are showed
by arrows. Thick arrows show major selective pressures for selection of
antibiotic resistance genes, thin arrows show the significant directions of
gene flow. Future research may document unique arrows that must be
integrated in the web drawn.

Frontiers in Microbiology | Antimicrobials, Resistance and Chemotherapy May 2013 | Volume 4 | Article 96 | 2

http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


Cantas et al. The problem of antimicrobial resistance: a multi-disciplinary review

Consequently, AMR in the context of human medicine has dom-
inated the literature for a long time (Figure 2). Over the years,
and continuing into the present, almost every known bacterial
pathogen and numerous human commensals have developed
resistance to one or more antimicrobials in clinical use (Table 1).
Extended-spectrum β-lactamases (ESBL) are the ones most often
encountered in the hospital (intensive care) setting. Methicillin-
resistant Staphylococcus aureus (MRSA) and vancomycin-resistant
enterococci (VRE) have also been found to have a signifi-
cant nosocomial ecology (Otter and French, 2010). In addition,
ESBL positive bacteria and MRSA infections are increasingly
detected in the community. Furthermore, the increase in flu-
oroquinolone resistance due to target-site mutations and the
worldwide emergence of plasmid-mediated quinolone resistance
genes may represent a major challenge in future given the crit-
ical importance of this antimicrobial therapy (Cattoir et al.,
2007; Strahilevitz et al., 2009). Carbapenems are the last line

of defense against the non-Enterobacteriaceae pathogens, such
as Pseudomonas aeruginosa and Acinetobacter baumannii (Brown
et al., 1998). However, since the first description of the blaOXA

genes, there has been a worldwide increase in the dissemi-
nation of new resistance determinants conferring carbapenem
resistance. For example, the Klebsiella pneumoniae carbapene-
mase (KPC) type enzymes, Verona integron-encoded metallo-β-
lactamase (VIM), Imipenemase Metallo-β-lactamase (IMP) and
New Delhi metallo-β-lactamase (NDM), and the OXA-48 type
of enzymes have been isolated from a number of bacterial gen-
era irrespective of their geographical distribution (Kumarasamy
et al., 2010; Walsh et al., 2011). Carbapenemase resistance mech-
anisms are found among Escherichia coli and Klebsiella isolates in
hospital settings, and to a lesser extent also in the community,
thus healthy human carriers begin to be a concern (Nordmann
et al., 2012). Furthermore, carbapenemase-producing organisms
have also been isolated from farm animals (Fischer et al., 2012).

FIGURE 2 | The change in number of antimicrobial resistance related

published research papers in different subdisciplines and covering

different environments. The data for the graphs were obtained by searching
the ISI web of science for publications with titles matching the query terms
(antibioti∗ OR antimicro∗ ) AND resistan∗ AND the following specific terms:

Hospital, (hospital∗ OR patient∗ OR clinic∗); Animal, (animal∗ OR veterinary∗
OR livestock∗ OR pig∗ OR cow∗ OR chicken∗ OR poultry); Wastewater,
(wastewate∗ OR sewage); Natural water, (wate∗ OR lake OR river OR ocean
OR sea); Soil, (soil∗ OR sediment∗ OR rhizosphere∗ ) (Source: http://apps.

isiknowledge.com/). The search was performed on 06/03/2013.
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Table 1 | Antimicrobial resistance detection in some important pathogens soon after arrival of the “magic bullets” into the market.

Year Bacteria Drug resistance Comments References

1948 Staphylococcus aureus Penicillin In British civilian hospitals soon
after the introduction of penicillin

Barber and
Rozwadowska-Dowzenko, 1948

1948 Mycobacterium tuberculosis Streptomycin In the community soon after the
clinical usage of this antimicrobial

Crofton and Mitchison, 1948

1950’s–1960’s Escherichia coli, Shigella spp., and
Salmonella enterica

Multiple drugs Watanabe, 1963; Olarte, 1983;
Levy, 2001

1960’s VRE- Enterococcus spp.
ESBL- E. cloacae, K. pneumoniae, E. coli,
MRSA, QR- Enterobacteriaceae
MDR- Acinetobacter baumannii,
Pseudomonas aeruginosa

Multiple drugs Levy and Marshall, 2004;
Nordmann et al., 2011

VRE, Vancomycin-Resistant Enterococcus; ESBL, Extended-spectrum β-lactamase; MRSA, methicillin/oxacillin-resistant Staphylococcus aureus; QR, Quinolone

resistant; MDR, Multi-drug resistant.

HUMAN MOBILITY—THE DIRECT AND INDIRECT IMPACT ON HUMAN
PATHOGENS
The increasing cross-border and cross-continental movements of
people has a major impact on the spread of multi-resistant bac-
teria (Linton et al., 1972; Arya and Agarwal, 2011; Cheng et al.,
2012). The emergence and global spread of the international clone
1 of penicillin-resistant Streptococcus pneumoniae (Klugman,
2002) and the recently occurring New Delhi Metallo-β-lactamase
(blaNDM-1) producing Enterobacteriaceae, which inactivates all
β-lactam antimicrobials, including carbapenems, are good exam-
ples. The blaNDM-1 appears to have originated in the Indian sub-
continent and subsequently could be found in North America, the
United Kingdom, and other European countries by the movement
of people (Arya and Agarwal, 2011; Walsh et al., 2011).

The AMR problem remains a growing public health concern
because infections caused by resistant bacteria are increasingly
difficult and expensive to treat. The consequences of this problem
are: longer hospital stay, longer time off work, reduced quality of
life, greater likelihood of death due to inadequate or delayed treat-
ment, increases in private insurance coverage and an additional
costs for hospitals when hospital-acquired infections occur in
addition to the increased overall healthcare expenditure (Roberts
et al., 2009; Filice et al., 2010; Korczak and Schöffmann, 2010;
Wilke, 2010). Thus, in order to calculate the full economic bur-
den of AMR we have to consider the burden of not having
antimicrobial treatment options at all, which in the extreme case
would probably cause a breakdown of the entire modern medi-
cal system (Alanis, 2005; Falagas and Bliziotis, 2007; Pratt, 2010).
In short, everyone will be at risk when antimicrobials become
ineffective and the threat is greatest for young children, the
elderly, and immune-compromised individuals, such as cancer
patients undergoing chemotherapy and organ transplant patients
(Tablan et al., 2004).

THE VETERINARY MEDICINE AND AGRICULTURE SECTOR
CONSUMPTION AND REGULATION OF ANTIMICROBIAL USE IN
ANIMALS
The antimicrobials, used in veterinary medicine were intro-
duced soon after they became available for the treatment of

human diseases from the mid-1940’s (Gustafson and Bowen,
1997; McEwen, 2006). Even though some drugs are exclusively
designed for veterinary use, most belong to the same antimicro-
bial classes as those used in human medicine with identical or very
similar structures (Swann, 1969; Heuer et al., 2009).

Annually, large quantities of drugs are administered to ani-
mals in the agricultural sector worldwide to secure a sufficient
amount of food (meat, eggs, and dairy products) to feed a rapidly
growing world human population (Vazquez-Moreno et al.,
1990; Roura et al., 1992; Rassow and Schaper, 1996). As data
collection on antimicrobial use in animals was not harmonized
to provide reliable and comparable information, and following a
request from the European Commission the European Medicines
Agency (EMA), the European Surveillance of Antimicrobial
Consumption (ESVAC) programme has been created. The
ESVAC programme is responsible for collecting, analyzing, and
reporting sales data from European countries and developing
an organized approach for the collection and reporting of data
on antimicrobial use for animals including annual reporting
from EU member states (www.ema.europa.eu/ema/index.
jsp?curl=pages/regulation/document_listing/document_listing_
000302.jsp). During 2007, in 10 European countries the sale of
antimicrobial drugs for therapeutic use as veterinary medicine
varied from 18 to 188 mg/kg biomass (Grave et al., 2010).

The administration of antimicrobials to food producing
animals can have other purposes than treatment, such as:
growth promotion (although now totally banned in Europe and
quinolones for the poultry industry are banned in the USA), pro-
phylaxis, and -metaphylaxis (Anthony et al., 2001; Anderson et al.,
2003; Casewell et al., 2003; Cabello, 2006). Approximately 70% of
all the antimicrobials administered in animal farming are used for
non-therapeutic purposes (Roe and Pillai, 2003).

In the European Union (EU) the use of avoparcin was banned
in 1997. Furthermore spiramycin, tylosin, and virginiamycin for
growth promotion were banned from use in 1998. All other
growth promoters in the feed of food-producing animals were
banned in the EU—countries from January 1, 2006 (http://
europa.eu). Data from Denmark showed that animals could be
produced at a large scale without the use of growth promoters,
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without adversely affecting the production (Aarestrup et al., 2001;
Aarestrup, 2005; Hammerum et al., 2007). In the United States
of America, politicians are discussing the introduction of a sim-
ilar ban on the use of antimicrobials in animal husbandry for
growth promotion (http://www.govtrack.us/congress/bills/109/
s742). Despite these bans, in some parts of the world, medically
important antibiotics are still routinely fed to livestock prophy-
lactically to increase profits and to ward-off potential bacterial
infections in the stressed and crowded livestock and aquaculture
environments (Cabello, 2006; Smith et al., 2009; Ndi and Barton,
2012). Because stress lowers the function of the immune system
in animals, antimicrobials are seen as especially useful in intensive
confinements of animals (Halverson, 2000). The non-therapeutic
use of antimicrobials involves low-level exposure through feed
over long periods—an optimal way in which to enrich resistant
bacterial populations (Sharma et al., 2008; Kohanski et al., 2010;
Alexander et al., 2011; Gullberg et al., 2011).

Various monitoring programs around the world have started
monitoring AMR and a range of research activities and inter-
ventions have shown that antimicrobial usage has a large effect
upon selection of AMR in animal production. A rapid and par-
allel decrease in resistant Enterococcus faecium from pig and
poultry has been reported in Denmark after the ban of growth
promoters in livestock (Aarestrup et al., 2001). The Norwegian
aquaculture industry has produced over one million tons of
farmed fish (http://www.ssb.no/fiskeoppdrett_en/) by using only
649 kg of antimicrobials in 2011 (NORM/NORM-VET, 2011).
It is evident from the Danish integrated AMR monitoring and
research program (DANMAP) and NORM/NORM-VET Report
(NORM/NORM-VET, 2011) that reduction of antimicrobial
usage with strict policies may still be the safest way to control the
development and spread of AMR in this sector in the future.

ANTIMICROBIAL-RESISTANT BACTERIA IN COMPANION ANIMALS
AND ANIMAL HUSBANDRY
The use of antimicrobials in animal husbandry has for many
years actively selected for bacteria which possess genes capable
of conferring AMR (Bastianello et al., 1995; Sundin et al., 1995).
Consequently, this aspect has also seen much attention in the
literature (Figure 2). Despite large differences in methodology,
the results of most relevant scientific studies demonstrate that
not long after the introduction of antimicrobials in veterinary
practice, resistance in pathogenic bacteria, and/or the fecal flora
was observed (Caprioli et al., 2000; Jean-Louis et al., 2000). In
particular an increased emergence of pathogenic bacteria resis-
tant to antimicrobials has occurred in members of the genera
Salmonella, Campylobacter, Listeria, Staphylococcus, Enterococcus,
and Escherichia coli. Some resistant strains of these genera are
propagated primarily among animals but can subsequently infect
people as zoonotic agents (Levy, 1984; Corpet, 1988; Marshall
et al., 1990; Giguêre et al., 2007).

In veterinary medicine the use of antimicrobials in compan-
ion animals such as pets and horses is restricted to therapeutic
purposes only. Companion animals are increasingly treated as
family members, in the context of applying advanced antimi-
crobial treatments to their infectious diseases. For instance, skin
infections caused by staphylococci in dogs with or without

underlying allergic reactions result in an increasing use of semi-
synthetic penicillins because of the ineffectiveness of penicillin
against penicillinase producing Staphylococcus pseudintermedius
(Yoon et al., 2010). Moreover, emerging methicillin-resistant
Staphylococcus pseudintermedius (MRSP), methicillin-resistant
Staphylococcus aureus (MRSA), and ESBL producing E. coli dis-
playing multidrug resistance has led to increased concern related
to AMR in companion animal practice (Bannoehr et al., 2007;
Wieler et al., 2011). Increased antimicrobial resistance devel-
opment and spread in companion animals due to irrational
antimicrobial usage, especially overprescribed broad spectrum
antimicrobials without precise diagnostics, inevitably cause (1)
animal health problem (increased mortality and morbidity), (2)
economical problem to the owner (more visits-therapies and
prolonged hospitalization), (3) economical problem to the vet-
erinarian (possible loss of customers and high costs for hospital
decontamination), and (4) human health problems (risks of
zoonotic transmission). Because of this threat small animal veteri-
narians should prescribe broad spectrum antimicrobials after cul-
turing and educate pet owners to handle infected-antimicrobial
treated animals with precaution.

However, emergences of resistance toward antimicrobials
which are critically important for human therapy are the most
worrisome. These include the recent emergence of ESBL pro-
ducing and carbapenemase positive Enterobacteriaceae bacteria in
animal production (Horton et al., 2011), the emergence of farm
associated MRSA ST398 (the main pig associated clone) (Cuny
et al., 2010; Kluytmans, 2010; Weese, 2010) and of plasmid-
mediated quinolone resistance in animal isolates and food prod-
ucts (Poirel et al., 2005; Nordmann et al., 2011). Unfortunately,
there are several examples in the literature that show that these
are already widespread in Europe and other parts of the world
and have a large impact on human health (Angulo et al., 2004;
Heuer et al., 2009; Forsberg et al., 2012).

Aquaculture (fish, shellfish, and shrimp farming industries)
has developed rapidly in the last decade and has become an
important food source (FAO, 2010). Fish pathogenic bacteria
often produce devastating infections in fish farms where dense
populations of fish are intensively reared. Although modern
fish farming relies increasingly on vaccination and improved
management to avoid infections (Markestad and Grave, 1997;
Midtlyng et al., 2011), still many bacterial infections in fish
are regularly treated with antimicrobials in medicated feed or
by bath immersion. The most widely used drugs are fluoro-
quinolones, florfenicol, oxytetracyclines amoxicillin and sulfon-
amides (Cabello, 2006; Gräslund et al., 2003; Holmström et al.,
2003; Primavera, 2006; Soonthornchaikul and Garelick, 2009).
By now, most of the fish pathogenic bacteria from fish farms
with a history of infections have developed AMR (Colquhoun
et al., 2007; Lie, 2008; Sørum, 2008; Farmed Fish Health Report,
2010; Shah et al., 2012a). Furthermore, in some areas of the
world, particularly in South-East Asia, integrated farming is a
common practice where organic wastes from poultry and live-
stock are widely used in manuring the fish farms (Hoa et al.,
2011; Shah et al., 2012b). It has been reported that antimicrobial
residues present in the poultry and livestock waste has pro-
vided sufficient selection pressure for the selection of AMR genes,
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increasing the complexity of transmission of bacteria, and resis-
tances between the livestock and aquatic environment (Petersen
et al., 2002; Agersø and Petersen, 2007; Hoa et al., 2011; Shah
et al., 2012b).

AMR has been detected in different aquatic environments
and some resistance determinants have been found to originate
from aquatic bacteria. A good example is the recently emerging
plasmid-mediated quinolone resistance determinants from the
qnr family (Ash et al., 2002; Picao et al., 2008) and CTX-M from
aquatic Kluyvera spp. (Decousser et al., 2001; Rodriguez et al.,
2004; Ma et al., 2012). In addition, epidemiological and molecular
data indicate that some fish pathogens such as Aeromonas are able
to transmit and share AMR determinants with bacteria isolated
from humans such as E. coli (Rhodes et al., 2000; Sørum, 2006).
Similarly, the fish pathogen Yersinia ruckeri have been reported to
share AMR plasmid and AMR genes with the bacterium causing
human plague (Welch et al., 2007).

ANTIMICROBIAL USE IN PLANT AGRICULTURE
Streptomycin and oxytetracycline are routinely used for the pro-
phylaxis of fire blight disease (causative agent Erwinia amylovora)
in apple and pear orchards. Streptomycin use is strictly controlled
within the EU and is only authorized for use on a yearly basis.
However, streptomycin use in plant agriculture in the USA has
been replaced by oxytetracycline, due to streptomycin resistance
development among E. amylovora in the apple orchards. Oxolinic
acid had been reported to be used in Israel against fire blight and
against rice blight in Japan (Shtienberg et al., 2001). Gentamicin
is used in Mexico and Central America to control Fire Blight and
various diseases of vegetable crops (Stockwell and Duffy, 2012).
However, the role of antimicrobial use on plants is, knowing the
AMR crisis in human medicine, the subject of debate (McManus
et al., 2002).

DISSEMINATION OF ANTIMICROBIAL-RESISTANT BACTERIA
THROUGH FOOD AND FOOD PRODUCTION
Resistant bacteria can be transferred from animals and plants
to humans in many different ways, which can be catego-
rized into three major modes of transmission: (1) through the
food chain to people (Roe and Pillai, 2003; Soonthornchaikul
and Garelick, 2009), (2) through direct or indirect contact
with livestock industry or animal health workers (Levy et al.,
1976), (3) through environments which are contaminated
with manure in agriculture (http://ec.europa.eu/environment/
integration/research/newsalert/pdf/279na4.pdf) and aquaculture
(Petersen et al., 2002; Shah et al., 2012b). The environment con-
tains a great variety of bacteria creating an immense pool of AMR
genes that are available for transfer to bacteria that cause human
disease (Riesenfeld et al., 2004b; D’Costa et al., 2006). The real-
ization of these links sparked the recent interest in the role and
dynamics of environmental AMR (Figure 2).

In addition, other sources are available. For instance, wild
animals may also be carriers of antimicrobial-resistant bacte-
ria (Literak et al., 2011). These animals may have close contact
to human or farming areas and/or waste and become colo-
nized with resistant strains (Literak et al., 2011; Nkogwe et al.,
2011). Interestingly, animals in remote areas have been found to

harbor-resistant bacteria (Zhang et al., 2009; Glad et al., 2010;
Lang et al., 2010).

ANTIMICROBIAL RESISTANCE IN THE ENVIRONMENT
MICROBIAL COMMUNITIES IN SOIL AND ANTIMICROBIAL
RESISTANCE
Research data shows that in diverse soils from various regions of
the world, there is a wide dispersion of AMR. One explanation
for this phenomenon is the existence of antimicrobial produc-
ing bacteria in soil. The Actinomycetes, which are common
soil bacteria (Streptomyces, Micromonospora, Saccharopolyspora
genus), synthesize over half of all known most clinically rele-
vant antimicrobials e.g., tetracycline, gentamicin, erythromycin,
streptomycin, vancomycin, and amphotericin. Bacteria of the
genus Bacillus also produce antibiotics, e.g., Bacillus brevis which
producing gramicidin (Baltz, 2007). These antimicrobials now
also reach the environment from human and animal therapeu-
tics, through manure, sewage, agriculture, etc. Many retrospective
and prospective studies have been performed to assess the emer-
gence and selection of AMR in environmental bacteria. The
environment is eventually the largest and most ancient reservoir
of potential AMR, constituting the environmental “resistome”
(Aminov and Mackie, 2007; Allen et al., 2010; D’Costa et al.,
2011). Under such powerful selection pressure, it is not surpris-
ing that the soil resistome is so diverse (Knapp et al., 2010).
The best example illustrating this is the tetracycline resistome.
Tetracyclines are an important class of antimicrobials with desir-
able broad-spectrum activity against numerous pathogens and
the widespread emergence of resistance has had a massive impact
on these drugs (Thaker et al., 2010). Opportunistic pathogens
ubiquitous in the soil for example, Pseudomonas aeruginosa,
Acinetobacter spp., Burkholderia spp., and Stenotrophomonas spp.
can combine intrinsic resistance to several antimicrobials with a
remarkable capacity to acquire new resistance genes (Popowska
et al., 2010). Still, little is known about the diversity, distribution,
and origins of resistance genes, particularly among the as yet non-
cultivable environmental bacteria. In uncultured soil bacteria,
identified resistance mechanisms comprise efflux of tetracycline
and inactivation of aminoglycoside antimicrobials by phosphory-
lation and acetylation (Popowska et al., 2012). In addition, bacte-
ria resistant to macrolides including the new drug telithromycin
have been reported from soil (Riesenfeld et al., 2004a). In a study
by (D’Costa et al., 2006), 480 strains of Streptomyces from soil
were screened against 21 antimicrobials. Most strains were found
to be multi-drug resistant to seven or eight antimicrobials on
average, with two strains being resistant to 15 of the 21 drugs. It
was also reported that soil is a reservoir for β-lactamases and these
genes, if transferred to pathogens, can then impact human health
(Allen et al., 2010). It is supposed that the presence of antibiotics
in the environment has promoted the acquisition or independent
evolution of highly specific resistance elements. These determi-
nants are located mainly on mobile genetic elements such as
plasmids and conjugative transposons, which ensure their spread
by horizontal gene transfer. Conjugative, broad-host-range plas-
mids play a key role in this process (Martinez, 2009; Stokes
and Gillings, 2011). Numerous studies have demonstrated that
the prevalence of such resistance plasmids in soil is very high
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(Götz et al., 1996). Among the plasmids conferring resistance to
antimicrobials, representatives of the incompatibility groups P,
Q, N, and W have been identified. An example of this type of
mobile genetic elements may be the IncP-1 plasmids (Popowska
and Krawczyk-Balska, 2013). Results from the scientific literature
show that plasmids carrying resistance genes have been identi-
fied in pathogenic bacteria of the genus Escherichia, Salmonella,
Shigella, Klebsiella, Aeromonas, and Pseudomonas, the genera that
can be found in soil and water (Stokes and Gillings, 2011).
These plasmids carry determinants for resistance to at least one
heavy metal (Ni, Cd, Co, Cu, Hg, Pb, Zn) and antimicrobials
of different groups, i.e., tetracyclines, quinolones, aminoglyco-
sides, sulfonamides, β-lactams, and chemotherapeutics (Sen et al.,
2011; Seiler and Berendonk, 2012). Overall these data indicate
that soil bacteria constitute a reservoir of resistance determinants
that can be mobilized into the microbial community including
pathogenic bacteria. Recent studies also indicate a different mech-
anism of AMR in soil-derived actinomycetes, by engendering
mutations in genes encoding the transcriptional and translational
apparatus that lead to alterations in global metabolism. This ver-
tically selected AMR includes increased production of secondary
metabolites (Derewacz et al., 2013). Very recently evidence for
recent exchange of AMR genes between environmental bacteria
and clinical pathogens was presented using a high-throughput
functional metagenomic approach (Forsberg et al., 2012). In
this study it was shown that multidrug-resistant soil bacteria
contain resistance gene cassettes against five classes of antimicro-
bials (β-lactams, aminoglycosides, amphenicols, sulfonamides,
and tetracyclines) with high nucleotide identity to genes from
diverse human pathogens. Therefore, it is important to study this
reservoir, which may contribute to the detection of new clini-
cally relevant AMR-mechanisms and/or the multidrug-resistant
pathogens that should be avoided from entering medically impor-
tant bacteria (Torres-Cortés et al., 2011).

ANTIMICROBIAL RESISTANCE IN AQUATIC ENVIRONMENTS
Water is one of the most important habitats for bacteria, hold-
ing complex microbial communities. Not surprisingly, water
also contains AMR bacteria. From natural fresh water systems
to drinking water, or from sewage to human-engineered water
infrastructures, AMR, either intrinsic or acquired, have been
reported in aquatic environments worldwide (e.g., Goñi-Urriza
et al., 2000; Volkmann et al., 2004; Schwartz et al., 2006; Ferreira
da Silva et al., 2007; Böckelmann et al., 2009; Vaz-Moreira et al.,
2011; Falcone-Dias et al., 2012). In this respect, given their
characteristics, wastewater habitats are particularly important.

WASTEWATER HABITATS AS RESERVOIRS OF ANTIMICROBIAL
RESISTANCE
Among the aquatic environments, wastewater habitats repre-
sent the most important reservoir of AMR bacteria and genes.
This type of water contains human and animal excretions with
abundant doses of commensal and pathogenic antimicrobial-
resistant bacteria (Yang et al., 2011; Ye and Zhang, 2011, 2013;
Novo et al., 2013). Since antimicrobials are not fully degraded
in the human and animal body, antimicrobial compounds, their
metabolites and transformation products are abundant in urban

sewage treatment plants (Segura et al., 2009; Michael et al., 2013).
Although proportion of the antimicrobial compounds are trans-
formed and degraded in the environment, the occurrence of
these micropollutants is reported worldwide, with antimicrobials
of all classes being detected in wastewater habitats in concen-
trations ranging from ng−1 to mgL−1 (Michael et al., 2013).
Simultaneously, urban sewage and wastewater contain AMR bac-
teria and other pollutants, such as pharmaceutical and personal
hygiene products and heavy metals, whose effects on AMR selec-
tion are still not very clear (Graham et al., 2011; Oberlé et al.,
2012; Patra et al., 2012; Novo et al., 2013). Often, wastewater
treatment is not enough to eliminate the antimicrobial residues
entering the system (Michael et al., 2013). The consequence
is that such micropollutants, exerting selective pressures, may
facilitate the selection of AMR bacteria or the acquisition of
resistance genes by horizontal gene transfer (Martinez, 2009).
Indeed, the relevance of wastewater habitats to the dissemina-
tion of AMR among human pathogens as well as commensal
and environmental bacteria is increasingly emphasized (Baquero
et al., 2008; Marshall and Levy, 2011; Czekalski et al., 2012; Rizzo
et al., 2013). Wastewater treatment plants reduce the load of AMR
bacteria, but treated water still carries elevated levels of AMR
bacteria, and may select for strains with high levels of multidrug-
resistance (Czekalski et al., 2012). Resistance gene abundance in a
stream system could be linked to the input of (treated) wastewater
and animal husbandry, demonstrating landscape-scale pollution
of natural aquatic systems with AMR (Pruden et al., 2012). The
currently available literature demonstrates that most of the AMR
genetic elements found in clinical isolates are also detected in
wastewater habitats, even shortly after they have been reported
in hospitals (Szczepanowski et al., 2009; Rizzo et al., 2013). The
occurrence of the same AMR genetic elements in different habi-
tats demonstrates the uniqueness of the resistome, mainly due to
rapid dissemination processes, demonstrating the urgent needs
for an integrated approach.

Ubiquitous bacteria that can live in the environment and
are also able to colonize humans are particularly relevant to
the spread of AMR in the environment and the implications
to human health. Indeed, numerous studies have reported
the occurrence of AMR in ubiquitous bacteria isolated from
wastewater habitats, which are also recognized as opportunistic
pathogens, mainly nosocomial agents. AMR bacteria of clinical
relevance which may be found in the environment comprise,
among others, members of the genera Acinetobacter, Enterococcus,
Escherichia, Klebsiella, Pseudomonas, and Shigella (Blanch et al.,
2003; Reinthaler et al., 2003; Ferreira da Silva et al., 2006, 2007;
Watkinson et al., 2007; Novo and Manaia, 2010; Czekalski et al.,
2012). In addition, non-cultivable bacteria may also be important
either for AMR spread or selection. Indeed, over the last years,
the use of culture independent approaches brought additional
insights into the abundance and diversity of resistance genes in
wastewaters and into the effects of antimicrobials on the bacte-
rial communities (Volkmann et al., 2004; Czekalski et al., 2012;
Oberlé et al., 2012; Novo et al., 2013). In particular, several stud-
ies presented evidence that in wastewater habitats there is a high
potential for horizontal gene transfer, mediated by plasmids and
facilitated by integrons (Tennstedt et al., 2003; Szczepanowski

www.frontiersin.org May 2013 | Volume 4 | Article 96 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


Cantas et al. The problem of antimicrobial resistance: a multi-disciplinary review

et al., 2008; Moura et al., 2010; Zhang et al., 2011). Despite the
importance of wastewater as a reservoir for AMR genes, and the
relevance of wastewater treatment to control resistance spread,
to date the number of studies that have been published remains
relatively low (Figure 2).

Nevertheless, over the last decades the knowledge in this
area has increased considerably and the importance of wastew-
ater treatment systems for the spread of AMR is unequivocally
demonstrated. Therefore, it is now possible to address some spe-
cific questions which we expect to be a focus of the research in
this area in the coming years. Examples of these issues are (1)
the identification of the conditions that may enhance or mit-
igate the occurrence of horizontal gene transfer and selection
of AMR (which pollutants, which concentrations, temperature,
pH, hydraulic residence time of wastewater treatment, etc.);
(2) the classification and quantification of risk, e.g., the likelihood
that an AMR bacterium or gene from wastewater habitats reach
humans and causes issues for human health; (3) the improvement
of wastewater treatment processes in order to minimize the loads
of antimicrobial-resistant bacteria and genes in the final effluent
(Dodd, 2012).

THE ANTIMICROBIAL RESISTANCE GENE POOL
AMR genes can be differentiated depending on the genetic event
that is required for acquiring an AMR phenotype. These include
genes that are acquired by horizontal gene transfer and genes that
are present in the bacterial genome and that can encode AMR
following gene mutations or activation (Olliver et al., 2005).

AMR features evolve as a consequence of permanent exchange
of and ever new recombinations of genes, genetic platforms, and
genetic vectors. Many of these genes are not primarily resistance
genes, but belong to the hidden resistome, the set of genes able to
be converted into AMR genes (Baquero et al., 2009). As evidenced
by our discussion above, microbial organisms harboring these
genes are present naturally in all kinds of environments, but also
released into water and soil from organisms, including humans,
where they evolve or increase in abundance under direct selection
from exposure to antimicrobials. At the same time, antimicrobials
(often at low concentrations), disinfectants, and heavy metals are
disseminated into the water as well, and may act as selective fac-
tors fostering the evolution of new AMR features (Cantas et al.,
2012a,b,c; Cantas et al., unpublished). The rate of degradation
of antimicrobials in the environment varies and is dependent on
a range of environmental conditions, for example: temperature,
available oxygen, pH, presence of alternative sources of organic
and inorganic discharges as described in Table 2.

HOW TO SLOW DOWN THE SPREAD AND EVOLUTION OF AMR?
In this review we have emphasized that the problem of AMR
evolution and dissemination is multifaceted and involves clinical,
agricultural, technical, and environmental systems. Similarly
strategies to deal with the impending AMR crisis have to take this
complexity into account.

The overuse of antimicrobials needs to be limited or reduced
in human medicine, veterinary medicine, agriculture, and aqua-
culture. Ideally, the use of antimicrobials in agriculture should
be eliminated. Intensive programs to educate both patients and

Table 2 | Degradation rates of various antimicrobials in soil.

Class of Degradation Time References

antimicrobial [%] [d]

Macrolides 0–50 5–30 Thiele-Bruhn, 2003*

Sulfonamides 0–50 22–64 Thiele-Bruhn, 2003

Fluoroquinolones 0–30 56–80 Hektoen et al., 1995;
Thiele-Bruhn, 2003

Tetracycline 0–50 10–180 Björklund et al., 1991;
Thiele-Bruhn, 2003

Aminoglycosides 0 30 Thiele-Bruhn, 2003

β-lactams 0–50 30 Thiele-Bruhn, 2003

Imidasoles 50 14–75 Thiele-Bruhn, 2003

Polypeptides 12–90 2–173 Thiele-Bruhn, 2003

∗This reference does not include the modern macrolides with very long

elimination half-lives. For instance, Tulathromycine has an half live (so 50%

degraded, not nearly 100%) in soil of 99 days (Pfizer, personal communication

2013).

physicians in reducing antimicrobial overuse should be imple-
mented. Following the analysis more than 500 scientific articles, it
has been suggested that the elimination of non-therapeutic use of
antimicrobials in food animals, will lower the burden of AMR in
the environment, with consequent benefits to human and animal
health (FAAIR Scientific, 2002; Swartz, 2002).

Better management techniques and strict legislation in the
use of antimicrobials for therapeutic use in humans and in ani-
mals will reduce the risk of development of AMR (Cunha, 2002;
Defoirdt et al., 2011; Midtlyng et al., 2011). For example, the
prevention of nosocomial transmission of multi-drug resistant
bacteria is possible with active routine surveillance programs that
can identify colonized patients. Numerous studies have demon-
strated that such a “search and containment” approach and/or
a “search and destroy” approach in which an attempt is made
to eliminate carriage of the organism can reduce the incidence
of hospital-acquired infections and be cost-saving (Muto et al.,
2003).

New management techniques in the animal husbandry, such
as organic farming, need to be thoroughly investigated to ensure
that these are viable alternatives that help to reduce the potential
for selection of AMR bacteria. Samples from organically farmed
poultry showed a significantly lower level of AMR in intestinal
bacteria such as E. coli and Campylobacter (Soonthornchaikul
et al., 2006). However from organically farmed cattle no signifi-
cant differences were obtained in microbiological contamination.
E. coli and S. aureus isolates were found to have significantly lower
rates of AMR in organically raised cattle (Sato et al., 2005). More
studies are needed (1) to determine the reasons of antimicrobial
usage in the farms by veterinarians, (2) to compare and update
the recommended treatment protocols for veterinarians through-
out different countries, (3) to evaluate the impact of other factors
other than AMR development in bacteria: e.g., immune response-
stress has been indicated to correlate with resistance genetic ele-
ment shuffling among gut microbiota in different animal models,
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such as: atlantic salmon, zebrafish, neonatal piglets, and cats
(Cantas et al., 2011, 2012a,b,c, 2013). Animal welfare parameters
under intensive production such as stress should be investigated
in future studies with regards to control of resistance development
in animal husbandry.

Vaccination and improved hygienic measures are among the
important cornerstones in controlling infectious diseases and
consequently aid in reducing AMR (Potter et al., 2008). The
Norwegian aquaculture may serve as a good example by reduc-
tion in the use of antimicrobials from around 50 tons in the late
1980’s to less than 1000 kg per annum after introduction of effec-
tive vaccines against devastating fish diseases like furunculosis and
vibriosis (Midtlyng et al., 2011; NORM/NORM-VET, 2011).

The use of pre- and probiotics to improve the health and
performance of livestock might be a good alternative to growth
promoters. This is an important biological control aiming to
reduce outbreaks of infectious diseases and which in turn would
minimize the use of antimicrobials in livestock and aquaculture
for therapeutic purposes (Verschuere et al., 2000; Callaway et al.,
2008).

The issue of dissemination and possible long-term enrich-
ment of AMR and AMR genes in the environment (Knapp
et al., 2008) needs to be studied further, with specific regards
to the actual risks associated with it. However, taking action is
already possible today. For example, several treatment methods
for waste and wastewater disinfection and removal of microp-
ollutants, including antimicrobials, are available. These include
various chemical disinfections, UV treatment, and membrane fil-
tration. Disinfection and DNA degradation of community based
and hospital wastewater may be effective means to reduce AMR
release, although more research is required to fully assess the inac-
tivation of resistance genes (i.e., DNA released from lysed cells
that may be available for horizontal gene transfer) by these mea-
sures (Dodd, 2012). The combined removal of pollutants that
are potential selective agents, disinfection, and deactivation of the
genetic material, may be a useful strategy to reduce the pollution
of environments with resistance factors.

CONCLUSIONS
Inevitably, AMR in medicine has become common place.
Bacteria have evolved multiple mechanisms for the efficient
evolution and spread of AMR. Meanwhile the new developments
of quick and adequate molecular diagnostic techniques for
the identification and epidemiological surveillance of genetic
determinants of AMR in different hosts and in the environment
will enhance the number of control options. We have outlined
above a number of potential measures that are enabled by our
improved ability to track AMR. However, there seems to be a
clear need for action and policy changes. This includes drug
licensing, financial incentives, penalties, and ban or restriction
on use of certain drugs. Similarly, the prescriber behavior needs
to be altered. Animal health and hygiene needs to be improved.
In addition, the implementation of microbiological criteria
for the detection of certain types of resistant pathogens would
be important to control the trade of both food animals and
food products. The problem of AMR in human medicine will
not be solved if nothing is done to limit the constant influx of
resistance genes into the human microbiota via the food chain

or contact with the environment. Introduction of antimicrobial
compounds into the aquatic environment via medical therapy,
agriculture, animal husbandry and companion animals has
resulted in selective pressures on resident environmental bacteria.
Development of AMR in environmental bacteria has a great
impact and may help in explaining how human and animal
pathogens acquire resistance features. Besides the role of clinical
microbiology laboratories with rapid and accurate detection of
a diverse number of pathogens and its drug resistance profiles,
robust routine surveillances in an epidemiological frame-work
covering the whole livestock “food chain” and the environment
need to be taken into consideration. Due to this complexity
the control of AMR has to include numerous actions at diverse
levels. Future research should focus on finding unknown routes
of transfer of AMR between microbiotas of relevance to the
food chain and to all microbiotas of importance for bacterial
pathogens when they acquire antibiotic resistance genes laterally.
Ultimately, even a successful integrative approach on all aspects,
can probably only help to slow down the spread of AMR, not
prevent it. The development of new generations of antimicrobial
should therefore receive equal attention. This is summarized
and emphasized in a 12-point action plan against the rising
threats of AMR implemented by the European Commission
which includes actions in the field of human medicine, animal
husbandry, veterinary medicine, authorization requirements
for commercialization of human and veterinary drugs and
other products, on research, on scientific opinions, and under-
taking also actions on the international level in collabora-
tion with the WHO and Codex (http://ec.europa.eu/dgs/health_
consumer/does/communication_amr_2011_748_en.pdf, Bush
et al., 2011).

The problem of AMR is widespread all over the world, there-
fore it is not eradicable, but can be managed. Concerted efforts
between medical doctors, dentists, veterinarians, scientists, fun-
ders, industry, regulators, and multi-disciplinary approaches are
needed to track resistance. Furthermore, global monitoring of
the antimicrobial drug consumption in human and veterinary
medicine and AMR, is an essential part of an overall strategy
to inform, educate and get commitment of all parties, includ-
ing farmers and patients (American Academy of Microbiology,
2009). All these are important measures for the efficient future
use of antimicrobials in medicine. All members of society should
be conscious of their role and take on responsibility for main-
taining the effectiveness of current and future antimicrobials. We
believe that future interventions can be successful in minimizing
this problem.
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