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The activities of extracellular enzymes, the proximate agents of decomposition in soils, are
known to depend strongly on temperature, but less is known about how they respond to
changes in precipitation patterns, and the interaction of these two components of climate
change. Both enzyme production and turnover can be affected by changes in temperature
and soil moisture, thus it is difficult to predict how enzyme pool size may respond to altered
climate. Soils from the Boston-Area Climate Experiment (BACE), which is located in an old
field (on abandoned farmland), were used to examine how climate variables affect enzyme
activities and microbial biomass carbon (MBC) in different seasons and in soils exposed to
a combination of three levels of precipitation treatments (ambient, 150% of ambient during
growing season, and 50% of ambient year-round) and four levels of warming treatments
(unwarmed to ∼4◦C above ambient) over the course of a year. Warming, precipitation
and season had very little effect on potential enzyme activity. Most models assume
that enzyme dynamics follow microbial biomass, because enzyme production should be
directly controlled by the size and activity of microbial biomass. We observed differences
among seasons and treatments in mass-specific potential enzyme activity, suggesting
that this assumption is invalid. In June 2009, mass-specific potential enzyme activity,
using chloroform fumigation-extraction MBC, increased with temperature, peaking under
medium warming and then declining under the highest warming. This finding suggests
that either enzyme production increased with temperature or turnover rates decreased.
Increased maintenance costs associated with warming may have resulted in increased
mass-specific enzyme activities due to increased nutrient demand. Our research suggests
that allocation of resources to enzyme production could be affected by climate-induced
changes in microbial efficiency and maintenance costs.
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INTRODUCTION
The rate at which soil organic matter (SOM) is decomposed is
strongly affected by temperature and moisture, and thus should
be sensitive to climate change (Davidson et al., 1998; Schimel and
Gulledge, 1998). While heterotrophic respiration is widely used
as a proxy for decomposition, the relationship between abiotic
drivers and decomposition rates is driven by a series of under-
lying microbially mediated processes (Ekschmitt et al., 2005).
For example, enzymatic depolymerization of SOM controls the
rate at which assimilable dissolved organic matter (DOM) is pro-
duced (Conant et al., 2011), and has been hypothesized to be the
rate-limiting step in decomposition (Schimel and Bennett, 2004;
Bengtson and Bengtsson, 2007). Thus, it is important to examine
the response of enzyme activities to climate change in order to
improve our ability to predict carbon fluxes under future climate
regimes.

The rate of in situ enzyme activity is directly respon-
sive to temperature and moisture (Trasar-Cepeda et al., 2007;

Allison and Treseder, 2008; Wallenstein and Weintraub, 2008;
Steinweg et al., 2012) but is also controlled by enzyme pool
size. Enzyme pool size is controlled by the rate at which
enzymes are produced by microbes relative to the rate at which
they are degraded in the environment. Both enzyme produc-
tion and turnover rates may be affected by temperature and
moisture, and thus may vary seasonally and be affected by cli-
mate change.

What controls enzyme production by microbes? The produc-
tion of enzymes incurs a cost to microbes in terms of both energy
and nutrients. Thus, the production of enzymes should be gov-
erned by the economics of the amount of resources gained for
each enzyme produced (Allison et al., 2011). To maintain the sto-
ichiometry of their biomass (driven by the fixed stoichiometry
of cellular components) (Cleveland and Liptzin, 2007), microbes
produce enzymes targeting specific compounds that are rich in
either carbon (C), nitrogen (N) or phosphorus (P) (Sinsabaugh
et al., 2008, 2009). However, enzyme production declines for
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many substrates when substrate concentration is low (German
et al., 2011).

Temperature and moisture can affect both the overall rate
of enzyme production as well as the relative rate of produc-
tion of different enzymes due to effects on enzyme efficiency,
substrate availability, and microbial efficiency. Thus, changes in
the soil microclimate, whether they occur within hours, weeks,
seasonally, or over decades in response to climate change, will
affect enzyme pool sizes. In response to increased activity of the
extant enzyme pool as soil temperatures increase, given available
substrate, microbes may allocate fewer resources to enzyme pro-
duction if microbial biomass remains unchanged (Allison and
Vitousek, 2005). Several studies have found that N-degrading
enzymes have lower temperature sensitivities than C-degrading
enzymes (Wallenstein et al., 2009, 2012; Stone et al., 2012). This
could result in increasing N limitation as soils warm, spurring
microbes to increase the production of N-degrading enzymes and
decrease the production of C-degrading enzymes. Soil moisture
affects the diffusion of substrates, enzymes and the products of
enzyme activity, and thus drought conditions could impose diffu-
sion limitations on enzymes and substrates (Stark and Firestone,
1995; Allison, 2005). In oxic soils, drought could decrease enzyme
production as biomass declines, or increase production to sat-
isfy nutrient requirements of the biomass (Allison and Vitousek,
2005; Sardans and Peñuelas, 2005; Sowerby et al., 2005).

Our objective was to assess the response of hydrolytic enzyme
activities to a multi-factor climate change experiment. To separate
the influences of soil warming and moisture on enzyme activity
from seasonal effects, we measured the activity and stoichiom-
etry of six enzymes involved in C, N, and P cycling four times
over the course of a year, in soils from the Boston-Area Climate
Experiment (BACE). The BACE is a multifactorial climate change
manipulation in an old-field ecosystem, providing three levels of
precipitation and four levels of warming. Because of the multi-
factorial design, the BACE allowed us to compare twelve different
climate years simultaneously during the 1 year of soil sampling.
Potential enzyme activity is a metric for soil microbial function
response to disturbance (Henry et al., 2005) and indicates shifts in
metabolic requirements (Caldwell, 2005). We hypothesized that
climate affects enzyme activity by altering microbial biomass and
through abiotic controls on enzyme turnover and stabilization.
We predicted that: (1) drought would reduce microbial biomass,
decreasing potential enzyme activity, (2) warming in the field
would decrease potential enzyme activity measured in the labo-
ratory, because enzymes produced at higher temperatures would
have higher reaction efficiency, resulting in decreased microbial
enzyme production rates, and (3) N and P enzyme activities
would be greater in the growing season compared to the winter
due to increased C availability.

MATERIALS AND METHODS
STUDY SITE
The BACE is located in an old field in Waltham, Massachusetts
at the University of Massachusetts’ Suburban Experiment Station
(42◦ 23′ 3′′N, 71◦ 12′ 52′′ W; “old fields” are typically abandoned
agricultural fields dominated by perennial grasses and forbs; they
are kept from returning to their pre-agricultural forested state by

regular mowing or grazing). Mean annual precipitation and tem-
perature in the area are 1194 mm yr−1 and 9.5◦C (Hoeppner and
Dukes, 2012). The soil is a mesic Typic Dystrudept, and the upper
30 cm is loam (45% sand, 46% silt, and 9% clay), with an average
pH of 5.5. The site, a former apple orchard, has harbored old-
field vegetation for more than 40 years. Recent surveys identified
42 grass and forb species, most of which have been introduced
(Hoeppner and Dukes, 2012).

FIELD EXPERIMENTAL DESIGN
The BACE exposed 36 square, 4 m2 plots to three precipitation
treatments and four warming levels in a full-factorial design, with
three replicates of each treatment. The precipitation treatments
included an “ambient” control, a “wet” treatment that received a
50% increase in precipitation during the growing season only, and
a “drought” treatment in which 50% of ambient precipitation was
excluded across all seasons. These treatments were chosen such
that a year with average precipitation would result in “wet” and
“drought” treatments that fell within the extremes of a 75-year
historical record for the area. Above the drought plots, clear par-
tial roofs excluded half of incoming precipitation, and this water
was immediately diverted to wet plots from May to October. The
roofs continued to function from November to April, but dur-
ing these colder months diverted water was not added to the
wet plots. Drought treatments began in January 2007, and wet
treatments began in June 2008.

The warming treatments (unwarmed ambient, low, medium,
and high) were implemented such that warming of the canopy
in the high treatment was limited to a maximum of 4◦C. This
temperature limit was determined by logistical and financial con-
straints. Warming was achieved using ceramic infrared heaters,
which were mounted 1 m above each corner of each plot. An
unwarmed treatment had four dummy heaters (providing similar
shade as heaters, but no warming), and individual heaters above
the low, medium, and high treatments were rated at 200, 600,
and 1000 W, respectively. Warming treatments were nested within
precipitation treatments; within each area receiving a given pre-
cipitation treatment, a group of four plots was arranged linearly,
from unwarmed to high. Canopy temperature was monitored
every 10 s in the unwarmed and high plots in each group, using
infrared radiometers (IRR-PN; Apogee Instruments, Logan, UT,
USA). All heaters in each group of four plots were controlled by
the same circuit, and the system was programmed to adjust power
to the circuit to maintain a target difference of 4◦C between the
“high” and “unwarmed” plots in each group. Warming treatments
began on July 1, 2008.

Soil moisture was measured weekly during the non-freezing
months, usually beginning in April and ending in December,
using time-domain reflectometry (waveguides were installed
across 0–10 and 0–30 cm depths). Dataloggers recorded soil tem-
perature near the center of each plot every 30 min throughout
the year, as measured by linear temperature sensors positioned
at 2 and 10 cm depths. Field measurements of heterotrophic soil
respiration were taken using a LI-COR 6400-09 soil CO2 flux
chamber attached to a 6400 portable photosynthetic system. Once
a month, CO2 flux was measured within a 25 cm diameter PVC
collar installed in each plot. Collars extended to 30 cm depth, and
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had been installed in November 2007. All plants were removed
from the collar shortly after installation, and collars were subse-
quently covered with a weed-blocking cloth to prevent new plants
from colonizing the soil [for details see Suseela et al. (2012)].

SOIL SAMPLING AND PROCESSING
Soils were first collected from all plots in June 2008, 1 year after
precipitation manipulations began, but before the start of the
warming treatments. Additionally, soil samples were taken three
times (August 2008, January 2009, and June 2009) following the
initiation of the warming treatment. Three cores (5 cm diameter)
were collected from each plot at 0–5 and 5–15 cm depths. Soils
were packaged on ice and shipped to the laboratory overnight,
where the cores from each plot were sieved (2 mm), picked free of
rocks and roots, homogenized and frozen at −10◦C until analysis.

SOIL CHARACTERIZATION
Subsamples from each plot were taken for determination of per-
cent soil moisture, pH, and total C and N concentrations. Soil
moisture was determined after field-moist soils were weighed
and dried for 48 h at 60◦C and then reweighed. Soil pH was
determined using the supernatant of soil mixed with water (1:5
by volume). Soil subsamples were dried at 60◦C and ground to
measure total C and N concentrations on a LECO CHN-1000
autoanalyzer (LECO Corporation, St. Joseph, MI, USA).

MICROBIAL BIOMASS
Substrate-induced respiration (SIR) and chloroform fumigation
extraction (CFE) were used to estimate microbial biomass carbon
(MBC) (Anderson and Domsch, 1978; Vance et al., 1987). SIR-
MBC is an estimation of the active microbial biomass whereas
CFE-MBC is an estimation of the total microbial biomass.

SIR-MBC
SIR-MBC was measured using a deep-well microplate-based tech-
nique called MicroResp™ (Aberdeen, UK) (Campbell et al.,
2003). Soils from all sampling dates were removed from the
freezer and a 20 g subsample was thawed to about 20◦C within
3 h. Since soil moisture varied by date, we brought all soils to 55%
water holding capacity through wetting or drying, for optimum
microbial activity and to eliminate substrate diffusion constraints.
The August 2008 and June 2009 samples were initially below 55%
water holding capacity, so after thawing, all August and June
samples had water added. Samples were then covered for 1 h,
homogenized and added to wells in the 96-well deep-well plates.
For the January 2009 sampling, all samples were over 55% water
holding capacity. In this case, 20 g subsamples were dried to 55%
water holding capacity at 4◦C, over 6–36 h. Following drying, the
January 2009 samples were homogenized and weighed into 96-
well deep-well plates. Three wells on a plate were used per sample,
with about 0.2–0.3 g of moist soil added to each well, using the
MicroResp manufacturer’s protocol. After samples were added to
the deep-well plate, they were covered with sealing film and placed
at 4◦C for about 18 h prior to addition of glucose.

Following the 18 h incubation at 4◦C, 25 μl of 1 M glucose
solution was added (this concentration had been determined to
saturate demand in preliminary assays), and samples were then
incubated at 25◦C for 6 h. The CO2 indicator plates were read on

a Tecan Infinite M500 microplate reader at 625 nm prior to being
placed on deep-well plates. The indicator plate and deep-well
plate were attached to one another using the MicroResp appa-
ratus and allowed to incubate. Following the 6 h incubation the
indicator plates were removed from the deep-well plates and read
again on the Tecan microplate reader at 625 nm.

Indicator plates (containing cresol red, sodium bicarbonate
and potassium chloride) were made 1 week in advance of the assay
according to the manufacturer’s guidelines. Standard curves were
generated by incubating indicator plates in jars filled with known
concentrations of CO2. The amount of CO2 produced from the
water addition wells was subtracted from the respiration in the
glucose addition wells to account for stimulation of respiration
due to changes in soil water content. MBC was calculated from
respiration produced from the glucose amended wells at 25◦C and
using the following equation from Anderson and Domsch (1978):

mg MBC 100 g−1soil = 40.04y + 0.37

where y is the amount of CO2 produced under glucose
amendment.

CFE-MBC
CFE-MBC was measured using the method of Vance et al. (1987).
Briefly, 10 g of field-moist soil from each plot was thawed and
placed in a fumigation chamber and fumigated over the course
of 5 days with chloroform. Following fumigation, the soils were
shaken with 40 mL of 0.5 M K2SO4 for 2 h and then filtered
through a Whatman 1 filter. Additionally, another 10 g sample
from each plot was shaken for 2 h with 0.5 M K2SO4 and then
filtered through a Whatman 1 filter. The filtrates were stored
frozen until analysis. The organic carbon in the filtrates from
both procedures was measured on a Shimadzu TOC analyzer
(Shimadzu Scientific Instruments, Columbia, MD, USA). The
fumigated sample contained dissolved organic carbon and MBC,
the non-fumigated sample contained dissolved organic carbon.
Soils were frozen prior to DOC and MBC extraction, which may
have resulted in cell lysis for both the DOC and MBC extracts
leading to an overall reduction in estimated MBC.

ENZYME ASSAYS
Enzyme assays were performed on samples from all plots at each
collection date. Each sample was assayed for the potential activity
of six different hydrolytic enzymes involved in C, N, and P acqui-
sition (Table 1). The assay protocol was modified from (Saiya-
Cork et al., 2002) to include a standard curve for each sample
and to minimize quenching effects. The assays for 12 soil sam-
ples were incubated for 3 h at 25◦C using one deep-well 96-well
plate. Two additional plates were used to create standard curves
for each sample at 25◦C. The reference standard for the leucine
amino peptidase assay was 7-amino-4-methylcoumarin (MUC),
and for the remaining substrates it was 4-methylumbelliferone
(MUB). The standard curve plates had a column for each of the 12
samples and different concentrations of MUB or MUC standards
in each well, 0, 2.5, 5, 10, 25, 50, and 100 μM.

After soils were removed from the freezer, a 2.75 g subsam-
ple was taken and warmed to about 20◦C. The subsample was
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Table 1 | Enzymes assayed in this study, their abbreviations used in the text, nutrient cycles they are involved in, and their target substrates.

Enzyme name Abbreviation Nutrient cycle Enzyme function

β-glucosidase BG C Hydrolysis of terminal β-D-glucosyl residues

Cellobiohydrolase CB C Hydrolysis of β-D-glucosyl linkages

Xylosidase XYL C Hydrolysis of β-D-xylose residues

Acid phosphomonoesterase PHOS P Hydrolysis of phosphate monoester

N-acetyl glucosaminidase NAG N Hydrolysis of chitin N-acetyl-β-D-glucosaminide

Leucine-amino peptidase LAP N Hydrolysis of N-terminus amino acid leucine

homogenized with 91 mL of 50 mM sodium acetate (pH 5.5) for
1 min on high in a Waring blender. Each column on the deep-
well 96-well plates corresponded to one sample. After homog-
enization, 800 μl of soil slurry was aliquoted into six wells of
a column on all three plates, one assay plate and two standard
plates. Following addition of twelve samples into their respec-
tive columns the MUB substrates were added. Each substrate was
added to one well in each column, so that all twelve samples
received each of the six substrates once.

The plates were incubated for 3 h at 25◦C and then centrifuged
for 3 min at 350 × g. Afterwards, 250 μl of supernatant from
each well was placed into the corresponding well on a 96-well
black plate. Fluorescence was measured immediately following
5 μl addition of NaOH to each well to terminate the reaction.
A Tecan Infinite M500 spectrofluorometer was used to measure
fluorescence with wavelengths set at 365 nm and 450 nm for exci-
tation and emission, respectively. The plates with the standards
were used to calculate a linear standard curve and determine
potential enzyme activity for each sample as nmol g−1 dry soil
h−1 and nmol g−1 C h−1.

CALCULATIONS AND STATISTICAL ANALYSIS
Mass-specific enzyme activity was calculated by dividing the
potential enzyme activity by the MBC estimated from CFE
(Hassett and Zak, 2005). There was no calculation of mass-
specific enzyme activity for June 2008 samples because we did
not have enough soil to estimate MBC. We included June 2008
samples for all other analyses because it was our pre-warming
treatment time point. Ratios for C and N cycling enzymes were
calculated as BG:(NAG+LAP) and C:P cycling enzyme ratios as
BG:PHOS using potential activity for each sample in nmol g−1

C h−1 (Sinsabaugh et al., 2009). The ratio of potential activity
for different enzymes is a metric for understanding microbial
nutrient demand.

Potential enzyme activities were log transformed in order
to normalize the variance prior to analysis using SAS PROC
GLIMMIX with Tukey’s adjustment, α = 0.05 (SAS Institute,
Cary, NC). Block and season were selected as random effects,
depth, temperature and precipitation treatments were selected
as fixed effects and potential enzyme activities, mass-specific
enzyme activities, and enzyme stoichiometric ratios were des-
ignated as dependent variables. PROC GLIMMIX was used to
determine significant field treatment effects within each season
and to identify differences among treatments, seasons or depth.
MBC estimates were compared within each season using Tukey’s
comparisons for all treatments.

RESULTS
EXPERIMENTAL CLIMATE EFFECTS
Warming treatments increased the soil temperature on average
by 0.70, 2.05, and 2.70◦C above unwarmed soil temperatures at
2 cm below the surface in both years for the low, medium and
high treatments, respectively (Figures 1A,B). There were no soil
temperature data available for treatment plots in August 2008. In
January 2009, immediately preceding sampling, soil temperatures
were 0.37, 1.02, and 1.25◦C greater in low, medium, and high
temperature plots, respectively, compared to unwarmed plots.
However, following the January 2009 sampling, the medium and
high temperature treatments soils were cooler than unwarmed
soils for the remainder of the month. This counterintuitive pat-
tern resulted in decreased snowpack; by clearing the snow, the
warming treatments exposed the soils to freezing air tempera-
ture and cooled the soils compared to the unwarmed treatment.
Preceding sampling in June 2009, soil temperature increased
by 0.43, 2.2, and 2.9◦C in low, medium, and high tempera-
ture treatments, respectively, compared to the unwarmed treat-
ment. Warming increased the soil temperature in drought and
ambient precipitation plots, with the largest soil warming occur-
ring in the drought + high temperature treatment, where soils
were 4.0 and 3.5◦C warmer than the “unwarmed, ambient”
treatment soils during the growing season in 2008 and 2009,
respectively.

Precipitation treatments altered soil moisture substantially and
soil moisture varied by month at 0–10 cm. Drought treatments
resulted in the largest drop in soil moisture during the grow-
ing season (Figure 1C). Immediately preceding sampling the soil
moisture in drought plots was 20 and 45% lower than ambient
soil moisture on the August 2008 and June 2009 sampling dates,
respectively. There was no difference in soil moisture among
precipitation treatments immediately prior to the January 2009
sampling date. The additional water treatment had no effect
on the soil moisture of wet plots in these shallow soil layers,
which were already at field capacity in this freely draining, well-
structured soil. Soil moisture was further reduced by warming in
the drought and ambient precipitation plots in 2008 and 2009.

There was no measurable change in total soil C, N, or C:N
ratio due to treatment or seasonal effects. The average total soil
C and N values were 57 ± 2.03 and 4.7 ± 0.14 mg g−1 dry soil,
respectively, for 0–5 cm, and 42 ± 0.67 and 3.6 ± 0.09 mg g dry
soil−1 for 5–15 cm below the soil surface. Dissolved organic car-
bon (DOC) was greater in the drought treatments (365.8 ± 25.5)
compared to ambient or wet precipitation treatments (217 ±
7.8 and 247 ± 18.11, respectively) at 0–5 cm in June 2009, there
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FIGURE 1 | Soil temperature in the ambient precipitation, unwarmed

treatment in 2008 and 2009 (A), the temperature differential between

warmed and unwarmed soils (B) and % volumetric soil moisture in

2008 and 2009 (C) by precipitation treatment. The displayed soil
temperature values are from 2 cm below the surface and the moisture
panel depicts moisture in the top 10 cm of soil.

was no difference in DOC between treatments on other sampling
dates.

POTENTIAL ENZYME ACTIVITIES
In all treatments, PHOS and BG had the highest potential activi-
ties, and the remaining enzymes exhibited similar activities, usu-
ally under 200 nmol activity g−1 dry soil h−1 (Table 2). At 0–5 cm,
warming manipulations individually did not affect potential

enzyme activity when calculated per g dry soil. Precipitation treat-
ments also had little overall effect on enzyme activities, but there
was a trend toward increased potential activity in drought only
plots in June 2009, which was significant for PHOS at 0–5 cm
(P < 0.05). There was a significant interaction of precipitation ×
warming treatments on LAP in January 2009 and CB in June 2009
(P < 0.05), which always resulted in decreased activity in drought
and warmed plots relative to ambient, unwarmed plots.

In deeper soils (5–15 cm), warming alone tended to decrease
potential activity for all enzymes in the medium-warmed plots
(data not shown; P = 0.2) compared to the “unwarmed, ambi-
ent” plots, and this effect was significant for XYL and LAP
(P < 0.01). Potential enzyme activities were significantly lower in
January 2009 at 5–15 cm below the surface for NAG, XYL, and
LAP compared to August 2008 (data not shown; P < 0.05).

MICROBIAL BIOMASS
In August 2008, warming alone resulted in slightly higher SIR-
MBC estimates compared to the “unwarmed ambient” plots in
August 2008, but in the drought and wet treatments warming had
no effect on SIR-MBC (Figure 2A). In January 2009 there was
no consistent effect of individual or combined field treatments
on SIR-MBC (Figure 2B). CFE-MBC was affected by precipita-
tion in August 2008 and January 2009, but there was no effect
of either climate manipulation in June 2009 (Figures 2D–F).
Although SIR-MBC and CFE-MBC were similar in August 2008
and June 2009, SIR was lower than CFE in January 2009 (Figure 2;
P < 0.005).

MASS SPECIFIC ENZYME ACTIVITY
The climate manipulations did not affect mass-specific enzyme
activity in August 2008 or January 2009 (nmol activity h−1μ g−1

MBC; calculated using CFE-MBC estimates; data not shown).
In June 2009, the mass specific enzyme activity for all enzymes
was affected by warming alone, with mass-specific enzyme
activity increasing under low- and medium-warmed treatments
(Figure 3; P < 0.01). Additionally, in June 2009 precipitation had
a significant effect on PHOS and CB, with drought only plots hav-
ing higher mass specific enzyme activity than wet and ambient
precipitation plots (Figures 3B,D; P < 0.05).

ENZYME STOICHIOMETRY
Season affected the ratio of the potential activities of C- to
N-acquiring enzymes at 5–15 cm below the surface, with a signifi-
cant increase in the ratio in winter 2009 compared to the two June
samples (P < 0.01, Figure 4A). The C:N enzyme activity ratio
increased from June 2008 to January 2009 and then declined in
June 2009, whereas C- to P-acquiring enzyme ratios showed no
seasonality (Figure 4B). There was also a significant depth effect
in the C:N enzyme activity ratio for June 2008 and January 2009,
with soils from the 5–15 cm depth having a higher ratio than those
from 0 to 5 cm (P < 0.05).

DISCUSSION
PRECIPITATION AND WARMING EFFECTS
Previous studies of climate change effects on enzyme activi-
ties, decomposition, and heterotrophic respiration have focused
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Table 2 | Potential enzyme activity in 0–5 cm soils, mean ± SE.

Date Treatment β-glucosidase Cellobiohydrolase Xylosidase Phosphatase N-acetyl Leucine-amino

glucoaminidase peptidase

Jun-08 A + U 320 ± 82 121 ± 27 73 ± 19 65 ± 132 145 ± 43 196 ± 28

D + U 323 ± 45 120 ± 17 99 ± 18 740 ± 86 350 ± 79 173 ± 18

W + U 347 ± 90 138 ± 52 79 ± 12 667 ± 102 236 ± 55 169 ± 26

A + L 309 ± 92 119 ± 31 61 ± 10 617 ± 128 101 ± 26 174 ± 33

A + M 410 ± 138 171 ± 57 89 ± 27 715 ± 184 204 ± 63 184 ± 45

A + H 244 ± 45 101 ± 19 44 ± 15 474 ± 92 111 ± 29 164 ± 27

D + L 219 ± 21 88 ± 12 61 ± 8 497 ± 49 172 ± 5 153 ± 26

D + M 283 ± 91 110 ± 30 80 ± 28 572 ± 145 189 ± 58 157 ± 13

D + H 286 ± 72 108 ± 21 69 ± 13 626 ± 150 182 ± 60 162 ± 48

W + L 281 ± 30 106 ± 9 75 ± 8 652 ± 56 180 ± 25 162 ± 13

W + M 345 ± 103 137 ± 44 81 ± 18 746 ± 120 229 ± 45 163 ± 4

W + H 269 ± 35 110 ± 12 65 ± 7 623 ± 74 146 ± 20 172 ± 9

Aug-08 A + U 176 ± 75 96 ± 11 158 ± 109 277 ± 125 118 ± 1 34 ± 19

D + U 400 ± 176 174 ± 84 152 ± 58 578 ± 384 301 ± 119 70 ± 14

W + U 235 ± 60 158 ± 53 75 ± 2 479 ± 68 187 ± 33 74 ± 18

A + L 250 ± 34 96 ± 9 56 ± 3 416 ± 71 101 ± 17 55 ± 24

A + M 188 ± 91 426 ± 362 235 ± 174 298 ± 148 262 ± 167 41 ± 9

A + H 339 ± 133 178 ± 65 170 ± 106 1159 ± 748 686 ± 567 57 ± 17

D + L 122 ± 60 88 ± ∗ 151 ± 59 226 ± 129 181 ± ∗ 48 ± 16

D + M 250 ± 108 112 ± 72 124 ± 79 430 ± 172 158 ± 65 49 ± 9

D + H 1031 ± 933 57 ± 30 68 ± 36 178 ± 51 66 ± 19 37 ± 12

W + L 278 ± 23 252 ± 73 147 ± 46 506 ± 56 335 ± 103 51 ± 12

W + M 169 ± 76 173 ± 41 123 ± 41 273 ± 130 248 ± 100 84 ± 9

W + H 198 ± 54 66 ± 44 70 ± 33 303 ± 120 77 ± 38 56 ± 14

Jan-09 A + U 820 ± 221 265 ± 88 144 ± 50 1588 ± 542 386 ± 100 120 ± 38

D + U 275 ± 62 144 ± 18 134 ± 26 1083 ± 158 240 ± 25 134 ± 38

W + U 1067 ± 302 410 ± 124 263 ± 83 2352 ± 566 521 ± 152 140 ± 41

A + L 501 ± 143 178 ± 47 84 ± 18 973 ± 181 219 ± 60 53 ± 7

A + M 800 ± 204 308 ± 84 164 ± 38 1537 ± 511 301 ± 57 93 ± 16

A + H 687 ± 315 264 ± 125 114 ± 45 1234 ± 443 249 ± 125 93 ± 52

D + L 365 ± 35 137 ± 3 88 ± 16 799 ± 124 156 ± 29 92 ± 29

D + M 549 ± 254 210 ± 104 114 ± 20 998 ± 344 244 ± 76 85 ± 21

D + H 273 ± 13 98 ± 2 56 ± 6 543 ± 36 119 ± 11 42 ± 9

W + L 506 ± 54 200 ± 31 133 ± 37 1227 ± 176 212 ± 32 72 ± 10

W + M 549 ± 109 228 ± 59 182 ± 54 1736 ± 612 391 ± 133 106 ± 40

W + H 699 ± 372 276 ± 168 165 ± 99 1673 ± 851 310 ± 171 60 ± 44

Jun-09 A + U 226 ± 27 82 ± 19 58 ± 9 416 ± 63 117 ± 22 96 ± 54

D + U 341 ± 44 150 ± 39 130 ± 58 647 ± 701 264 ± 78 154 ± 63

W + U 264 ± 17 101 ± 10 77 ± 13 474 ± 46 118 ± 18 74 ± 31

A + L 174 ± 31 66 ± 13 38 ± 6 262 ± 71 68 ± 18 95 ± 56

A + M 223 ± 29 99 ± 11 66 ± 12 411 ± 30 87 ± 10 76 ± 21

A + H 234 ± 32 95 ± 13 45 ± 9 371 ± 48 106 ± 35 69 ± 28

D + L 291 ± 48 125 ± 32 86 ± 25 496 ± 99 180 ± 51 168 ± 52

D + M 232 ± 51 78 ± 16 46 ± 7 307 ± 28 111 ± 19 121 ± 47

D + H 261 ± 59 95 ± 26 74 ± 24 368 ± 83 155 ± 24 130 ± 54

W + L 526 ± 252 104 ± 16 51 ± 25 410 ± 108 93 ± 48 79 ± 24

W + M 217 ± 40 88 ± 20 58 ± 14 400 ± 32 100 ± 20 111 ± 47

W + H 364 ± 102 166 ± 44 122 ± 36 639 ± 140 203 ± 73 166 ± 37

Treatment abbreviations are noted by precipitation and temperature manipulations, A, ambient precipitation; D, drought; W, 150% ambient precipitation; U,

unwarmed; L, low warming; M, medium warming; H, high warming. *n = 1.
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FIGURE 2 | Microbial biomass carbon (MBC) calculated using

substrate-induced respiration (SIR) in (A) August 2008, (B) January

2009, and (C) June 2009 and using chloroform fumigation

extraction (CFE) in (D) August 2008, (E) January 2009, and (F)

June 2009. Symbols show averages with standard error bars, n = 3.

Crosses indicate significant differences in MBC between temperature
treatments under ambient precipitation and asterisks indicate a
significant difference in MBC between precipitation treatments without
warming (P < 0.05). Note different y-axes in January 2009 for SIR and
CFE estimated MBC.

primarily on warming effects. Climate effects on soil enzyme
activities involve not only short-term changes in activity
driven by thermodynamics (Trasar-Cepeda et al., 2007) but
also long-term changes in enzyme pools due to direct and
indirect effects on microbial production of enzymes and on
turnover rates (Sowerby et al., 2005; Schimel et al., 2007).

A recent study pointed out that there is an even greater
uncertainty associated with the effects of altered soil mois-
ture [through both warming and altered precipitation patterns
(Falloon and Betts, 2010)]. Here, we assessed the interactive
effects of warming and precipitation on soil enzymes relative
to MBC.

www.frontiersin.org June 2013 | Volume 4 | Article 146 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Steinweg et al. Climate controls on enzyme activity

FIGURE 3 | Mass-specific potential enzyme activity in June 2009

calculated using CFE estimated biomass. CFE estimated mass
specific enzyme activity for (A) BG, (B) CB, (C) XYL, (D) PHOS, (E)

NAG, and (F) LAP. For each substrate, asterisks indicate significant
differences in mass-specific enzyme activity (P < 0.05) between the

precipitation treatments without warming. Crosses indicate significant
differences in mass-specific enzyme activity (P < 0.01) between
temperature treatments under ambient precipitation. Substrate
abbreviations are noted in Table 1. Averages and standard errors,
n = 3. Note different y-axis scales in panels.

We predicted that potential enzyme activities would decrease
in response to drought due to decreased microbial biomass and
enzyme production. However, we observed no change in the
potential activities of any of the enzymes involved in C and
N cycling in any precipitation treatment, and a small increase
in phosphatase under drought, whereas both total microbial
biomass and field respiration declined under drought (Suseela
et al., 2012). Several other studies in oxic soils have detected
declines in hydrolytic and oxidative potential enzyme activi-
ties under drought conditions (Sardans et al., 2008; Toberman

et al., 2008; Sardans and Penuelas, 2010). Most of these studies
have been in Mediterranean systems, which are drought-prone,
whereas drought is a less frequent condition at the BACE location.
The stable enzyme pool under drought could indicate that either
mass-specific enzyme production was higher under drought, or
more likely that enzyme turnover decreased in dry soils.

Although we measured stable potential enzyme activities
under drought, this assay does not necessarily indicate that
these enzymes were active in situ in dry soils. Suseela et al.
(2012) measured a 21% reduction in heterotrophic respiration
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FIGURE 4 | Stoichiometric ratios of potential enzyme activity at

different sampling dates for both depths, (A) BG: (NAG + LAP) at 0–5

and 5–15 cm depths and (B) BG: PHOS at 0–5 and 5–15 cm depths

below the soil surface. Different capital letters and lower case letters, for
0–5 cm and 5–15 cm depths respectively, indicate significant differences
between sampling dates, and an asterisk indicates a significant difference
by depth (P < 0.05). Averages and standard errors were calculated using all
the plots for each date due to the lack of treatment effect on enzyme
stoichiometry; n = 36.

under drought at BACE, suggesting that decomposition rates are
lower in drought plots despite potential enzyme activities sim-
ilar to ambient conditions. This may be due either to reduced
enzyme activities in dry soils or because of reduced microbial
uptake of assimilable DOM. Potential enzyme activity as mea-
sured in laboratory assays does not necessarily directly correlate
with in situ activity under field conditions (Wallenstein and
Weintraub, 2008). Using a combination of empirical data and
modeling, we previously determined that in situ enzyme activ-
ity at the BACE is significantly reduced by drought, such that
despite a stable pool of enzymes, the actual activity is constrained
by a lack of moisture and diffusion (Steinweg et al., 2012). Under
low soil moisture conditions, the diffusion of enzymes and sub-
strates is limited to thin water films and pockets of moisture with
low connectivity (Stark and Firestone, 1995). As substrates are
concentrated in these hotspots, enzyme activities could continue

even in relatively dry soils, resulting in the production of assim-
ilable DOM. The accumulation of DOM under drought would
indicate that microbial uptake is more sensitive to soil mois-
ture than enzyme activity. Consistent with this mechanism, we
observed higher concentrations of DOC in drought plots com-
pared to ambient or wet plots in June 2009, when drought treat-
ment soils were 50% drier than ambient and wet soils. If enzyme
activities persist in dry soils but microbial uptake is suppressed,
declines in microbial respiration would mask the continuation of
decomposition in dry soils. This mechanism could also explain
the pulse of respiration that often accompanies rewetting in lab-
oratory incubations and field studies (Fierer and Schimel, 2003;
Schimel et al., 2007), as accumulated DOM is rapidly metabolized
by microbes upon rewetting.

Warming increased mass-specific potential enzyme activity
under low- and medium-warmed treatments, such that more
enzymes were present per unit of MBC in June 2009. Enzyme
reactions are temperature-sensitive, and we had expected that
in situ enzymatic reaction rates would increase with field warm-
ing, reducing the number of enzymes needed to perform the
same number of reactions. However, warming not only affects
extracellular enzyme reaction rates, but also affects the reac-
tions occurring within the microbial cell. Maintenance costs also
increase with temperature (Joergensen et al., 1990; Alvarez et al.,
1995), causing an increased nutrient demand to maintain cellu-
lar function. Several models suggest that microorganisms increase
allocation of nutrients to enzyme production in order to acquire
the nutrients needed to sustain increased maintenance costs with
warming (Schimel and Weintraub, 2003; Wang and Post, 2012;
Wang et al., 2013).

SEASONAL TRENDS
SIR-MBC and CFE-MBC were similar during the growing season.
However, in winter SIR was lower than CFE. SIR-MBC is often
interpreted to indicate the size of the active microbial biomass
pool whereas CFE-MBC indicates the total microbial biomass
pool (Wardle and Parkinson, 1991; Lipson et al., 1999). During
the growing season it appears that the total microbial commu-
nity was active, whereas in winter a very small subset was active at
the BACE site. The increase in CFE-MBC during winter is similar
to the results from Lipson et al. (1999), however, they measured
similar increases during winter in their SIR-MBC estimates as
well. Our use of a consistent incubation temperature, 25◦C, for
SIR-MBC may have underestimated MBC during the winter if
the community was better adapted to colder temperatures at that
time, however, other work indicates that bacterial growth rate in
temperate regions are higher than 25◦C (Rousk et al., 2012).

The most striking response of enzymes to season was a change
in the stoichiometry of potential enzyme acquisition activi-
ties. Sinsabaugh et al. (2009) reported an average enzyme C:N
acquisition ratio (BG activity: NAG + LAP activities) close to
1.41 for soils from 40 ecosystems. The average enzyme C:N
acquisition activity ratio in BACE soils was 1.74, driven pri-
marily by the high stoichiometric ratio at 5–15 cm depth. The
increase in enzyme C:N acquisition activity from June 2008 to
January 2009 was driven by both an increase in C-acquiring
enzymes and a decrease in the potential activity of N-acquiring
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enzymes in the winter. Maintenance costs continue and may
increase with freezing events (Methe et al., 2005), resulting in a
continual need for C substrates, without a corresponding increase
in N demand. In addition, increased C mineralization:N mineral-
ization was measured during winter at the BACE site (Auyeung
et al., 2012), indicating increased microbial C utilization rela-
tive to N transformation. The decline in potential activity of
N-acquiring enzymes in winter relative to C-acquiring enzymes
indicated a reduction in organic N degradation in the winter
compared to the growing season. The reduction in organic N
acquiring enzymes could possibly be due to increased dissolved
N (Chróst, 1991), which was measured in the winter at the BACE
(data not shown). The average BG:PHOS ratios at the BACE, 0.73,
were similar to the reported average of 0.62 for soils (Sinsabaugh
et al., 2009). The stability of enzymatic C:P activity ratios through
time suggests a consistent P requirement over the year. Even
though there may be consistent potential enzyme activities in the
winter and summer for some enzymes, it is unlikely that in situ
activity is the same (Bell et al., 2010). Low soil temperatures
would result in slower reaction rates and frozen soils would limit
diffusion of substrates resulting in reduced in situ activities.

CONCLUSION
Our findings from 1 year of climate manipulations suggest that
neither experimental warming nor moisture manipulation con-
sistently affected potential enzyme activities. The stable enzyme
pool under drought could indicate that either mass-specific
enzyme production was higher under drought, or more likely
that enzyme turnover decreased in dry soils. Experimental warm-
ing did impact mass-specific enzyme activities through small

decreases in MBC and small increases in potential enzyme
activity, indicating increased allocation to enzyme production.
Seasonal shifts in C:N acquisition enzyme activity ratios, result-
ing in increased potential for acquisition for processing C during
the winter, could be due to increased maintenance costs asso-
ciated with freezing events. The shifts in mass-specific enzyme
activity and enzyme stoichiometry indicate increased microbial
allocation to enzymes during periods when maintenance costs
were likely to be high due to high temperatures, similar to results
predicted in microbial enzyme-mediated models (Schimel and
Weintraub, 2003; Wang et al., 2013). Our results highlight the
need to elucidate how abiotic and biotic factors affect the relation-
ship between maintenance costs and enzyme activities to better
predict microbial responses to future climate regimes.
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