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This study addresses a major issue in microbial food safety, the elucidation of correlations
between acid stress and changes in membrane fluidity of the pathogen Listeria
monocytogenes. In order to assess the possible role that membrane fluidity changes play
in L. monocytogenes tolerance to antimicrobial acids (acetic, lactic, hydrochloric acid at
low pH or benzoic acid at neutral pH), the growth of the bacterium and the gel-to-liquid
crystalline transition temperature point (T m) of cellular lipids of each adapted culture was
measured and compared with unexposed cells. The T m of extracted lipids was measured
by differential scanning calorimetry. A trend of increasing T m values but not of equal
extent was observed upon acid tolerance for all samples and this increase is not directly
proportional to each acid antibacterial action. The smallest increase in T m value was
observed in the presence of lactic acid, which presented the highest antibacterial action.
In the presence of acids with high antibacterial action such as acetic, hydrochloric acid
or low antibacterial action such as benzoic acid, increased T m values were measured.
The T m changes of lipids were also correlated with our previous data about fatty acid
changes to acid adaptation. The results imply that the fatty acid changes are not the sole
adaptation mechanism for decreased membrane fluidity (increased T m). Therefore, this
study indicates the importance of conducting an in-depth structural study on how acids
commonly used in food systems affect the composition of individual cellular membrane
lipid molecules.
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INTRODUCTION
Listeria monocytogenes has been associated with a variety of food
products, including dairy foods, meat, poultry, and seafood as well
as fruits and vegetables (Farber and Peterkin, 2000; Mastronicolis
et al., 2011). In 2008, 1,381 confirmed human cases of listeriosis
were reported in the European Union and the reported case-
fatality rate was 20.5% [European Food Safety Authority (EFSA),
2010].

Modification of membrane lipid composition is clearly an
important adaptation mechanism in L. monocytogenes, which
allows it to grow in a stressful environment such as low tem-
perature (Annous et al., 1997; Mastronicolis et al., 2005); low pH
(Giotis et al., 2007; Mastronicolis et al., 2010); presence of disin-
fectants (Bisbiroulas et al., 2011); pressure; ion concentrations etc.
(Beales, 2004). Changes in lipid composition can lead to changes
in cytoplasmic membrane fluidity (Mykytczuk et al., 2007).

The term “membrane fluidity” is a convenient one to sum-
marize a multifaceted phenomenon that has contributions from
molecular packing (order) and molecular motions (viscosity; Rus-
sell, 2002). Membranes can exist in different phases and the
most consistent phase transition is the one occurring when the
membrane passes from a tightly ordered “gel” or “solid” phase

to a liquid-crystal phase which is the active state of the mem-
brane. A widely used method for determining the phase transition
temperature (Tm) is calorimetry. The influence of hydrocarbon
chain length, branching and unsaturation, as well as the head
group of the membrane lipids on the value of Tm, is considerable.
In general, increasing the chain length, decreasing the branch-
ing or increasing the saturation of the chains increases the phase
transition temperature (New, 1994; Mykytczuk et al., 2007).

Weak lipophilic acids can occur naturally in many fruits and
vegetables and have been widely used to maintain microbial sta-
bility in low pH foods. Weak acid preservatives affect the cells’
ability to maintain pH homeostasis, disrupting substrate trans-
port and inhibiting metabolic pathways (Beales, 2004). The effect
of many weak acid preservatives is dependent on the fluidity and
permeability of the cytoplasmic membrane, since it is the first bar-
rier to encounter the stress and any sensing mechanism would be
located within it (Beales, 2004; López et al., 2006). Changes in the
lipid profile of the plasma membrane may alter membrane per-
meability and fluidity, which may in turn contribute to tolerance
(Beales, 2004).

In our previous report on the effects of different acidic stresses
such as hydrochloric, acetic, and lactic acid (pH 5.5) or benzoic
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acid (pH 7.3) on L. monocytogenes total, polar and neutral lipid
compositional changes, our results suggest that only low pH value
enhances the antimicrobial activity of an acid, though irrespective
of pH, the acid adaptation response leads to a similar alteration
in fatty acid composition, mainly originating from the neutral
lipid class of adapted cultures (Mastronicolis et al., 2010). How-
ever, the effects of the aforementioned acidic antimicrobials on
membrane fluidity in L. monocytogenes have not been determined
and compared to date. The present work was intended to provide
new data by determining and comparing modifications in Tm of
L. monocytogenes membrane lipids (and thus alterations in mem-
brane fluidity) in response to acid stress induced by acids such as
hydrochloric, acetic, lactic, or benzoic acids and also to correlate
the fatty acid compositional changes of each acid-adapted culture
(from our previous data) with the lipid thermodynamic behav-
ior in order to clarify if modifications in the membrane physical
state of adapted cells act as a defense mechanism against acid
stress.

MATERIALS AND METHODS
CULTURE OF THE ORGANISM
An avirulent strain L. monocytogenes, DP-L1044 (D. Portnoy,
University of Pennsylvania) prepared by a transposon insertion
(Camilli et al., 1991) in the parent strain (Lm10403S), was grown
in brain heart infusion broth (BHI, Difco Laboratories) at 30◦C
(24 h). A 10 mL aliquot of this was then inoculated into 1 L of
BHI broth, which was then incubated at 30◦C (Lmcontrol) until
early stationary phase. Four aliquots (10 mL) of the same stock
were then inoculated, respectively, into 1 L BHI that were adjusted
to pHinitial 5.5 with (i) HCl (LmHCl); (ii) L-lactic acid (Fluka,
PA, USA; LmLA); and (iii) acetic acid (Merck, PA, USA; LmAA).
Another 10 mL aliquot was used to inoculate 1 L BHI with the addi-
tion of 1.00 g benzoic acid (Merck, PA, USA; LmBA) pHinitial 7.3.
All the above cultures were incubated at 30◦C until early station-
ary phase. The growth of L. monocytogenes for each treatment over
time was determined by measuring absorbance (OD) at 600 nm.

EXTRACTION OF TOTAL LIPIDS
From each culture, cells pelleted by centrifugation (4◦C, 5877 × g)
were washed twice in phosphate buffer (pH 7.0). Extraction
of total lipids performed essentially by extraction with chloro-
form/methanol (2/1 v/v) and washing the extract with 0.2 volumes
of water (Folch et al., 1957). After phase equilibration, the lower
chloroform layer (total lipids) was dried under nitrogen.

DIFFERENTIAL SCANNING CALORIMETRY ANALYSIS
Two sets of extracted total lipids from each acid-adapted or non-
adapted culture were utilized for differential scanning calorimetry
(DSC) analysis. Each set of extracted total lipids was collected from
one culture, in the case of Lmcontrol and of LmBA, or by harvesting
two cultures in the case of LmAA and LmHCl, in order to obtain the
appropriate weight of lipids for DSC analysis (4–5 mg). Notably, in
the case of LmLA, one set of extracted total lipids was used because
the appropriate weight of lipids for DSC analysis was collected by
harvesting five cultures.

Portions of the samples (approximately 4 mg) were weighed
in stainless-steel capsules obtained from PerkinElmer (Norwalk,

CT, USA) and sealed. Thermal scans were obtained using a
PerkinElmer DSC-7 calorimeter and Pyris software for Windows.
All samples were scanned from −25 to 80◦C until identical ther-
mograms were obtained, using a scanning rate of 10◦C min−1. The
temperature scale of the calorimeter was calibrated using indium
(Tm = 156.6◦C) and dipalmitoylphosphatidylcholine from Avanti
Polar Lipids Inc. (Alabaster, AL, USA) bilayers (Tm = 41.2◦C).
The following diagnostic parameters in the observed endother-
mic events were recorded during the phase transition and are used
for the study of lipids: Tm (maximum of the temperature peak),
and �H (the area under the peak represents the enthalpy change
during the transition).

The repeatability of the thermograms and reversibility of the
transitions were checked after each run by re-heating the sample
after cooling. All samples were scanned a minimum of three times.

STATISTICAL ANALYSIS
The results were evaluated by analysis of variance (ANOVA). T-test
for unpaired observations was tested at a confidence level of 95%.

RESULTS
Growth of L. monocytogenes in BHI medium with time was deter-
mined for each treatment by measuring absorbance (OD) at
600 nm and shown in Figure 1. The presence of lactic, acetic,
or hydrochloric acid at pH 5.5 was accompanied by low survival
(P < 0.01), while cells grown at neutral pH in the presence of
benzoic acid displayed little antilisterial activity (P < 0.05). The
obtained OD600 values were at early stationary phase: Lmcontrol

0.811 ± 0.010, 10 h; LmLA 0.096 ± 0.018, 168 h; LmAA

0.217 ± 0.019, 72 h; LmHCl 0.320 ± 0.014, 24 h; and LmBA

0.694 ± 0.019, 10 h.

Lmcontrol CELLS
The DSC analysis revealed Tm value 25.78 ± 1.06◦C as well
as enthalpy difference (�H) 8.99 ± 0.557 J g−1 (Table 1 and
Figure 2).

FIGURE 1 | Growth of L. monocytogenes before (•, Lmcontrol) and after

acid stress exposure by lactic (♦, LmLA), acetic (�, LmAA),

hydrochloric (×, LmHCl), or benzoic (�, LmBA) acid.
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Table 1 | Data from differential scanning calorimetry analysis of L. monocytogenes total lipids before (Lmcontrol) and after acid stress exposure

by lactic (LmLA)d, acetic (LmAA), hydrochloric (LmHCl), or benzoic (LmBA) acid.

Lmcontrol LmAA LmHCl LmBA

T m (◦C) 25.78 ± 1.06 29.35 ± 0.23a (T m1)

34.72 ± 2.28a (T m2)

29.23 ± 0.21a (T m1)

32.28 ± 0.56a (T m2)

30.25 ± 2.01a

�H (J g−1) 8.990 ± 0.557 14.921 ± 0.168b 8.246 ± 0.178 11.618 ± 0.401a

�BCFA/�SSCFAc 8.3 1.6 2.1 2.6

Tm, phase transition temperature; �H, enthalpy difference.
aValues statistically increased compared to Lmcontrol, P < 0.05.
bValues statistically increased compared to Lmcontrol, P < 0.01.
cRatio of total branched-chain fatty acids, BCFA, to total saturated straight chain fatty acids, SSCFA, of total lipid fatty acid profiles of cells. These data were derived
from our previous study (Mastronicolis et al., 2010).
dThe data for LmLA were: 27.83◦C for Tm, 7.984 J g−1 for �H, and 1.4 for �BCFA/�SSCFA. One set of extracted lipids was utilized because the appropriate weight
of lipids for DSC analysis was collected by harvesting five cultures.

FIGURE 2 | Differential scanning calorimetry curves of

L. monocytogenes total lipids, before (Lmcontrol) and after acid

stress exposure by lactic (LmLA), acetic (LmAA), hydrochloric

(LmHCl), or benzoic (LmBA) acid.

LmAA AND LmHCl CELLS
The DSC analysis of each sample revealed two distinct peaks of
increased Tm values (Tm1 andTm2) compared to Lmcontrol. The
LmAA sample showed differences of +3.57 and +8.94◦C for Tm1

and Tm2, respectively (P < 0.05), also LmHCl sample showed
differences of +3.45 and +6.50◦C, respectively (P < 0.05).

LmLACELLS
In the DSC analysis an increased Tm value was measured, in which
the difference was +2.05◦C higher than Lmcontrol.

LmBA CELLS
In the DSC analysis an increased Tm value was measured, in which
the difference was +4.47◦C higher than Lmcontrol (P < 0.05).

As concerns the �H values for each instance of acid-adapted
cells, the observed changes were as follows: LmAA: 66% (P < 0.01),
LmBA: 29.2% (P < 0.05), increase compared to Lmcontrol.
For the rest samples the �H values were similar to Lmcontrol

(Table 1).

DISCUSSION
Other authors examined the antilisterial effects of these acids.
Ravichandran et al. (2011) observed that benzoic acid (5 g/L)
demonstrated antimicrobial activity against L. monocytogenes after
72 h incubation at 37◦C. Heavin et al. (2009) observed that benzoic
acid was more effective at inhibiting growth of L. monocytogenes
than acetic acid, in a medium with a pH of 6.4 (acidified with HCl).
Hydrochloric, lactic, and acetic acids at pH 3.5 gave similar kill
curves (O’Driscoll et al., 1996). Hydrochloric acid caused low sur-
vival of L. monocytogenes at pH 5 (Karatzas et al., 2010) and slight
antibacterial action against L. monocytogenes was observed with
acetic acid at pH 5 (Chavant et al., 2004). In contrast, Vasseur et al.
(1999) observed that the antilisterial effect was: acetic acid > lactic
acid > hydrochloric acid. Similar results were observed by Bon-
net and Montville (2005) in L. monocytogenes growing at pH 3.5.
Phan-Thanh et al. (2000) also found that acetic acid had a more
deleterious effect on L. monocytogenes than hydrochloric acid did.
Exposure to lactic acid at pH 4.0 totally inactivated L. monocyto-
genes, whereas exposure at pH 4.5 had inhibitory effect (at 5 or
10◦C), therefore, even small differences in pH, such as 0.5 units,
may have a major impact on the survival of pathogens and hence,
on food safety (Tiganitas et al., 2009). The comparative study of
acid habituation of L. monocytogenes, under the same experimen-
tal conditions is important for the identification of differences
between the survival of the pathogen, as comparison between labo-
ratories is difficult because of variation in the assay conditions used
(exact pH value, bacterial strains, incubation temperatures, etc.).

This study provides a first approach to observing the role of
phase transitions of membrane lipids (membrane fluidity) in the
acid adaptation response of L. monocytogenes. We have previously
studied the lipid composition of L. monocytogenes cells grown in
the presence of various acids (hydrochloric, acetic, lactic, and ben-
zoic acid) and the analysis of membrane lipids revealed that L.
monocytogenes similarly altered its fatty acid composition by incor-
poration more straight (mostly C16:0, C18:0,and C14:0) and fewer
branched-chain fatty acids into its membrane independently of
the acid utilized (Table 1; Mastronicolis et al., 2010). It is expected
that these fatty acids changes lead to membranes with decreased
fluidity and low permeability properties (Kaneda, 1991; Zhang and
Rock, 2008). In the current study, the measured lipid Tm value of
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each set of adapted cells was increased compared to Lmcontrol and
this observation is interpreted by the above fatty acid composi-
tional changes. However, the increases in Tm values are not of
equal extent and therefore are not absolutely reflected by the acyl
chain compositional changes. This fact indicates that fatty acid
changes may be crucial but they are not the sole mechanism by
which L. monocytogenes perceives the acid stress (alters its mem-
brane lipids). Furthermore, the growth of L. monocytogenes in the
presence of hydrochloric, lactic, and acetic acid at pH 5.5 caused an
increase of neutral lipid percentages (Mastronicolis et al., 2010).

Hydrochloric acid will be dissociated, whereas acetic
(pKa = 4.74) and lactic acid (pKa = 3.79) will be undissociated
at pH 5.5. The latter form of both organic acids is membrane-
permeable and thus allows acetic and lactic acid to enter the
microbial cell. In this work, when the cells were grown in the
presence of acetic or hydrochloric acid, the highest Tm values and
low survival were observed (Figure 1; Table 1), suggesting that the
decrease in membrane fluidity was related to low survival. How-
ever, this tendency was reversed in the case of lactic acid, which
caused the highest antimicrobial action (Figure 1) in L. monocy-
togenes cells and these data cannot be explained by a modification
in membrane fluidity, which was minimal. This suggests that the
membrane fluidity can serve only as a preliminary tool to make
predictions concerning the viability of cells. Also, another interest-
ing point was that acetic and hydrochloric acid caused two distinct
phase transition points: lipids with different fatty acyls as well as
different head groups, whose Tm values differ greatly from each
other, undergoing phase transitions independently, and forming
membranes composed of two or more separate phases. If the fatty
acyls or the head groups have similar Tm values, a main transi-
tion intermediate in temperature between those of the individual
components will be given (New, 1994). Mykytczuk et al. (2010)
also observed decreases in membrane fluidity along with two dis-
tinct phase transition points in some strains of Acidithiobacillus
ferrooxidans in sub-optimal pH.

Benzoic acid (pKa = 4.19) at pH 7 will be in its dissociated
form (benzoic anion) and this form is less membrane-permeable
and thus does not facilitate its entrance to the microbial cell. The
used amount of benzoic acid (1 g/L culture) did not reduce the
pH of the medium. In order to reduce the pH value, even more
amount of benzoic acid might be added (that is inappropriate for
food systems) or one more acid should be added along to ben-
zoic acid (that it is out of the aim of the current work, which
was the study of each acid separately). Unlike the rest of the acids
utilized, in the presence of benzoic acid the percentage of neutral
lipid class remains constant but the decrease of negatively charged
phospholipids, such as cardiolipin or phosphatidylglycerol (Mas-
tronicolis et al., 2010), leads to a decrease in membrane fluidity,
i.e., increased Tm value (New, 1994), and the data of the present
study are consistent with this increase in Tm. Furthermore, high
Tm value and low antibacterial action (Figure 1; Table 1) was
observed, suggesting that the decrease in membrane fluidity was
related to the low antibacterial activity of benzoic acid. The low
antibacterial action of benzoic acid might be arisen from the neu-
tral pH of the medium. Relevant to our current work in the case
of benzoic acid, Alonso-Hernando et al. (2010) also observed that
decreased membrane fluidity in L. monocytogenes was correlated

to survival upon acid stress, suggesting that adaptation to acid
decontaminants is related to changes in membrane fluidity.

Listeria monocytogenes and Salmonella enterica cells exposed
to sub-inhibitory concentrations of acid decontaminants (cit-
ric acid and peroxyacids) showed decreased membrane fluidity
(Alonso-Hernando et al., 2010). In sub-optimal pH, a decrease in
membrane fluidity of A. ferrooxidans was observed and this is likely
linked to the overall increase in saturated fatty acids at the expense
of unsaturated fatty acids (Mykytczuk et al., 2010). Adaptation
to acid and starvation stress increased net cell hydrophobicity
and decreased membrane fluidity of L. innocua (Moorman et al.,
2008). ATR(+) L. monocytogenes cells [cells exposed to mild acid
(pH 5.5), which are subsequently able to resist severe acid (pH
3.5) conditions] had lower membrane rigidities than ATR(−) cells
(cells subjected at pH 3.5 directly; Najjar et al., 2009). After expo-
sure to oregano essential oil concentrations up to 0.50%, the
membrane fluidity of L. monocytogenes was decreased presum-
ably to block, or at least to reduce essential oil entrance and
partition into the membrane (Serio et al., 2010). Growth in the
presence of butyrate, leucine, valine, isovalerate, or isobutyrate
increased the calculated (theoretical estimation) transition tem-
perature of L. monocytogenes cells, because of the decrease of
branched-chain at the expense of saturated-chain fatty acids (Julo-
tok et al., 2010). Increase in phase transition temperatures was
observed with increased osmotic pressure in Saccharomyces cere-
visiae (Laroche et al., 2001). Decreased membrane fluidity was also
observed in Bacillus subtilis subjected to osmotic pressure (López
et al., 2006).

An understanding of phase transitions and fluidity of mem-
branes is important; since the phase behavior of a membrane
determines such properties as permeability, fusion, aggregation,
and protein binding, affects critical biochemical reactions, trans-
port systems, all of which can markedly affect the stability of
membranes, and their behavior in the cell (New, 1994; Yuk and
Marshall, 2006). Acid habituation of pathogens may enhance
survival in an acidic food or in the stomach and subsequently
cause infection after ingestion. The resistance or adaptation of
pathogens to such conditions affect food safety and thus is clearly
of significance to the food industry (Beales, 2004).

Although the acid adaptation response of L. monocytogenes
altered the fatty acid composition similarly, irrespective of the acid
utilized (Mastronicolis et al., 2010), in the present study observed
Tm values were increased but not equally. This suggests that the Tm

value (membrane fluidity) of lipids does not depend only on the
acyl constituent, but also on the total composition and nature of
the lipid molecular structure (e.g., phospho-, glyco-, amino-head
groups for polar lipids or the specific lipid molecule for neutral
lipids, e.g., diclycerides, esters, waxes, etc.). Thus, understand-
ing the physical chemistry of membrane lipids is important in the
sense that the characteristics of lipid species, and their heterogene-
ity, all affect biological membranes. Our current understanding of
the role of individual lipid species in a heterogeneous lipid matrix
and the specific lipid–lipid and lipid–protein interactions is still
far from comprehensive. Therefore, one conclusion of this study
would support the in-depth identification of the membrane polar
and neutral lipid molecules of L. monocytogenes cells in the pres-
ence of the acids utilized. Furthermore, in this study an avirulent
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mutant strain was used. Previous studies have revealed that this
strain has similar fatty acid composition as wild strains in opti-
mal condition of growth or in cold adaptation (Annous et al.,
1997; Mastronicolis et al., 1998, 2010; Chihib et al., 2003; Julo-
tok et al., 2010), thus we suppose that this mutation will have no
impact on the present results response to acids. However, more
studies may be required with more strains in order these results
to be confirmed because there are not sufficient studies in this
field.

In conclusion, in this study we observed that adaptive response
of L. monocytogenes to weak or strong acid food preservatives
includes an increase in the total lipid Tm (decreased membrane
fluidity), decreasing the ability of the weak acid preservatives to
pass through the membrane and to act into the microbial cell, and
thus conferring protection. Furthermore, decreased membrane
fluidity acts as strong defense mechanism in some conditions
(in the cases of hydrochloric or acetic acid) or as mild defense
mechanism (in the cases of benzoic or lactic acid).
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