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Papillomavirus is the etiological agent for warts and several squamous carcinomas. Skin
cancer induced by cottontail rabbit papillomavirus was the first animal model for virus-
induced carcinogenesis. The target organ of the virus infection is stratified epithelium and
virus replication is tightly regulated by the differentiation program of the host cell. E1ˆE4
protein is a viral gene product, and although it is considered to be involved in the control
of virus replication, little is known about the biological role. We found that HPV18 E1ˆE4
was assembled into an aggresome-like compartment and was involved in sequestration
of virus oncoproteins, which might contribute to the differentiation-dependent lifecycle of
papillomavirus.
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INTRODUCTION
Papillomavirus is a small virus containing a double-stranded cir-
cular DNA as its genome (zur Hausen, 2002). Genomic DNA of
typical papillomavirus, human papillomavirus type 16 (HPV16)
or HPV18 is ca. 8 kb long and coding six regulatory genes
(E1, E2, E4, E5, E6, E7) and two structural genes (L1, L2).
Papillomaviruses are found in almost all mammals and also in
amniotes. The virus infects to stratified epithelium organ, such as
cutaneous or mucosal membrane, and the infection causes vari-
ous types of hyperplasia. It is known that the infections of some
types of papillomaviruses occasionally induce malignant tumors.
The cancer formation by the infection of cottontail rabbit papil-
lomavirus (CRPV) was the first animal model of virus-induced
carcinogenesis (Campo, 2002).

The replication of papillomavirus is regulated by the differ-
entiation program of the host cell (Doorbar, 2005). The target
cell of the virus infection is basal cell of stratified epithelium,
in which the virus replication maintains latent status. Cell divi-
sion of the infected basal cell produces a daughter cell, and the
daughter cell is moved to the surface region of the epithelium

and proceeds to differentiate. Virus gene expression and genome
replication are enhanced in accordance with the cell differentia-
tion, and the productive replication occurs in fully differentiated
cells (Sakakibara et al., 2013). The regulatory mechanism of
the differentiation-dependent viral replication remains largely
unknown.

A variety of mRNAs are produced by alternative splicing in
HPV (Schwartz, 2013). About E4 gene, 5′ region of E1 is jointed
to E4 coding sequence by RNA splicing, then the gene product
contains five amino acid residues of E1 at the N-terminus of the
protein coded by E4 ORF, which is called “E1ˆE4”. By the analysis
of the specimens obtained from infected individuals and animals,
the expression level of E1ˆE4 appeared to be intense in differen-
tiated layers of the infected lesions (Sterling et al., 1993; Doorbar
et al., 1997), suggesting that E1ˆE4 is involved in the productive
stage of viral replication. It was reported on CRPV that the E1ˆE4
was required for the viral DNA amplification and the late pro-
tein expressions (Peh et al., 2004). E1ˆE4s of HPV16 and HPV31
were reported to be involved in viral genome amplification and
cell cycle maintenance in S-phase of differentiated cells (Nakahara
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et al., 2005; Wilson et al., 2005). HPV16 E1ˆE4 was also reported
to be required for viral genome maintenance in undifferentiated
basal cells (Nakahara et al., 2005). There was a paper describing
that HPV18 E1ˆE4 was participated in viral genome amplification
and the late gene expression in differentiated cells, although it
was not involved in the viral genome maintenance or the S-phase
maintenance of differentiated cells (Wilson et al., 2007). With these
findings, E1ˆE4 could be considered to play a role in productive
phase of virus replication.

Several biological and biochemical properties of E1ˆE4 were
reported previously. HPV16 E1ˆE4 interacts with cytokeratins
and collapses the cytokeratin networks spreading in the cyto-
plasm (Doorbar et al., 1991). Phosphorylation of HPV16 E1ˆE4 by
extracellular signal-regulated kinase (ERK) was reported to cause
conformational change of E1ˆE4 and promote the interaction with
cytokeratins (Wang et al., 2009).

The expression of E1ˆE4 of HPV16 orHPV18 induces G2/M cell
cycle arrest (Davy et al., 2002; Nakahara et al., 2002) and the inter-
action between the E1ˆE4 and Cyclin A/B has been proposed to be
involved in the cell cycle arrest (Davy et al., 2005, 2006). HPV16
E1ˆE4 was also reported to be involved in RNA processing through
its association with E4-DEAD box protein (E4-DBP), a putative
RNA helicase (Doorbar et al., 2000), in RNA metabolism (Bell
et al., 2007), and in mitochondrial function (Raj et al., 2004). There
was a report that HPV1 E4 induced the redistribution of nuclear
domain 10 (ND10) body, which is a candidate site of the HPV
genome replication (Roberts et al., 2003). These biological prop-
erties of E1ˆE4 might be involved in the HPV lifecycle, however,
their precise roles in virus replication remain to be elucidated.

There is a self-association motif in the C-terminal region of
E1ˆE4, and E1ˆE4s form aggregates in the cytoplasm through the
motifs (Bryan et al., 1998). It was reported that the aggregate had
amyloid-like structure (McIntosh et al., 2008). Several viruses were
reported to utilize cytoplasmic aggregates called as“aggresome”for
their replication (Wileman, 2007). Although the biological signif-
icance of the aggregate formed by E1ˆE4 was unknown, it might
contribute to HPV lifecycle.

“Aggresome” was originally defined as a cytoplasmic compart-
ment in which misfolded proteins are assembled (Johnston et al.,
1998). Accumulation of misfolded proteins is toxic for cell viabil-
ity as in the cases of neurological disorders including Parkinson’s,
Alzheimer’s, and Huntchington’s diseases. To counteract the tox-
icity, misfolded proteins are refolded into native structure or
eliminated by molecular chaperones or proteasomes, respectively.
However, aggregated proteins exhibit resistance to proteolysis.
The aggregates are assembled at microtubule organizing center
(MTOC) region and form “aggresome”, for which the dynein-
dependent retrograde transport along microtubules is involved.
Aggresomes contain polyubiquitinated proteins, molecular chap-
erones, and histone deacetylase 6 (HDAC6), and are wrapped in
vimentin cage. It is considered that aggresomes activate autophagy
pathway and they are processed in autophagy-dependent manner
(Kopito, 2000).

In order to investigate E1ˆE4 function, we searched for cellu-
lar factors that interact with 18E1ˆE4 protein, and vimentin was
identified as a candidate. We also found the 18E1ˆE4 aggregates
were wrapped with vimentin as “aggresomes.” In this report, we

present the structure of 18E1ˆE4 aggregate and its possible role in
HPV replication.

MATERIALS AND METHODS
CELL CULTURE, TRANSFECTION
HeLa, CV1 and 293T cells were maintained with Dulbecco’s mod-
ified minimal essential medium (DMEM) supplemented with
10% fetal bovine serum. The cells were transfected with plasmid
DNA (5 μg) and herring sperm DNA (5 μg; Roche Diagnostics,
GmbH, Mannheim, Germany) by a standard calcium phosphate
coprecipitation method.

DNA CONSTRUCTION
HPV18 and HPV11 genomic DNAs were provided by Dr. Peter
M. Howley (Harvard Medical School, Boston, USA). 18E1ˆE4,
11E1ˆE4, 18E5, 18E6, and 18E7 cDNAs were obtained by a poly-
merase chain reaction (PCR). 18E1ˆE4 and 11E1ˆE4 cDNAs were
cloned into pPC86 vector (InvitrogenTM, Life Technologies, Corp.,
Carlsbad, CA, USA), pGEX-5X (Promega Corp., Madison, WI,
USA), pCMV4 (Nakahara et al., 2002), and pEGFP-C1 (Clontech
Laboratories, Inc., Mountain View, CA, USA). 18E5, 18E6, and
18E7 cDNAs were cloned into pCMV7.1 (Sigma-Aldrich Corp.,
St. Louis, MO, USA) in order to express 3xFLAG-tagged proteins.

YEAST TWO-HYBRID SYSTEM
We used ProQuestTM Two-Hybrid System (InvitrogenTM, Life
Technologies, Corp, Carlsbad, CA, USA). 18E1ˆE4 cDNA was
cloned into pPC86 vector. For cDNA library, we used ProQuestTM

Human Fetal Brain cDNA Library (InvitrogenTM, Life Technolo-
gies, Corp., Carlsbad, CA, USA). Screening was performed by
following manufacturer’s instruction.

GST PULL DOWN ASSAY
Glutathione S-transferase (GST)-tagged 18E1ˆE4 and 11E1ˆE4
were expressed by using pGEX-5X vector (Promega Corp., Madi-
son, WI, USA). The fusion proteins were expressed in E. coli (BL21
strain), and purified with Glutathione Sepharose 4B beads (GE
Healthcare UK Ltd, Little Chalfont, Buckinghamshire, UK). 35S-
methionine labeled protein was synthesized with TNT Quick Cou-
pled Transcription/Translation Systems (Promega Corp., Madi-
son, WI, USA). Vimentin cDNA was obtained by PrimeScript II
1st strand cDNA Synthesis Kit (Takara Bio Inc., Shiga, Japan) with
mRNAs obtained from HeLa cells. The cDNA was cloned into
pGEM-3Zf(+) (Promega Corp., Madison, WI, USA) for in vitro
transcription/translation.

Purified GST-fusion proteins and 35S-Met labeled vimentin
were incubated in a binding buffer [20 mM Tris–HCl (pH 7.5),
50 mM NaCl, 4 mM MgCl2, 0.5% Nonidet P-40, 2% skim milk,
2 mM dithiothreitol (DTT)] at 4◦C for 2 h. The complex was
subjected to sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (SDS-PAGE), and the vimentin bound to GST-
fusion protein was detected with BAS5000 (FUJIFILM Corp.,
Tokyo, Japan).

IMMUNOPRECIPITATION AND IMMUNOBLOT
Total cell lysates were prepared with triple detergent lysis buffer
[150 mM NaCl, 50 mM Tris–HCl (pH 8.0), 0.1% SDS, 1% Non-
idet P-40, 0.5% sodium deoxycholate] supplemented with protease
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inhibitor cocktail (Nacalai Tesque, Kyoto, Japan) and 1 mM DTT.
The cell lysates were centrifuged at 14,000 rpm for 10 min at
4◦C, and the supernatants were used for immunoprecipitation
and immunoblot. The supernatants were used as soluble fractions
in several experiments. The pellets were resuspended in 2× SDS
sample buffer [0.125 M Tris–HCl (pH6.8), 4% SDS, 0.2 M DTT,
20% glycerol, 0.001% bromophenol blue] and used as insoluble
fractions. In our experiment, 10 μg of protein could be obtained
from ca. 1 × 104 cells as soluble fraction. For immunoblot analysis,
10 μg of soluble fraction was loaded into each lane. It was not fea-
sible to measure the protein concentration of insoluble fraction,
therefore the portion equivalent to 1 × 104 cells was loaded into
each lane.

For immunoprecipitation, the cell lysates, Protein-G agarose
(Invitrogen Corp., Carlsbad, CA, USA) and an appropriate anti-
body were incubated in NET-Gel Buffer [150 mM NaCl, 50 mM
Tris–HCl (pH7.5), 0.1% Nonidet P-40, 1 mM EDTA, 0.25%
gelatin] at 4◦C for ≥ 4 h. The complex bound to Protein-G agarose
beads was washed six times, and then suspended in 6× SDS sam-
ple buffer [0.35 M Tris–HCl (pH6.8), 10% SDS, 0.6 M DTT, 30%
glycerol, 0.012% bromophenol blue].

The immunoprecipitation samples or the cell lysates were sub-
jected to SDS-PAGE, and blotted to a polyvinylidene difluoride
(PVDF) membrane (Hybond-P; GE Healthcare UK Ltd, Little
Chalfont, Buckinghamshire, UK). The immunoblot with anti-
β-actin antibody (Clone AC-15; Sigma-Aldrich Corp., St. Louis,
MO, USA) was used for checking the protein amount loaded on
the gel. Following antibodies were used for immunoblot and
immunofluorescence analyses; anti-FLAG polyclonal antibody
(F7425), anti-FLAG monoclonal antibody (F3165; Sigma-Aldrich
Corp., St. Louis, MO, USA), anti-vimentin antibody (sc-6260),
anti-DnaJB6 (Hsp40) antibody (sc-100710), anti-HDAC6 anti-
body (sc-11420; Santa Cruz Biotechnology, Inc., Dallas, TX,
USA), anti-γ-tubulin antibody (ab11316), anti-ubiquitin anti-
body (ab7780; Abcam plc., Cambridge, UK), and anti-p62
antibody (PM045; Medical & Biological Laboratory Co., Ltd,
Nagoya, Japan). Horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies and a luminal reagent (ECL-prime) were
purchased commercially (GE Healthcare UK Ltd, Little Chal-
font, Buckinghamshire, UK). The chemiluminescent signal was
visualized with a chemiluminescent image analyzer (LAS-3000;
FUJIFILM Corp., Tokyo, Japan).

IMMUNOFLUORESCENCE ANALYSIS
For IFA, the cells on cover glasses were fixed with 4%
paraformaldehyde (PFA) at room temperature for 5 min or cold
methanol (for γ-tubulin staining) at −20◦C for 20 min, perme-
abilized with 0.1% Nonidet P-40/phosphate buffered saline (PBS)
followed by blocking with 5% non-fat dry milk. The samples were
incubated with each primary antibodies diluted as manufacturer’s
instruction. Alexa Fluor® 488 or 546 labeled secondary antibodies
were purchased commercially (Molecular Probes®, Life Tech-
nologies Corp., Carlsbad, CA, USA). Fluorescence microscope
(Axiovert200 and AxioVision; Carl Zeiss Microscopy GmbH,
Jena, Germany) and confocal laser microscope (TCS SP2 AOBS,
Leica Microsystems GmbH, Wetzlar, Germany) were used for
analysis.

CHEMICAL INHIBITORS
At 24 h after transfection, chemical inhibitors were added into the
culture medium. After incubation for 24 h, the cells were harvested
to obtain cell lysates, or fixed for IFA. Nocodazole (Sigma-Aldrich
Co., St. Louis, MO, USA), MG132 (Wako Pure Chemicals Indus-
tries, Ltd, Osaka, Japan), ciliobrevin D (Merck KGaA, Darmstadt,
Germany), and tubacin (Santa Cruz Biotechnologies, Inc., Dallas,
TX, USA) were purchased commercially, solubilized in DMSO,
and used at 10, 10, 20, and 10 μM, respectively, as working
concentration.

RESULTS
INTERACTION BETWEEN HPV18 E1ˆE4 AND VIMENTIN PROTEINS
To investigate the biological function of HPV E1ˆE4, we searched
for cellular factors that interact with HPV18 E1ˆE4 protein
(18E1ˆE4). For screening, we used the yeast two-hybrid assay with
18E1ˆE4 as the bait. Among several factors identified from screen-
ing, we focused on vimentin, a cytoskeletal protein categorized
as a type III intermediate filament. It is known that vimentin
is involved in various cellular events, including cell division and
signal transduction (Ivaska et al., 2007); therefore, we considered
that the interaction between 18E1ˆE4 and vimentin might induce
a modification of the cellular structure or function to adapt it in
favor of virus replication.

The interaction between 18E1ˆE4 and vimentin was confirmed
by the in vitro binding assay (Figure 1A). We could detect weak but
significant interaction between GST-tagged 18E1ˆE4 and vimentin
obtained by in vitro translation, indicating the direct binding of
18E1ˆE4 to vimentin. Similar binding activity was also detected
between HPV11 E1ˆE4 (11E1ˆE4) and vimentin (Figure 1A).

Next, we examined the interaction between endogenous
vimentin and ectopically expressed 18E1ˆE4 in 293T cells. For the
experiment, a FLAG epitope-tag was added at the N-terminus of
18E1ˆE4. The FLAG-18E1ˆE4 was immunoprecipitated with anti-
FLAG antibody, and then co-precipitated vimentin was detected by
immunoblotting analysis. As shown in Figure 1B, 18E1ˆE4 could
interact with endogenous vimentin.

Intracellular localizations of 18E1ˆE4 and vimentin were ana-
lyzed with CV1 cells, monkey kidney epithelial cells negative for
papillomavirus infection. In control cells, vimentin showed fila-
mentous distribution throughout the cytoplasm (Figure 1C). The
ectopically expressed 18E1ˆE4 formed aggregates in cytoplasm,
as reported previously (Figure 1C; Nakahara et al., 2002). In
18E1ˆE4-expressing cells, vimentin was co-localized at the E1ˆE4
aggregates. 11E1ˆE4 could also form aggregates with vimentin
(Figure 1C). The fine localization of 18E1ˆE4 and vimentin
was examined with confocal microscopic analysis, and it was
found that the aggregate was wrapped by vimentin (Figure 1D).
These results indicated that 18E1ˆE4 and vimentin were associ-
ated in vivo, and suggested that 18E1ˆE4 recruited vimentin to its
aggregates through this interaction.

E1ˆE4 WAS ASSEMBLED INTO AGGRESOME-LIKE COMPARTMENT
It is known that cytoplasmic aggregates are organized in cells
infected with several viruses; the aggregate is called an“aggresome”
(Wileman, 2007). Aggresomes are structures assembled close to
the MTOC. They contain molecular chaperones, ubiquitinated
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FIGURE 1 | Interaction between 18E1ˆE4 and vimentin. (A) GST-pull
down experiment was performed with GST-E1ˆE4 and in vitro translated
vimentin. The GST-fusion proteins used for the experiment were checked by
Coomassie Brilliant Blue staining (left panel). In vitro translated vimentin
bound to GST protein (10 μg) was shown in right panel. “Input” indicates the
in vitro translated vimentin used for each binding assay. (B) Binding of
ectopically expressed FLAG-18E1ˆE4 to endogenous vimentin. 293T cells
were transfected with FLAG-18E1ˆE4 expression plasmid, and the
endogenous vimentin bound to FLAG-18E1ˆE4 was detected by

immunoprecipitation with anti-FLAG antibody followed by immunoblot
with anti-vimentin antibody. (C) Co-localization of endogenous
vimentin (vim, green) and FLAG-18E1ˆE4 (E1ˆE4, red) in CV1 cells.
Nuclei were stained with DAPI. Note that the co-localization could be
observed in majority of the cells (≥70%) in that FLAG-18E1ˆE4
aggregates were detected. (D) Fine analysis of intracellular localization
with confocal microscopic analysis. FLAG-18E1ˆE4 aggregate (red) was
wrapped with vimentin (vim, green) in CV1 cells. Control shows mock
transfected cells.

proteins, proteasomes, and HDAC6, and are wrapped with a
vimentin cage (Rodriguez-Gonzalez et al., 2008). 18E1ˆE4 formed
aggregates on the periphery of a nucleus and was associated
with vimentin as shown in Figures 1C,D, raising the possibil-
ity that the E1ˆE4 proteins were assembled in an aggresome-like
compartment.

We examined the intracellular localizations of 40 kDa heat
shock protein (Hsp40), HDAC6, and p62, all of which were
known to be assembled in the aggresome (Johnston, 2006).
From immunofluorescence analysis of CV1 cells, it appeared
that these factors were co-localized with the 18E1ˆE4-containing
aggregates (Figure 2A). Because ubiquitinated proteins have
been known to be recruited to the aggresome (Johnston, 2006),

their localizations were also analyzed using anti-ubiquitin anti-
body. As shown in Figure 2B, ubiquitinated proteins were
accumulated in the 18E1ˆE4 aggregates. These observations
indicated that the 18E1ˆE4 aggregate had an aggresome-like
composition. These results suggested that 18E1ˆE4 formed
an aggresome-like compartment, called “18E1ˆE4-aggresome”
hereafter.

It is considered that aggresomes are assembled by recruiting
their components by retrograde transport through microtubules
and are located close to MTOC. We analyzed the localization of
γ-tubulin, a component of MTOC (Figure 2C). In control cells,
γ-tubulin appeared at the centrosome as small dots in the per-
inuclear region. In the cells expressing 18E1ˆE4, γ-tubulin was
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FIGURE 2 | Intracellular localization of “aggresome”-associated

factors. (A) Co-localization of endogenous Hsp40, HDAC6, or p62 (green)
with FLAG-18E1ˆE4 (red) in CV1 cells. Nuclei were stained with DAPI.
Control shows mock transfected cells. (B) Ubiquitinated proteins (Ub,
green) were accumulated in FLAG-18E1ˆE4 aggregates (red) in CV1 cells.
(C) γ-tubulin was localized at centrosomes in control cells (control). In
FLAG-18E1ˆE4 expressing CV1 cells, γ-tubulin (γ-tub, green) was
co-localized at the E1ˆE4 (red). For (A–C), the co-localizations could be
observed in most of the cells (≥90%) in that 18E1ˆE4 aggregates were
detected. (D) The cell lysates were obtained from the 293T cells
transfected with FLAG-18E1ˆE4 expression plasmid. The lysates were used
for immunoprecipitation with anti-FLAG antibody, and then the precipitates
were analyzed by immunoblot with anti-γ-tubulin antibody.

co-localized at the 18E1ˆE4-aggresome, and the normal centro-
some could not be detected in those cells, suggesting that 18E1ˆE4-
aggresome formation disrupted the normal centrosome or MTOC
structure.

The finding that γ-tubulin was co-localized at the 18E1ˆE4-
aggresome urged us to investigate the interaction between γ-
tubulin and 18E1ˆE4. 18E1ˆE4 with a FLAG-epitope tag at its
N-terminus was expressed in 293T cells, and anti-FLAG antibody
was used for immunoprecipitation of 18E1ˆE4-containing com-
plexes. The complexes were analyzed by immunoblot detection
with anti-γ-tubulin (Figure 2D). The result indicated the inter-
action between 18E1ˆE4 and γ-tubulin, which might be involved

in the co-localization of γ-tubulin at the 18E1ˆE4-aggresome as
observed in Figure 2C.

DYNEIN-DEPENDENT FORMATION OF 18E1ˆE4 AGGRESOME
Misfolded/ubiquitinated proteins are connected to dynein, a
motor protein, the association of which is mediated by HDAC6 as
a linker molecule (Johnston, 2006). This complex is transported
along microtubule filaments to the proximate region of MTOC
and forms an aggresome (Kawaguchi et al., 2003). Nocodazole
treatment interferes with the polymerization of microtubules and
prevents aggresome formation.

Nocodazole treatment of normal HeLa cells induced early
M-phase cell cycle arrest and the cells were round (control,
Figure 3A). In contrast, 18E1ˆE4-expressing cells were flat
(18E1ˆE4, Figure 3A). We reported that 18EˆE4 expression
induced G2/M cell cycle arrest and accumulation of aneuploid
cells (≥4N; Nakahara et al., 2002), suggesting that the cells were
maintained in S and G2 phases of the cell cycle. By nocodazole
treatment, the formation of 18E1ˆE4-aggresome was significantly
inhibited and small aggregates of 18E1ˆE4 were broadly distributed
in the cytoplasm, indicating that the assembly of 18E1ˆE4-
aggresome required functional microtubule networks. We could
detect γ-tubulin in 18E1ˆE4 small aggregates in nocodazole-
treated cells (Figure 3B), suggesting that 18E1ˆE4 associated with
γ-tubulin in cytoplasm and assembled it to an 18E1ˆE4-aggresome
in a microtubule-dependent manner.

A similar experiment was performed with a dynein inhibitor,
ciliobrevin D (Figure 3C). Ciliobrevin D treatment strongly
suppressed E1ˆE4-aggresome formation, indicating that dynein-
dependent transport was involved in E1ˆE4-aggresome formation.

The effect of an HDAC6 inhibitor, tubacin, was also tested
(Figure 3D). HDAC6 is important for aggresome formation by
loading the cargo containing misfolded/ubiquitinated proteins
onto a dynein motor (Kawaguchi et al., 2003). Tubacin treatment
disrupted the E1ˆE4-aggresome and small aggregates contain-
ing 18E1ˆE4 were detected in the cytoplasm, as in the cases of
nocodazole and ciliobrevin D treatments.

These results suggested that the 18E1ˆE4-aggresome was assem-
bled by dynein-dependent retrograde transport along microtubule
filaments.

PROTEASOME INHIBITOR AUGMENTED E1ˆE4-AGGRESOME
FORMATION
In the cytoplasmic region, proteasomes are located around the
centrosome, close to cytoskeletal networks and on the surface of
the endoplasmic reticulum (ER), and the centrosome region is
considered as the major site for proteasome-dependent proteolysis,
called the proteolysis center (Wójcik and DeMartino, 2003). It
was reported that inhibition of proteasome function accelerated
aggresome formation in the centrosome region (Johnston et al.,
1998), which is considered as one of the hallmarks of aggresomes.

We examined the effect of MG132, a proteasome inhibitor,
on cells expressing 18E1ˆE4, and found that MG132 treatment
augmented 18E1ˆE4-aggresome formation (Figure 4A). This
observation was consistent with the idea that 18E1ˆE4 formed
aggresome-like compartment.
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FIGURE 3 | Dynein-dependent transport through microtubule filaments

was required for the assembly of 18E1ˆE4-aggresome. (A) Nocodazole
treatment disrupted the 18E1ˆE4-aggresome assembly. HeLa cells were
transfected with FLAG-18E1ˆE4 expression plasmids, treated by nocodazole
(10 mM) at 24 h after transfection. At 24 h after the treatment, the cells were
fixed by 4% PFA, then stained with anti-FLAG antibody (red). Control shows
untransfected cells, and “mock” indicates mock-treated cells. (B) γ-tubulin

(green) was associated with small aggregates of FLAG-18E1ˆE4 (red) in the
nocodazole-treated cells. The association could be detected in most of the
cells (≥90%) that were positive for FLAG-18E1ˆE4 expression. Cells were
prepared and treated as in (A), except for fixation by cold methanol. (C,D)

Ciliobrevin D (a dynein inhibitor) and tubacin (an HDAC6 inhibitor) treatments
prevented 18E1ˆE4-aggresome assembly. Cells were prepared, fixed, and
stained as in (A), except for the inhibitors.
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FIGURE 4 | Effect of proteasome inhibitor on 18E1ˆE4-aggresome

assembly. (A) MG132 treatment augmented the aggresome assembly. HeLa
cells were transfected with FLAG-18E1ˆE4 expression plasmid, treated with
MG132 (10 mM) at 24 h after transfection. “mock” indicates mock-transfected
cells. Cells were fixed by 4% PFA at 24 h after treatment, then stained with
anti-FLAG antibody (red). Control shows mock transfected cells. (B) Cells

prepared as shown in (A) were used to obtain cell lysates. The soluble and
insoluble fractions were immunoblotted with anti-FLAG antibody. Most
part of 18E1ˆE4 protein was found in the insoluble fraction of cell lysate. MG132
treatment increased the amounts of 18E1ˆE4 in both fractions. (C) Immunoblot
analysis was performed as shown in (B) with anti-γ-tubulin antibody. γ-tubulin
was partially sequestrated in the insoluble fraction by 18E1ˆE4.

The expression levels of 18E1ˆE4 were examined in MG132-
treated cells. As reported previously (Nakahara et al., 2002), most
of 18E1ˆE4 was found in the insoluble fraction of cell lysate
(Figure 4B), which was corresponding to 18E1ˆE4-aggresome
formation. With MG132, 18E1ˆE4 in the insoluble fraction was
increased significantly, reflecting the augmentation of aggresome
formation. Surprisingly, 18E1ˆE4 in the soluble fraction was also
increased, suggesting that some portion of 18E1ˆE4 was processed
in proteasome-dependent manner (Figure 4B).

18E1ˆE4 proteins were assembled into aggresomes as insolu-
ble fraction of cell lysate, indicating that the factors recruited to
18E1ˆE4-aggresomes might be sequestrated as insoluble materi-
als. As shown in Figures 2C,D, γ-tubulin was associated with
18E1ˆE4 and recruited to the aggresomes. We examined the
effect of 18E1ˆE4 expression on the protein levels of γ-tubulin
(Figure 4C). The amounts of soluble γ-tubulin were reduced
by 18E1ˆE4 expression. On the contrary, those in the insoluble
fraction were increased, suggesting that γ-tubulin was seques-
trated into the 18E1ˆE4-aggresome as insoluble material, which

might reduce active fraction of γ-tubulin and disturb normal
centrosome/MTOC formation as shown in Figure 2C.

18E1ˆE4 AGGRESOME WAS INVOLVED IN THE TURN OVER OF HPV
ONCOPROTEINS
As described above, 18E1ˆE4 could sequestrate γ-tubulin in
the aggresome. In considering the involvement of 18E1ˆE4-
aggresome in HPV replication, we examined the possibility that
the aggresome contributed to sequestration of other viral proteins.

In CV1 cells, FLAG-epitope tagged 18E5, 18E6, or 18E7 was
expressed with or without 18E1ˆE4, and then the expression level
was monitored by immunoblotting analysis (Figure 5A). Although
the expression of E5 was not affected, those of E6 and E7 in the
soluble fraction were significantly reduced by 18E1ˆE4 and accu-
mulation of those proteins in insoluble material was observed.
This result suggested that E6 and E7 were sequestrated in 18E1ˆE4-
aggresomes. Nocodazole treatment blocked the effect of 18E1ˆE4
(Figure 5B), suggesting that the 18E1ˆE4-aggresome formation
was involved in sequestration of 18E6 and18E7.
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FIGURE 5 | Major viral oncoproteins were sequestrated in

18E1ˆE4-aggresome. (A) CV1 cells were co-transfected with 18E1ˆE4
and FLAG-tagged 18E5, 18E6, or 18E7 expression plasmids. At 48 h after
transfection, cells were lysed by triple detergent buffer. The expression
levels of HPV18 E5, E6, and E7 were analyzed both in soluble (left panel)
and insoluble fractions (right panel) of cell lysates. (B) The effect of

nocodazole treatment (10 mM) was examined by a similar experiment
as shown in (A). (C) Intracellular localization of FLAG-tagged 18E5, 18E6,
or 18E7 (red) with EGFP-tagged 18E1ˆE4 (green) in CV1 cells. Nuclei
were stained with DAPI. The colocalization could be detected in
most of the cells (≥90%) that were positive for EGFP-tagged 18E1ˆE4
expression.

In the cells expressing 18E1ˆE4, E6 and E7 were co-localized
at 18E1ˆE4-aggresomes (Figure 5C). The localization of 18E5 was
not altered by 18E1ˆE4 expression. These observations indicated
that major viral oncoproteins, E6 and E7, were recruited to the
18E1ˆE4-aggresome and sequestrated in insoluble materials.

DISCUSSION
It was reported that ectopically expressed HPV E1ˆE4 formed
aggregates in cytoplasm (Doorbar et al., 1991), although the func-
tion of the aggregate remained to be clarified. In this paper,
we described that 18E1ˆE4 was assembled into an aggresome-
like compartment (18E1ˆE4-aggresome) and was involved in the
sequestration of viral oncoproteins.

AGGRESOME-LIKE COMPARTMENT FORMATION BY 18E1ˆE4.
We found that 18E1ˆE4 interacted with vimentin and recruited
it to the 18E1ˆE4 aggregates (Figure 1), which inspired us to
consider that 18E1ˆE4 was assembled into an aggresome-like
compartment because aggresomes are known to be wrapped by
vimentin.

There is a report that 16E1ˆE4 could interact with cytoker-
atins 8/18 (CK8/18) but not with vimentin (Wang et al., 2004). We
therefore analyzed the interaction between 18E1ˆE4 and endoge-
nous vimentin both in vivo and in vitro (Figures 1B,C), although
they used an in vitro binding assay with recombinant vimentin
and 16E1ˆE4. The different experimental condition could be the
cause of the controversial observations.
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Aggresomes are assembled to process misfolded/ubiquitinated
proteins that are not well handled by the ubiquitin-proteasome
pathway or the chaperone-dependent refolding system (Gold-
berg, 2003). It is known that aggresomes incorporate molecular
chaperones, ubiquitinated proteins, p62 and HDAC6 (Rodriguez-
Gonzalez et al., 2008). We confirmed that these molecules were
recruited to the 18E1ˆE4-aggregate (Figures 2A,B). This observa-
tion strongly suggested that 18E1ˆE4 aggregate had an aggresome-
like structure.

Aggresome formation is dependent on microtubules and
dynein. Microaggregates of misfolded proteins are transported
to MTOC along microtubules in a dynein-dependent manner
(Johnston, 2006). Dynein is a motor protein and microaggre-
gates are linked to dynein through HDAC6 (Kawaguchi et al.,
2003). We examined the effects of nocodazole, an inhibitor of
microtubule polymerization; ciliobrevin D, a dynein inhibitor;
and tubacin, a HDAC6 inhibitor, on 18E1ˆE4 aggregate forma-
tion, and found that all of the inhibitors could efficiently interfere
with aggregate formation (Figure 3). This result supported the
possibility that 18E1ˆE4 was assembled in the aggresome-like
compartment, 18E1ˆE4-aggresome. We are currently investigat-
ing a role of the interaction between 18E1ˆE4 and vimentin in
aggresome formation.

DISRUPTION OF MTOC BY 18E1ˆE4
Aggresomes are known to be assembled close to MTOC
(Johnston et al., 1998). We examined the localization of γ-tubulin,
a component of MTOC, in 18E1ˆE4-expressing cells, and found
that it was co-localized at the 18E1ˆE4-aggresome (Figure 2C).
Direct interaction was found between 18E1ˆE4 and γ-tubulin
(Figure 2D), by which γ-tubulin might be recruited to the
E1ˆE4-aggresome. Even though nocodazole treatment inhib-
ited E1ˆE4-aggresome formation, colocalization of 18E1ˆE4 and
γ-tubulin could be detected (Figure 3B). It was also found
that regular centrosome or MTOC formation was disrupted
in 18E1ˆE4 expressing cells (Figure 2C). Proper assembly of
MTOC is essential for mitotic events (Bettencourt-Dias and
Glover, 2007), and the disturbance of MTOC formation by
18E1ˆE4 might contribute to the G2/M cell cycle arrest induced by
18E1ˆE4.

POSSIBLE ROLE OF 18E1ˆE4 AGGRESOME IN VIRUS REPLICATION
Although it is known that aggresome formation has a protective
role against bacterial and protozoal infections (Wileman, 2007),
several viruses are reported to utilize aggresomes for their repli-
cation processes (Wileman, 2007). Nucleocytoplasmic large DNA
viruses (NCLDV), including poxviruses, African swine fever virus
(ASFV), iridoviruses and phycodnaviruses, have been reported to
utilize aggresomes as compartments for the accumulation of host
and viral proteins, where virus replication and virion assembly are
accelerated. It has been proposed that infection with a retrovirus
or herpes virus produces an aggresome-like structure in the perin-
uclear region, which is utilized as a virus assembly site (Wileman,
2007). These findings suggested that the 18E1ˆE4-aggresome had
a functional role in virus replication.

As shown in Figures 2C,D, 18E1ˆE4 bound to γ-tubulin and
recruited it to aggresome-like compartment. This sequestration of

γ-tubulin might cause disruption of normal centrosome/MTOC
organization. We considered that the 18E1ˆE4-aggresome might
be involved in sequestration of other viral proteins, especially
of the viral oncoproteins. We examined the effect of 18E1ˆE4
on the expression levels of 18E5, 18E6, and 18E7 (Figure 5A).
Although the expression level of E5 did not altered by 18E1ˆE4,
those of E6 and E7 in soluble fraction were severely reduced.
E6 and E7 were found in insoluble fraction and co-localized at
18E1ˆE4-aggresomes (Figures 5A,C). These observations sug-
gested that 18E1ˆE4 sequestrated E6 and E7 into the inactive
aggregate and reduced active fractions of them. We could not
detect direct binding activity of 18E1ˆE4 to 18E6 or 18E7
(data not shown), and therefore it will be necessary to clar-
ify the mechanism by which E6 and E7 are recruited to the
aggresome.

Most 18E6 and 18E7 are partitioned in soluble fraction as
shown in Figure 5A. The amounts of these proteins in soluble frac-
tion were significantly reduced by 18E1ˆE4 expression, although
those in insoluble fraction were increased modestly. The result
suggested that 18E1ˆE4 expression reduced the total amounts of
these oncoproteins in the cells possibly by accelerating their turn
over. We are now investigating the effect of 18E1ˆE4 expression on
total amounts of the viral oncoproteins.

In lesions infected with cutaneous-type HPVs, HPV1, HPV4,
and HPV63, E1ˆE4 aggregate could be detected in upper layers of
the warts as intracytoplasmic inclusion bodies (Egawa, 1994). In
the case of HPV16 infection, it was reported that inclusion bodies
of E1ˆE4 were found in differentiated layers of cervical intraep-
ithelial neoplasia grade 1 (CIN1) lesions (Doorbar et al., 1997;
Doorbar, 2005). These observations suggest that the E1ˆE4-
aggresome functions in the upper layers of the infected
lesion.

Here we propose a model of E1ˆE4 function in viral repli-
cation. In basal and parabasal cells of HPV-infected lesions,
viral oncoproteins, E6 and E7, are expressed from the viral
early promoter. This suppresses cell differentiation and promotes
cell proliferation (Nguyen et al., 2003; Ueno et al., 2006), which
is required for expanding the population of infected cells. As
cellular differentiation progresses, the viral late promoter is acti-
vated and directs the expression of E1ˆE4. E1ˆE4 causes G2/M
cell cycle arrest and activates endoreduplication (Nakahara et al.,
2005). This cellular condition favors genome amplification and
gene expression of the virus. Then the high-level expression of
E1ˆE4 induces aggregate formation in upper layers of the lesion,
where the E1ˆE4-aggresome sequestrates E6 and E7, suppresses
their inhibitory effect on cellular differentiation and induces
terminal differentiation. Terminal differentiation is required
for capsid protein expression and virion assembly, although
the underlying mechanism remains unknown (Sakakibara et al.,
2013).

It was reported that the formation of E1ˆE4 aggregates dis-
rupted cytokeratin networks and might be helpful for virion egress
from keratinized cells (Doorbar et al., 1991). This idea is very
attractive for an E1ˆE4 function, and it is important to verify
these E1ˆE4 functions in an animal infection model, histolog-
ical analysis of human samples, or an organotypic raft culture
system.
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