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Enzymatic modification is a prevalent mechanism by which bacteria defeat the action of
antibiotics. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes
encoded by genes present in the chromosome, plasmids, and other genetic elements.
The AAC(6′)-Ib (aminoglycoside 6′-N-acetyltransferase type Ib) is an enzyme of clinical
importance found in a wide variety of gram-negative pathogens. The AAC(6′)-Ib enzyme
is of interest not only because of his ubiquity but also because of other characteristics,
it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib gene is
often present in integrons, transposons, plasmids, genomic islands, and other genetic
structures. Excluding the highly heterogeneous N-termini, there are 45 non-identical
AAC(6′)-Ib related entries in the NCBI database, 32 of which have identical name in
spite of not having identical amino acid sequence. While some variants conserved
similar properties, others show dramatic differences in specificity, including the case of
AAC(6′)-Ib-cr that mediates acetylation of ciprofloxacin representing a rare case where
a resistance enzyme acquires the ability to utilize an antibiotic of a different class as
substrate. Efforts to utilize antisense technologies to turn off expression of the gene
or to identify enzymatic inhibitors to induce phenotypic conversion to susceptibility are
under way.
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transposon

AMINOGLYCOSIDES AND RESISTANCE
Aminoglycosides are bactericidal antibiotics that affect trans-
lation fidelity and, according to recent data, they may also
stimulate the production of highly deleterious hydroxyl radi-
cals (Vakulenko and Mobashery, 2003; Magnet and Blanchard,
2005; Jana and Deb, 2006; Kohanski et al., 2007; Majumder
et al., 2007). Aminoglycosides are used to treat infections caused
by gram-negative bacilli and, in combination with β-lactams
or vancomycin, to treat some gram-positive pathogens, mainly
staphylococci (Yao and Moellering, 2007). Since a step in the
uptake process requires functional respiration, the spectrum of
action of aminoglycosides is limited to aerobic bacteria (Muir
et al., 1984). In addition to their most common uses, aminoglyco-
sides can be utilized to treat diseases such as tuberculosis (Menzies
et al., 2009; Brossier et al., 2010), plague, tularemia, brucel-
losis, endocarditis caused by enterococci, and others (Vakulenko
and Mobashery, 2003; Yao and Moellering, 2007; Ramirez and
Tolmasky, 2010). The fact that aminoglycosides also cause a
decrease in eukaryotic translational fidelity permitted to initiate
efforts to developed them as drugs to treat nonsense mutation
related genetic disorders such as cystic fibrosis and Duchenne
muscular dystrophy (Rich et al., 1990; Kellermayer, 2006;
Hermann, 2007; Kondo et al., 2007; Zingman et al., 2007; Bidou
et al., 2012; Kandasamy et al., 2012). A chemical labyrinthec-
tomy using intratympanic injection of aminoglycosides is used
when most treatments of Ménière’s disease fail (Huon et al.,
2012; Pacheu-Grau et al., 2012). Aminoglycoside-based drugs are

also inhibitors of reproduction of the HIV virus, a property that
could result in their utilization in the treatment of AIDS patients
(Houghton et al., 2010).

The basic chemical structure of aminoglycosides is character-
ized by the presence of an aminocyclitol nucleus (streptamine, 2-
deoxystreptamine, or streptidine) linked to amino sugars through
glycosidic bonds. However, other compounds with different basic
structures are also included within the aminoglycosides fam-
ily, e.g., spectinomycin, an aminocyclitol not linked to amino
sugars or compounds containing the aminocyclitol fortamine
(Bryskier, 2005). They reach the cytoplasm of the bacterial cell in
a three-step process, of which the first one is energy-independent
and the following two are energy-dependent (Taber et al., 1987;
Vakulenko and Mobashery, 2003; Ramirez and Tolmasky, 2010).
At the molecular level, the action of aminoglycosides is charac-
terized by interactions between the antibiotic molecule and the
16S rRNA. Although for all aminoglycosides the effect of this
interaction is a change of conformation of the decoding A site
producing one that resembles the closed state induced by inter-
action between cognate tRNA and mRNA, it must be noted that
not all aminoglycosides seem to bind the same sites of the 16S
rRNA. The consequence of the conformational change induced
by the interaction 16S rRNA-aminoglycoside is the reduction of
the proofreading capabilities of the ribosome, which in turns
results in high levels of mistranslation (Bakker, 1992; Busse et al.,
1992; Vakulenko and Mobashery, 2003; Vicens and Westhof,
2003; Magnet and Blanchard, 2005; Majumder et al., 2007; Zaher
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and Green, 2009; Ramirez and Tolmasky, 2010). Other molecu-
lar effects of some aminoglycosides have been described but it is
not clear if some of them are not secondary to protein mistransla-
tion. They include inhibition of 30S ribosomal subunit assembly,
induction of RNA cleavage, or interference with the action of
RNase P (Mikkelsen et al., 1999; Mehta and Champney, 2003;
Belousoff et al., 2009).

Aminoglycosides are powerful tools against infections
(Labaune et al., 2001; Avent et al., 2011) but unfortunately the
levels of resistance are growing and in consequence failure of
treatments with aminoglycosides is becoming more common
(Galani et al., 2002; van ‘t Veen et al., 2005; Tolmasky, 2007a;
Soler Bistue et al., 2008). Bacteria have developed numer-
ous mechanisms to resist the action of aminoglycosides and
cells can possess the genetic determinants for several of them
enhancing the levels of resistance and making it very difficult
to overcome all of them. Enzymatic inactivation by acetylation,
adenylylation, or phosphorylation at different locations of the
aminoglycoside molecule is among the most clinically relevant
strategies bacteria use to resist the action of these antibiotics
(Shaw et al., 1993; Vakulenko and Mobashery, 2003; Tolmasky,
2007a; Ramirez and Tolmasky, 2010; Chen et al., 2011; Chiang
et al., 2013). The enzymes that catalyze these reactions are
collectively known as aminoglycoside modifying enzymes. Other
well studied mechanisms are: (1) mutation of the 16S rRNA or
ribosomal proteins modify the target eliminating or reducing
the interaction with the antibiotic molecule (O’Connor et al.,
1991); (2) methylation of 16S rRNA, a mechanism found in
most aminoglycoside-producing organisms and in clinical
strains (Schmitt et al., 2009; Wachino and Arakawa, 2012); (3)
reduced permeability to the antibiotic molecule by modification
of the permeability of the outer membrane or diminished
inner membrane transport (Hancock, 1981; Taber et al., 1987;
Macleod et al., 2000; Over et al., 2001); (4) export outside the
cell by active efflux pumps (Hocquet et al., 2003; Morita et al.,
2012; Wachino and Arakawa, 2012); (5) sequestration by tight
binding to a low active aminoglycoside acetyltransferase (Magnet
et al., 2003); and (6) extracellular DNA shielding in biofilms
(Chiang et al., 2013).

The general characteristics of all known aminoglycoside
modifying enzymes have been recently reviewed (Ramirez and
Tolmasky, 2010). This review will focus on the aminoglycoside 6′-
N-acetyltransferase type Ib [AAC(6′)-Ib], which is of great clini-
cal relevance and it is found in over 70% of AAC(6′)-I-producing
gram-negative clinical isolates (Vakulenko and Mobashery, 2003),
and has been the subject of numerous studies (Tolmasky, 2007a;
Cambray and Mazel, 2008; Ramirez and Tolmasky, 2010).

THE AAC(6’)-Ib PROTEIN
The aminoglycoside N-acetyltransferases (AAC) belong to the
GCN5-related N-acetyltransferase superfamily, also known as
GNAT. This is a large group of enzymes that includes about 10,000
proteins from all kinds of organisms that share the property to
catalyze the acetylation of a primary amine in numerous accep-
tor molecules using acetyl CoA as donor substrate (Neuwald and
Landsman, 1997; Dyda et al., 2000; Vetting et al., 2005). The AACs
are subdivided in groups based on the position where the acetyl

group is transferred in the acceptor aminoglycoside molecule.
Known AACs catalyze acetylation at the 1 [AAC(1)], 3 [AAC(3)],
2′ [AAC(2′)], or 6′ [AAC(6′)] positions (Shaw et al., 1993; De
Pascale and Wright, 2010; Ramirez and Tolmasky, 2010). AAC(6′)
enzymes are the most numerous group of AACs, more than 40
have been described, and can be found in gram-negatives as
well as gram-positives (Shaw et al., 1993; Miller et al., 1997;
Wright, 1999; Tolmasky, 2007a; Ramirez and Tolmasky, 2010).
AAC(6′) enzymes are subdivided in two groups, AAC(6′)-I and
AAC(6′)-II, which are differentiated by the profile of the amino-
glycosides inactivated. With a few exceptions, AAC(6′)-I enzymes
specify resistance to several aminoglycosides plus amikacin and
gentamicin C1a and C2 but not to gentamicin C1 (Shaw et al.,
1993). On the other hand, AAC(6′)-II enzymes catalyze acety-
lation of all forms of gentamicin but not of amikacin (Rather
et al., 1992). In addition, enzymes with extended spectrum that
may merit addition of new subclasses of AAC(6′)-I enzymes
have been recently described (Casin et al., 2003; Robicsek et al.,
2006; Strahilevitz et al., 2009). Phylogenetic analyses divided the
AAC(6′) enzymes into three clades. However, with the informa-
tion available it is still not clear if all AAC(6′) enzymes evolved
from a single origin or the three groups are less related and the 6′
acetylating activity has evolved independently at least three times
(Salipante and Hall, 2003). According to the phylogenetic analy-
ses recently communicated by Salipante and Hall (Salipante and
Hall, 2003) the AAC(6′)-Ib is most closely related to AAC(6′)-IIa
AAC(6′)-IIb, AAC(6′)-IIc, and AAC(6′)-IId.

There are numerous variants of AAC(6′)-Ib, many of them
identified by modifications in the name of the enzyme such as the
addition of subscripts or a prime symbol superscript (Cambray
and Mazel, 2008; Ramirez and Tolmasky, 2010). However, a
large number of versions of the protein, or predicted protein,
have all been named AAC(6′)-Ib, which can be a source of con-
fusion or indetermination. These variants mainly differ at the
N-terminus, however one should be careful when considering
these differences because not in all of them the N-terminus has
been experimentally determined (Dery et al., 1997; Casin et al.,
2003; Soler Bistue et al., 2006; Maurice et al., 2008). Table 1 shows
a list of the aac(6′)-Ib gene versions found in different genetic
environments and bacterial species. Some variants differing at
the N-termini such as AAC(6′)-Ib3, AAC(6′)-Ib4, AAC(6′)-Ib6,
and AAC(6′)-Ib7 have been compared and it was found that
they have similar behavior (Casin et al., 1998) but variations
as small as one or two amino acids at key positions proved to
be of high relevance (Table 2). For example, the AAC(6′)-Ib11

found in S. Typhimurium has L and S residues at positions 118
and 119 as opposed to Q and L or Q and S, the amino acids
present at these positions in all previously described enzymes,
acquired an extended resistance spectrum that includes all three
gentamicin forms (Casin et al., 2003). (Amino acid numbers
throughout the text are based on the sequence corresponding to
accession number AF479774.) Another example worth mention-
ing is the AAC(6′)-Ib’, originally found in Pseudomonas fluorescens
BM2687, but previously generated by site-directed mutagenesis
in the laboratory (Table 1). This protein has a L to S substitu-
tion at amino acid 119 that confers the enzyme an AAC(6′)-II
profile, i.e., the enzyme confers resistance to gentamicin but
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Table 1 | AAC(6′)-Ib variants.

Number AAC(6′)-Ib enzyme Gene allele Genetic localization Species Reference

1 NP_608307 aac(6′)-Ib pJHCMW1::Tn1331,
pKPN4,
pMET1::Tn1331.2,
pKlebpneu15S,
pR23::Tn1331,
pAAC154::�Tn1331,
pColEST258,
pJHC-MW1,
Tn1332,
class 1 integron,
pRMH712::Tn1331,
SGI1-V::class 1 integron

K. pneumoniae, En. spp.,
Pseudomonas putida,
Proteus mirabilis

NP_608307,
YP_001338668,
YP_001928078,
YP_001928081,
YP_002286819,
YP_004455304,
YP_006958960,
YP_006959190,
ZP_14492679 (contig),
ZP_14498301 (contig),
ZP_14503930 (contig),
ZP_14509538 (contig),
ZP_14515174 (contig),
ZP_14520767 (contig),
ZP_14526392 (contig),
ZP_14531781 (contig),
ZP_14537604 (contig),
ZP_14543183 (contig),
ZP_14548764 (contig),
ZP_14554292 (contig),
ZP_14559831 (contig),
ZP_14565429 (contig),
ZP_14571055 (contig),
ZP_14576504 (contig),
ZP_14581777 (contig),
ZP_14587733 (contig),
ZP_14593028 (contig),
ZP_14598930 (contig),
ZP_19010829 (contig),
AAC6_KLEPN,
AF479774_5, AAA69747,
AAA98404, ABA54975,
ABR80438, ACB55476,
ACB55479, ACI63081,
ACL36604, ADK35766,
AED98720, AED99555,
AEG74535, AEW43367,
EJJ31842 (contig),
EJJ31842 (contig),
EJJ31884 (contig),
EJJ31888 (contig),
EJJ48672 (contig),
EJJ48714 (contig),
EJJ49532 (contig),
EJJ65671 (contig),
EJJ65889 (contig),
EJJ68295 (contig),
EJJ79581 (contig),
EJJ81436 (contig),
EJJ85464 (contig),
EJJ96302 (contig),
EJJ96595 (contig),
EJK03278 (contig),
EJK13161 (contig),
EJK16025 (contig),
EJK18863 (contig),
EJK30890 (contig),

(Continued)
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Table 1 | Continued

Number AAC(6′)-Ib enzyme Gene allele Genetic localization Species Reference

EJK33635 (contig),
EKV58688 (contig)

2 YP_002286969 aac(6′)-Ib p12::Tn1331 K. pneumoniae, E. coli YP_002286969,
ZP_16459764 (genomic
scaffold), ZP_19016755
(contig), ACI63027,
EGB78408 (contig),
EKV58524 (contig)

3 AAA26550 aac(6′)-Ib pAZ007 Serratia marcescens AAA26550

4 AAR18814 aac(6′)-Ib pKP31::class 1 integron K. pneumoniae AAR18814

5 CBI63199 aac(6′)-Ib Class 1 integron P. aeruginosa CBI63199

6 CBI63201 aac(6′)-Ib Class 1 integron P. aeruginosa CBI63201

7 CBI63203 aac(6′)-Ib Class 1 integron P. aeruginosa CBI63203

8 ABG77519 aac(6′)-Ib Class 1 integron P. aeruginosa ABG77519

9 CBL95252 aac(6′)-Ib Class 1 integron P. aeruginosa CBL95252

10 CBL95256 aac(6′)-Ib Class 1 integron P. aeruginosa CBL95256

11 CBI63204 aac(6′)-Ib Class 1 integron P. aeruginosa CBI63204

12 CBI63202 aac(6′)-Ib Class 1 integron P. aeruginosa CBI63202

13 YP_003937697 aac(6′)-Ib pETN48::�class 1
integron

E. coli YP_003937697,
CBX36023

14 ADC80806 aac(6′)-Ib pRYC103T24::class 1
integron In4-like,
pKSP212::class 1
integron

E. coli, uncultured
bacterium

ADC80806, AFR44153

15 YP_005797131 aac(6′)-Ib Class 1 integron
(Chromosome)

A. baumannii YP_005797131,
AEN92376

16 YP_005525242 aac(6′)-Ib Class 1 integron
(Chromosome)

A. baumannii YP_005525242,
YP_006289231,
YP_006848983,
ZP_11603605 (contig),
ZP_16142456 (contig),
ZP_16146111 (contig),
EGK45756 (seq0044),
AEP05746, AFI94936,
EKE64317 (contig),
EKE64588 (contig),
AFU38752

17 NP_863005 aac(6′)-Ib p1658/97::class 1
integron, class 1 integron
(Chromosome), class 1
integron, plasmid In238a

E. coli, A. baumannii,
K. pneumoniae,
K. oxytoca, En. cloacae

NP_863005,
YP_001844882,
AAO49600, ACZ55927,
ACZ64698, AFS33307

18 ADC80825 aac(6′)-Ib pRYC103T24::class 1
integron

E. coli ADC80825

(Continued)
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Table 1 | Continued

Number AAC(6′)-Ib enzyme Gene allele Genetic localization Species Reference

19 YP_002791392 aac(6′)-Ib pEC-IMP::class 1
integron,
pEC-IMPQ::class 1
integron, pb1004::class 1
integron, class 1 integron

En. cloacae, Salmonella
enterica subsp. enterica
serovar Bredeney,
P. aeruginosa

YP_002791392,
YP_002791702,
ACF59628, ACO54016,
ACO54326, ADF47469

20 AEO50496 aac(6′)-Ib Class 1 integron Se. marcescens AEO50496

21 ACB41759 aac(6′)-Ib Class 1 integron E. coli ACB41759

22 BAL45797 aac(6′)-Ib pKPI-6::class 1 integron K. pneumoniae BAL45797

23 AAC46343 aac(6′)-Ib Class 1 integron P. aeruginosa AAC46343

24 AAD02244 aac(6′)-Ib9 Class 1 integron P. aeruginosa AAD02244

25 YP_003108195 aac(6′)-Ib-cr pEK516, pEK499,
pEC_L8, pUUH239.2

E. coli, K. pneumoniae YP_003108195,
YP_003108338,
YP_003829182,
YP_005351453,
ACQ41894, ACQ42045,
ADL14076, AET17280

26 ZP_18354173 aac(6′)-Ib-cr K. pneumoniae ZP_18354173 (genomic
scaffold), EKF76226

27 ACD56150 aac(6′)-Ib-cr pHS1387::class 1
integron

Escherichia coli ACD56150

28 ADY02579 aac(6′)-Ib-cr Class 1 integron Aeromonas media ADY02579

29 NP_957555 aac(6′)-Ib-cr pC15-1a, pKP96::class 1
integron, pNDM-MAR,
pGUE-NDM, pKDO1,
pHe96, pKas96,
pECZ6-1::class 1
integron, Class 1
integron, pLC108::class 1
integron, pJIE101,

Escherichia coli,
K. pneumoniae, Kluyvera
ascorbata, mixed culture
bacterium, K. oxytoca,
Se. rubidaea, En. cloacae,
Aeromonas
allosaccharophila,
Providencia spp., Shigella
spp., En. aerogenes

NP_957555,
YP_002332851,
YP_005352168,
YP_006953881,
YP_006973732,
AAR25030, ABC17627,
ABM47029, ABY74389,
ACD03312, ACD03322,
ACM24788, ACT97328,
ACT97332, ACT97345,
ACT97681, ACV60575,
ADA60222, ADE44336,
ADP30789, ADU16107,
ADU16118, ADY02556,
AEC49701, AEC49704,
AEL33522, AEO45791,
AEO79936, AEO79967,
AEP16466, AER36609,
AEU10750, AEU10754,
AFB82784, AFC38861,
AFI72862, AFV52812,
AFV70394

30 1V0C_A aac(6′)-Ib Escherichia coli Chain A,
Structure

1V0C_A, 2BUE_A,
2VQY_A

31 YP_006501621 pKOX_R1::class 1
integron, class 1
integorn,

K. oxytoca,
K. pneumoniae

YP_006501621,
AFM57748, AFN35014

(Continued)
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Table 1 | Continued

Number AAC(6′)-Ib enzyme Gene allele Genetic localization Species Reference

32 ABC54722 aac(6′)-Ib pAS1::InVC117 Vibrio cholerae ABC54722

33 BAE66666 aac(6′)-Ib Class 1 integron Vibrio cholerae O1 BAE66666

34 YP_007232190 aac(6′)-Ib pPC9 P. putida YP_007232190

35 ZP_16084267 aac(6′)-Ib Class 1 integron
(Chromosome)

A. baumannii ZP_16084267 (contig),
ZP_16086960 (contig),
ZP_16140385 (contig),
EKA73751 (contig),
EKK08901 (contig),
EKK18976 (contig)

36 AFS51540 aac(6′)-Ib9 pKS208::class 1 integron Uncultured bacterium AFS51540

37 YP_006957899 aac(6′)-Ib-cr4 pMdT SS. enterica subsp.
enterica serovar
Typhimurium

YP_006957899,
AFU63391

38 ADZ96942 aac(6′)-Ib-cr Plasmid K. pneumoniae ADZ96942

39 CAA42873 aac(6′)-Ib3, aac(6′)-Ib5 plasmid pCFF04 P. aeruginosa CAA42873

40 AAB24284 aac(6′)-Ib4 pSP21::class 1 integron,
pEl1573::class 1 integron

Se. spp., uncultured
bacterium, En. cloacae

AAB24284,
YP_006941442,
YP_006965430

41 AAN41403 aac(6′)-Ib11 pSTI1::class 1 integron SS. enterica subsp.
enterica serovar
Typhimurium

AAN41403

42 YP_006903338 aac(6′)-Ib pNDM102337::class 1
integron,
pNDM10505::class 1
integron

Escherichia coli YP_006903338,
YP_006953195

43 YP_006959139 aac(6′)-Ib pNDM10469::class 1
integron

K. pneumoniae YP_006959139

44 aac(6′)-Ib7 Plasmid En. cloacae, Citrobacter
freundii

Not available

45 aac(6′)-Ib8 Plasmid En. cloacae Not available

The pJHCMW1-encoded AAC(6′)-Ib variant (accession number NP_608307) was subjected to BLASTP and the identical proteins were identified. Those that were

closely related but not identical were identified by numbers. The names given in the publications or GenBank entries are shown. Those that were named aacA4

were named aac(6′ )-Ib here.

not amikacin (Rather et al., 1992; Lambert et al., 1994). A
highly surprising effect occurred in the natural variant known as
AAC(6′)-Ib-cr, which has the modifications W104R and N181Y
(Tables 1, 2). The substrate spectrum was expanded to include
quinolone antibiotics, crossing the barrier from the aminogly-
cosides (Robicsek et al., 2006). Since the first detection of the
AAC(6′)-Ib-cr variant there have been numerous reports of
its presence, and variants of it, across the world in different
genetic environments suggesting an extraordinary ability to dis-
seminate (Quiroga et al., 2007; Cattoir and Nordmann, 2009;
Strahilevitz et al., 2009; Rodriguez-Martinez et al., 2011; Ruiz

et al., 2012; De Toro et al., 2013). Furthermore, there have been
cases where a strain was found to simultaneously include genes
coding for AAC(6′)-Ib and AAC(6′)-Ib-cr (Kim et al., 2011).
AAC(6′)-Ib is also found fused to the C-terminal end of AAC(3)-
Ib protein within a class I integron found in a Pseudomonas
aeruginosa strain (Dubois et al., 2002) and to the C-terminus
of the AAC(6′)-30 also within a P. aeruginosa class I integron
(Mendes et al., 2004).

Subcellular localization studies of the AAC(6′)-Ib enzyme
encoded by Tn1331 showed that the enzyme is homogeneously
distributed in the cytoplasmic compartment (Dery et al., 2003).
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Table 2 | Phenotypes of representative mutants of AAC(6′)-Ib.

Mutationa AAC(6′)-Ib
variant name

Phenotype References

Y80C S Panaite and
Tolmasky, 1998

D117A S Pourreza et al., 2005

L119S AAC(6′)-Ib′,
AAC(6′)-Ib7,
AAC(6′)-Ibb

8

Specificity, Gmr Aks Rather et al., 1992;
Lambert et al., 1994;
Casin et al., 2003

Q118L,
L119S

AAC(6′)-Ib11 Specificity, Gmr Akr Casin et al., 2003

L120A S Pourreza et al., 2005

Y166A Specificity, Aks Kmr Shmara et al., 2001

E167A S Shmara et al., 2001

F171A S Shmara et al., 2001

F171L Thermosensitive for
Ak and Nm

Panaite and
Tolmasky, 1998;
Shmara et al., 2001

W104R,
D181Y

AAC(6′)-Ib-cr Expanded substrate
spectrum including
quinolones

Robicsek et al., 2006

S, susceptible.
aNumbering from sequence in accession number AF479774.
bThe proteins differ at the amino terminus.

AAC(6′)-Ib was one of three aminoglycoside modifying enzymes
used in a study consisting of molecular dynamics simulations of
the enzymes and aminoglycoside ribosomal RNA binding site,
unliganded, and complexed with an aminoglycoside, kanamycin
A. These studies concluded that the enzymes efficiently mimic
the nucleic acid environment of the ribosomal RNA binding cleft
(Romanowska et al., 2013). Extensive studies using mutagene-
sis showed some interesting phenotypes such as modifications
in specificity, enhanced activity, or selective thermosensitivity
(Table 2) (Panaite and Tolmasky, 1998; Chavideh et al., 1999;
Shmara et al., 2001; Casin et al., 2003; Pourreza et al., 2005;
Kim et al., 2007; Maurice et al., 2008). In addition, alanine scan-
ning showed that several amino acid substitutions by A had
minor effects. These mutagenesis studies together with struc-
tural and enzymatic analyses led to a deep understanding of
features and characteristics of AAC(6′)-Ib proteins (Rather et al.,
1992; Vetting et al., 2004; Maurice et al., 2008; Vetting et al.,
2008; Ramirez and Tolmasky, 2010). The three dimensional struc-
ture of AAC(6′)-Ib and AAC(6′)-Ib11 have been experimentally
determined in various conditions. AAC(6′)-Ib was crystallized
in complex with coenzyme A and also in complex with both
coenzyme A and kanamycin. The structures were solved to 1.8 Å
and 2.4 Å resolution, respectively (Maurice et al., 2008). The
broad spectrum variant AAC(6′)-Ib11 was crystallized in the

absence of substrate and the structure was solved to 2.1 Å res-
olution (Maurice et al., 2008). These studies concluded that
AAC(6′)-Ib exists as a monomer while AAC(6′)-Ib11 shows
monomer/dimer equilibrium (Maurice et al., 2008). This was
a somewhat surprising finding considering that previous stud-
ies had shown that two other acetyltransferases, AAC(6′)-Ii and
AAC(6′)-Iy, exist as dimers (Wright and Ladak, 1997; Wybenga-
Groot et al., 1999; Draker et al., 2003; Vetting et al., 2004; Wright
and Berghuis, 2007; Vong et al., 2012). Interestingly, analysis of
these crystal structures showed the presence of a flexible flap
in AAC(6′)-Ib11 that may be the basis for its ability to utilize
amikacin as well as gentamicin as substrates (Maurice et al.,
2008). In another study a molecular model of AAC(6′)-Ib-cr
has been generated (Maurice et al., 2008; Vetting et al., 2008),
which led to postulate that the D181Y substitution is mainly
responsible for modification in the strength of binding of the
antibiotic substrate and that the substitution W104R stabilizes
the positioning of Y181 (Robicsek et al., 2006; Strahilevitz et al.,
2009).

Table 1 shows that there are 45 non-identical AAC(6′)-Ib
related entries in the NCBI database, 32 of which have identi-
cal name in spite of not having identical amino acid sequence.
The N-termini of these proteins show the highest degree of het-
erogeneity with high variations in length stretching up to 60
amino acids, but these differences were suggested to be irrel-
evant (Casin et al., 1998; Maurice et al., 2008). Therefore, we
defined a highly conserved central region composed of 181
amino acids shared by all proteins, which were compared using
the MAFFT alignment algorithm (Katoh and Standley, 2013).
Pairwise comparisons show that the sequences have 1 to 8 amino
acid differences and a total of 24 positions showed amino acid
variations. Moreover, clustering using the UPGMA algorithm
(Sneath and Sokal, 1973) defined 18 sequence clusters, 14 of
which consist of a singleton, and 4 of which include 2–16 pro-
teins (Figure 1). Different clusters can exhibit similar properties
while others show substantial differences in their characteristics
such as those cases in which there are significant specificity vari-
ations like extended substrate spectrum as described in the above
paragraphs.

THE aac(6’)-Ib GENE
The aac(6′)-Ib genes are usually found as fully functional or
deficient gene cassettes associated to class 1 integrons, insertion
sequences such as IS26, and truncated or disrupted integrons
(Figure 2 and Table 1) (Sarno et al., 2002; Woodford et al., 2009;
Ramirez and Tolmasky, 2010). These genetic elements may be
part of plasmids, transposons, genomic islands, or other struc-
tures such as the KQ element (Rice et al., 2008), which together
contribute to the gene’s ability to disseminate at the cellular
and molecular levels (Tolmasky, 2007b). When present in inte-
grons, aac(6′)-Ib gene cassettes can be found located adjacent
to the 5′-conserved region, i.e., flanked by attI and attC, or
internal to the variable portion containing attC loci at both
ends (Figure 2). In both cases, as expected, the gene cassette
can be mobilized by the integrase IntI1 (Figure 2) (Cambray
et al., 2010; Hall, 2012). In addition, a gene cassette-like struc-
ture containing aac(6′)-Ib, composed of a copy of attI1∗ at
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FIGURE 1 | UPGMA clustering analyses of 45 AAC(6′)-Ib protein

sequences. The optimal tree with the sum of branch length =
20.70628249 is shown. The evolutionary distances were computed
using the number of differences method and are in the units of the
number of amino acid differences per sequence. All positions
containing gaps and missing data were eliminated. There were a total
of 181 positions in the final dataset. Evolutionary analyses were
conducted in MEGA5.

FIGURE 2 | Mobilization of aac(6′ )-Ib. (A) Generic genetic maps of
integrons in which an aac(6′ )-Ib gene cassette is located immediately
following the 5′ conserved region (5′ -CR) (top map) or following one or
more gene cassettes (gc) inside the variable portion, and followed by other
gene cassettes or the 3′ conserved region (3′ -CR) (bottom map). The small
green ellipse represents attI and the big green ellipses represent attC.
(B) Relevant portion of the Tn1331, Tn1331.2, and KQ elements (Tolmasky
and Crosa, 1987; Tolmasky et al., 1988; Sarno et al., 2002; Rice et al.,
2008). For clarity Tn1332, which has a more complicated structure in its
direct repeats (Poirel et al., 2006), is not shown, but it could experience
mobilization by homologous recombination as shown. The black dot
represents attI1∗ . The homologous recombination pathway for generation
of an aac(6′ )-Ib-containing circular molecule has been proposed by
Zong et al. (2009).

the beginning of the structural gene and a regular attC down-
stream of it (see Figure 2), was found as part of a region
resembling the variable portion of integrons in Tn1331 (Woloj
et al., 1986; Tolmasky et al., 1988; Tolmasky, 1990; Tolmasky
and Crosa, 1993; Sarno et al., 2002), Tn1331.2 (Tolmasky and
Crosa, 1991), Tn1332 (Poirel et al., 2006), the KQ element
(Rice et al., 2008), a Tn1331 derivative recently isolated from
a clinical Klebsiella pneumoniae strain belonging to the ST512,
which derived from the ST258, known to be spread world-
wide (Chen et al., 2012; Garcia-Fernandez et al., 2012; Warburg
et al., 2012), and a complex mosaic region present in the chro-
mosome of Proteus mirabilis JIE273 (Zong et al., 2009). Assays
overexpressing IntI1 in cells containing Tn1331 were unable to
detect any excision of the aac(6′)-Ib gene cassette-like structure,
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suggesting that it is nonfunctional or it excises at an extremely
low efficiency (Ramirez et al., 2008). Interestingly, despite the
IntI1-mediated lack of mobility of this DNA region, the gene
could be mobilized by means of a mechanism recently proposed
by Zong et al. that occurs through homologous recombination
between 520-bp direct repeats located upstream and down-
stream of the gene cassette-like structure (Figure 2) (Zong et al.,
2009).

These multiple locations taken together with the ability of the
genetic elements to spread at the molecular and cellular level
provide aac(6′)-Ib genes with the capability to reach virtually all
gram-negatives and other undetermined bacteria such as those
that are still unculturable. The gene has also been found in plas-
mids harboring resistance genes of high importance such as the
recently described ndm-1 (Yong et al., 2009; Bonnin et al., 2012;
Villa et al., 2012).

INHIBITION
The rise in drug resistance affects all known antibiotics and has
been identified as one of the greatest threats to human health.
Therefore, there is an immediate need for new agents with activity
against multiresistant bacteria and at the present moment there
is no evidence that this need will be fully met in the near future
(Boucher et al., 2009). A group of pathogens that cause the major-
ity of hospital infections, named ESKAPE (Enterococcus faecium,
Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii,
P aeruginosa, and Enterobacter), is becoming highly resistant to
antibiotics including aminoglycosides (Rice, 2008). They carry
aminoglycoside modifying enzymes genes, and one of the most
common in the gram-negative members is aac(6′)-Ib (Ramirez
and Tolmasky, 2010; Shaul et al., 2011; Herzog et al., 2012).
An obvious solution to this problem would be the develop-
ment of new aminoglycosides, a strategy that is being pursued
using numerous approaches (Green et al., 2010, 2011; Houghton
et al., 2010). A variety of new aminoglycoside derivatives includ-
ing chemical modification of existing aminoglycosides, amino-
glycoside dimers, or aminoglycoside-small molecule conjugated
are being produced and tested (reviewed in Houghton et al.,
2010). In particular plazomicin (ACHN-490), a novel neogly-
coside derived from sisomicin that carries a hydroxymethyl
group at position 6′, has shown enhanced activity against mul-
tiresistance gram-negatives and gram-positives including strains
carrying aac(6′)-Ib (Endimiani et al., 2009; Landman et al.,
2011).

Others are approaching the problem in such a way that the
existing aminoglycosides continue to be effective by designing
enzymatic inhibitors that can act in combination with the antibi-
otic, mimicking the strategy successfully used to curb resistance
to β-lactams (Williams and Northrop, 1979; Daigle et al., 1997;
Haddad et al., 1999; Liu et al., 2000; Burk and Berghuis, 2002;
Boehr et al., 2003; Draker et al., 2003; Gao et al., 2005, 2006;
Welch et al., 2005; Lombes et al., 2008; Magalhaes et al., 2008;
De Pascale and Wright, 2010; Drawz and Bonomo, 2010; Green
et al., 2012; Vong et al., 2012). However, these efforts are still
scarce when one compares them to those invested to discover
and design β-lactamase inhibitors. Furthermore, the attempts to
find inhibitors of AAC(6′)-Ib have only yielded a compound,

synthesized using non-aminoglycoside-like fragments, with a
rather modest level of inhibition of AAC(6′)-Ib (Lombes et al.,
2008).

An alternative approach that is being explored is silencing
expression of the resistance gene. Early attempts at interfering
with expression of aac(6′)-Ib consisted of identifying regions
available for interaction with antisense oligonucleotides in a
monocistronic in vitro synthesized mRNA by RNase H mapping
in combination with computer prediction of its secondary struc-
ture (Sarno et al., 2003). The selected sites were used as targets
for a collection of oligodeoxynucleotides, of which some had the
ability to induce RNase H-mediated in vitro degradation of the
mRNA, inhibited in vitro synthesis of the enzyme in coupled tran-
scription/translation assays, and upon delivery by electroporation
significantly reduced the number of cells surviving after exposure
to amikacin (Sarno et al., 2003). The mechanism of this in vivo
inhibition is most probably through RNase H digestion of the
mRNA, but other possibilities such as steric hindrance cannot
be discarded at this time. Alternatively, modest but significant
inhibition of expression of aac(6′)-Ib was achieved by applying
EGS technology, in which short antisense RNA molecules, known
as external guide sequences, are used to elicit RNase P-mediated
degradation of a target mRNA (Guerrier-Takada et al., 1997;
Lundblad and Altman, 2010). Initially, E. coli harboring aac(6′)-
Ib were transformed with recombinant clones specifying the
appropriate RNA oligonucleotide sequences under an inducible
promoter. The transformed derivatives were then cultured in
the presence of amikacin under conditions of expression of the
external guide sequences. The results showed that in a few cases
the external guide sequences induced a reduction of the min-
imal inhibitory concentration of amikacin (Soler Bistue et al.,
2007). These results were considered proof of concept, but the
strategy was not viable because antisense oligonucleotides must
be added from the milieu and find their way inside the cells
without being degraded. Thus, nuclease resistant oligonucleotide
analogs that still induce inhibition of gene expression by RNase
P activation had to be found. Out of a variety of oligoribonu-
cleotide analogs including 2′-O-methyl oligoribonucleotides,
phosphorodiamidate morpholino oligomers, phosphorothioate
oligodeoxynucleotides, or locked nucleic acids (LNA)/DNA co-
oligomers that were tested, LNA/DNA co-oligomers with certain
configurations were found to be capable of eliciting RNase P-
mediated cleavage of mRNA in vitro (Soler Bistue et al., 2009).
Following this finding, a selected LNA/DNA co-oligomer was
added to the hyperpermeable E. coli AS19 harboring aac(6′)-
Ib and it was found that growth was inhibited in the presence
of amikacin, indicating that the compound may have induced
RNase P-mediated inhibition of expression of the gene (Soler
Bistue et al., 2009). These results were encouraging but it must
be noted that inhibition of expression of aac(6′)-Ib is still far
from being a viable option to overcome aminoglycoside resis-
tance in the clinical setting. Several problems remain to be solved
like inducing penetration of the oligonucleotide analogs inside
wild type cells in enough quantities to exert the biological activ-
ity or achieve enough inhibition levels in spite of the usual
presence of multiple copies of the gene due to its inclusion
in high copy number plasmids. Toward finding solutions to
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these problems, recent experiments suggest that LNA/DNA co-
oligomers may be able to reach the cytoplasm of untreated cells
at low efficiency (Traglia et al., 2012). Strategies will have to be
developed to increase the efficiency of delivery inside bacterial
cells.
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