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Ribosomal RNA genes have become the standard molecular markers for microbial
community analysis for good reasons, including universal occurrence in cellular organisms,
availability of large databases, and ease of rRNA gene region amplification and analysis.
As markers, however, rRNA genes have some significant limitations. The rRNA genes
are often present in multiple copies, unlike most protein-coding genes. The slow rate
of change in rRNA genes means that multiple species sometimes share identical 16S
rRNA gene sequences, while many more species share identical sequences in the short
16S rRNA regions commonly analyzed. In addition, the genes involved in many important
processes are not distributed in a phylogenetically coherent manner, potentially due to
gene loss or horizontal gene transfer. While rRNA genes remain the most commonly
used markers, key genes in ecologically important pathways, e.g., those involved in
carbon and nitrogen cycling, can provide important insights into community composition
and function not obtainable through rRNA analysis. However, working with ecofunctional
gene data requires some tools beyond those required for rRNA analysis. To address this,
our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers
databases of many common ecofunctional genes and proteins, as well as integrated tools
that allow researchers to browse these collections and choose subsets for further analysis,
build phylogenetic trees, test primers and probes for coverage, and download aligned
sequences. Additional FunGene tools are specialized to process coding gene amplicon
data. For example, FrameBot produces frameshift-corrected protein and DNA sequences
from raw reads while finding the most closely related protein reference sequence. These
tools can help provide better insight into microbial communities by directly studying key
genes involved in important ecological processes.
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INTRODUCTION
Microbes are a major component of the earth’s biosphere.
They impact the earth’s ecosystems through a diverse set of
activities and constitute a major force in shaping both abi-
otic and biotic environments. Examining the prevalence and
diversity of the genes involved in these important ecological
processes—ecofunctional genes—can help us define the relation-
ships between microbial populations and their environments.
Amplicon-based analysis of 16S rRNA gene fragments has shown
great utility in providing an overall picture of taxonomic diver-
sity and has been used in a multitude of environments (see, e.g.,
Gilbert and Meyer, 2012). However, much of the microbial gene
content, including pathways for important environmental activi-
ties, have been subject to multiple horizontal gene transfers (see,
e.g., Dagan et al., 2008). Directly querying for specific functional
genes in environmental samples, through qPCR and amplicon
surveys, can provide information on the prevalence and diver-
sity of key functional genes regardless of discontinuity between
organism and gene phylogeny.

In contrast, those core protein-coding genes that are less
subject to horizontal transfer and have gene phylogenies con-
gruent with organism taxonomy can serve as important phy-
logenetic markers. These are often capable of resolving finer
differences than the commonly used rRNA gene markers. Our
concept of a microbial species is still evolving and a subject of
debate, but the most commonly accepted ad hoc microbial species
boundary has been 70% DNA-DNA re-association (Stackebrandt
et al., 2002). Using this 70% re-association species definition,
Stackebrandt and Ebers found that strains of the same species
almost always share more than 99% full-length 16S rRNA gene
identity, while different species can share identical 16S gene
sequences (Stackebrandt and Ebers, 2006). The short 16S gene
fragments commonly used in environmental amplicon analysis
have even less resolving power. In contrast, the correspond-
ing overall ortholog Average Amino Acid Identity (AAI; see list
of abbreviations, Table 1) cutoff for a species is about 5% dif-
ference (Konstantinidis and Tiedje, 2005). This may vary for
different marker genes, but in general protein-coding markers are
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Table 1 | List of Abbreviations.

AAI Average Amino Acid Identity

BIOM Biological Observation Matrix

ENA European Nucleotide Archive

FGP RDP Functional Gene Pipeline

FGR RDP Functional Gene Repository

HMM Hidden Markov Model

HMP Human Microbiome Project

indel insertion or deletion

IUPAC International Union of Pure and Applied Chemistry

JNI Java Native Interface

MID Multiplex Identifier

MSA Multiple Sequence Alignment

NEON National Ecological Observatory Network

NGS Next Generation Sequencing

OTU Operational Taxonomic Unit

RDP Ribosomal Database Project

rQ Read Quality

SFF Standard Flowgram Format

UPGMA Unweighted Pair Group Method with Arithmetic Mean

WGS Whole-Genome Shotgun

capable of finer-grained resolution than rRNA genes (Santos and
Ochman, 2004).

Several toolkits for analyzing 16S data are currently available;
examples include the RDP’s Pyrosequencing Pipeline (Cole et al.,
2009), QIIME (Caporaso et al., 2010), CloVr (Angiuoli et al.,
2011), mothur (Schloss et al., 2009), and VAMPS (http://vamps.
mbl.edu/). However, while parts of published 16S pipelines can
be reused in functional gene pipelines, functional gene analy-
sis presents several challenges not seen in 16S rRNA analysis.
Indel sequencing errors cause frameshifts that lead to garbled
protein translations. Few tools offer the functional gene ref-
erence sets required for analysis. FunFrame (Weisman et al.,
2013) is an R-based analysis pipeline for functional gene data,
built on analysis tools including HMMFrame (Zhang and Sun,
2011) for frameshift correction and gene translation. However,
FunFrame comes customized for only one gene, Cytochrome
D1. Sequences for different functional gene families can be ana-
lyzed using a common set of tools; however, each functional gene
requires its own set of reference sequences and requires differ-
ent approaches tuned to take into account factors such as relative
gene diversity and amplicon size. Protein databases such as Pfam
(Punta et al., 2012), TIGERFAM (Haft et al., 2003), and Uniprot
(Uniprot Consortium, 2010) contain well-curated protein family
sequence sets, however, they mainly concentrate on protein not
gene sequences. In addition, the protein families are often defined
more broadly than optimal for ecological analysis, for example
covering paralogous genes active on different substrates. None of
these general protein databases provide the tools necessary for
functional gene amplicon analysis.

The RDP’s functional gene repository and analysis tools are
available on two related websites. The FunGene Repository (FGR;
http://fungene.cme.msu.edu/) is designed to help researchers
explore publicly available sequences harvested from GenBank
(Benson et al., 2004) and assigned to a specific collection of

gene families. The FunGene Pipeline (FGP) houses tools for
researchers to process and analyze their own functional gene
sequencing data.

FGR employs a reference/model-based, comparative analysis
strategy to build the reference database and help to study func-
tional and phylogenetic diversities of specific gene families. This
strategy relies on the use of HMMER3 (http://hmmer.org/) and
Hidden Markov Models (HMM), the same tool used by the
well-known Pfam for studying protein homology. HMMs are
built from protein seed alignments, i.e., typically a small num-
ber of vetted, full-length representative sequences from each gene
family aligned by hand or with a Multiple Sequence Alignment
tool [MSA; e.g., ClustalW (Larkin et al., 2007)]. Using these
models, more inclusive sequence sets are created for the FGR
by extracting, classifying, and aligning sequences obtained from
GenBank. A model-based alignment method was chosen for
several reasons. With a model-based alignment, multiple sets
of alignments from a single model can be merged and com-
pared without re-aligning the sequence database. Model-based
approaches allow for statistical classification of query reads as
members/not members of the modeled gene family. Aligning
sequences with an HMM scales linearly in time with the num-
ber of sequences and is fast enough to align, within reasonable
time, hundreds of thousands to millions of sequences. With
HMM-based alignments, the conservation statistics of amino
acid residues, essential to protein structure and function, can
be preserved. This alignment is then back-translated to pro-
vide a high-quality nucleotide alignment, allowing more accurate
comparative analysis at the nucleotide level based on sequence
homology.

Using FGP, libraries of sequence reads can be analyzed through
either reference-based or unsupervised approaches after com-
mon initial processing steps. Reference-based approaches, such
as the FrameBot frameshift correction and nearest neighbor tool
(Wang et al., 2013) offered by FGP, require a set of repre-
sentative sequences, which can be compiled using FGR. Reads
are binned based on the nearest neighbor and associated dis-
tance. The unsupervised approach we offer involves clustering
reads based on sequence identity using alignments generated
by HMMER3. Either method can be used to compute vari-
ous biodiversity metrics to characterize the phylogenetic and
functional structures of communities. To accommodate the dif-
ferences in analyses of sequences from different functional gene
families, we have developed a reconfigurable pipeline of tools
with a specific configuration for each supported functional gene
family. Workflow configurations were developed together with
researchers and made available via the FGP.

The FGR and FGP have been used in a number of gene-
targeted metagenomic studies and we continue to improve these
resources based on feedback from researchers. An incomplete list
citing FGR and FGP includes projects studying microbial com-
munities from various habitats as a reference database (Spain
et al., 2007; Wertz et al., 2009; Bull et al., 2012; Lin et al., 2012;
Fang et al., 2013), a primer designing/testing tool (Henry et al.,
2006; Philippot and Hallin, 2006; Bru et al., 2007; Leigh et al.,
2007; Stedtfeld et al., 2007; Jones et al., 2008, 2011, 2012; Stres and
Murovec, 2008, 2009; Iwai et al., 2010; Oakley et al., 2010, 2012;
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Suenaga, 2012; Vital et al., 2013), and a data processing/analysis
pipeline (Bragina et al., 2011, 2013; Grube et al., 2012).

MATERIALS AND METHODS
FunGene REPOSITORY
Sequences in the FGR are selected from GenBank in a five-
step process. First the files for the bacterial, plant, environ-
mental divisions and Whole Genome Shotgun (WGS) data
for the current GenBank release are downloaded. Then the
release files are converted to the BioSeq XML format using
the asn2all (ftp://ftp.ncbi.nih.gov/ncbi-asn1) tool available from
the GenBank ftp site. Next the coding sequence (CDS) anno-
tations are read from the BioSeq files. However, since the gene
and product annotations on CDS regions are free text fields and
not always reliable, we do not map CDS to gene families in the
FGR directly via the annotations. Instead, every gene family con-
tained in the FGR has an associated HMM. These HMMs were
built using HMMER3 from seed sequences selected as represen-
tatives by researchers interested in the particular gene family and
from selected gene families obtained from Pfam. HMMER3 is
used to scan the protein translation of every CDS record and
default significance cutoffs are used to filter insignificant hits.
Each translated GenBank CDS is scored with each HMM, and
those with a significant hit to one or more FGR gene family’s
HMM are recorded in the FGR database. In addition to the pro-
tein sequence, the nucleotide sequence, bibliographic reference
(if present), protein and nucleotide accession numbers, organism
name, and description are also stored in the FGR database. When
a new version of a record is released from GenBank, the existing
version in the FGR database is replaced.

A Java Native Interface (JNI) wrapper around the HMMER3
scanning pipeline was developed in order to tightly integrate
HMMER3 with the FGR release pipeline. The JNI wrapper is
available as part of the RDP Alignment Tools package (Table 2).
The JNI wrapper trades higher memory usage for faster running
time by storing all HMMs in memory instead of rereading models
for every query sequence.

The FGR currently contains 77 gene families organized
into seven categories: Antibiotic resistance, Biodegradation,
Biogeochemical Cycles, Metal Cycling, Phylogenetic Markers,
Plant Pathogenicity, and “Other” for gene families not in the listed

Table 2 | Names and sites for all first-party tools used in the FunGene

Pipeline.

Tool name Available from

Full pipeline scripts http://github.com/rdpstaff/fungene_pipeline

RDPTools http://github.com/rdpstaff/RDPTools

Initial process http://github.com/rdpstaff/SeqFilters

Defined community
analysis

http://github.com/rdpstaff/AlignmentTools

Dereplicator See mcClust

FrameBot http://github.com/rdpstaff/Framebot

mcClust http://github.com/rdpstaff/Clustering

Rarefaction/Diversity
measures

http://github.com/rdpstaff/AbundanceStats

categories. FGR is intended to tap community efforts to expand
its database. New gene families are added with each release and
researchers are invited to work with the RDP to get new gene
families incorporated into the FGR.

FunGene PIPELINE
The FGP consists of a set of tools, along with reference files and
parameters for each gene offered and Python scripts that coor-
dinate running the individual tools that make up the pipeline. A
Java EE5 Web Application powers the FGP website. All of the tools
we developed and incorporated in the FGP are available under
open source licenses from the RDPStaff GitHub page, http://
github.com/rdpstaff/ (Table 2). GitHub is a website for hosting
software in git repositories. The RDPTools repository contains
instructions for downloading and building the other tools using
git, GNU Make and Apache Ant. In addition, individual tool
repositories are available on GitHub for those wishing to mod-
ify the code for a specific tool. Many of the downloadable FGP
tools have additional options not available in the online version
(see the README file in each tool package). All third-party tools
incorporated in the FGP are freely available from their original
sources (Table 3). Configuration options for the FGP pipeline are
explained in more detail in the included README file. In addi-
tion to the full pipeline, FGP tools are also offered in a modular
fashion so that researchers can substitute other tools for indi-
vidual processing steps. For instance a researcher can substitute
another chimera checking tool or MSA tool.

Alignment
HMMs are included for all functional gene families supported
by the FGP. Protein sequences are aligned with hmmalign from
HMMER3. Sequence alignments are generated with the “—
allcol” option which ensures alignments across samples are com-
parable.

Clustering
FGP uses the mcClust (http://github.com/rdpstaff/Clustering)
clustering tool. mcClust is our implementation of a pro-
posed single round memory-constrained clustering algorithm
(Loewenstein et al., 2008). In this algorithm the distance between
a pair of sequences is referred to as a thin edge and the collec-
tion of thin edges between every pair of sequences in two clusters
is a thick edge. The algorithm takes as input a sorted list of thin
edges; our implementation computes and sorts the distances on
disk using either a single threaded algorithm, or a Hadoop (v0.18)
map-reduce algorithm.

Each thin edge is processed by updating the appropriate thick
edge weights. For complete linkage clustering, a thick edge’s
weight is the largest thin edge’s weight seen thus far. A pair

Table 3 | Names and sites for all third-party tools used in the

FunGene Pipeline.

Tool name Available from

USEARCH 6.0 (UCHIME) http://www.drive5.com/usearch/

HMMER3 http://hmmer.janelia.org/

www.frontiersin.org October 2013 | Volume 4 | Article 291 | 3

http://github.com/rdpstaff/fungene_pipeline
http://github.com/rdpstaff/RDPTools
http://github.com/rdpstaff/SeqFilters
http://github.com/rdpstaff/AlignmentTools
http://github.com/rdpstaff/Framebot
http://github.com/rdpstaff/Clustering
http://github.com/rdpstaff/AbundanceStats
http://github.com/rdpstaff/
http://github.com/rdpstaff/
http://github.com/rdpstaff/Clustering
http://www.drive5.com/usearch/
http://hmmer.janelia.org/
http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Fish et al. FunGene pipeline and repository

of clusters is merged when all thin edges between them have
been seen.

For average linkage clustering, a thick edge’s weight is the run-
ning average of the seen thin edges’ weights. Unlike complete
linkage clustering, where every thin edge between two clusters
must be seen in order to know the weight of the thick edge con-
necting the two clusters, in average linkage clustering, the weight
of the thick edge can be bounded. The weight of every thick edge
is the average of all the thin edge weights between the two clusters.
If a weight of zero is substituted for the unseen edge weights, a
lower bound on the weight of the thick edge is obtained. If instead
a weight of one is substituted, an upper bound is obtained. These
bounds can be tightened by utilizing the fact that thin edges are
processed in sorted order. The last seen thin edge weight can be
used instead of zero to obtain a tighter lower bound, since all
remaining thin edges must have weight greater than or equal to
the last thin edge weight. A tight upper bound can be obtained by
tracking the largest distance between any pair of sequences dur-
ing the distance calculation step and using that value in the upper
bound calculation. A pair of clusters is merged when the upper
bound on weight of the thick edge corresponding to the last read
thin edge is less than the smallest lower bound on any other thick
edge’s weight.

In the average linkage version of the algorithm, if the total
memory available is exhausted before all distances have been
read, the remaining distances are scanned, filling out thick edges
between all the current clusters, and then clustering is resumed.
This distance scanning can be done in one pass (our imple-
mentation of the single pass algorithm proposed by Loewenstein
et al.) or in multiple passes over the distances (as in the multipass
version presented by Loewenstein et al.).

The online tool provides complete linkage clustering only, but
the downloadable version also supports single and average link-
age algorithms. Multiple sequence files can be clustered together,
where each file is treated as an individual sample or where all files
are treated as a single sample, or a sample mapping file can be
supplied to identify the sample from which every sequence came.
Cluster files can be converted into formats suitable for loading
into common statistical tools such as R (R Core Team, 2012) and
estimateS (http://viceroy.eeb.uconn.edu/estimates/).

Defined community analysis
The Defined Community Analysis tool consists of two parts: the
CompareErrorType program written in Java and the parseError-
Analysis.py script written in Python. Both are available as part of
the AlignmentTools package (Table 2). The CompareErrorType
tool implements the standard Needleman-Wunsch algorithm
(Needleman and Wunsch, 1970). CompareErrorType computes
a global alignment between the read and each of the reference
sequences. The pairwise alignment producing the highest align-
ment score is used to identify the source organism, tabulate
substitutions, indels, and (optionally) associated quality scores.
The CompareErrorType tool outputs the best pairwise align-
ment, the substitution data, indel data, and read quality scores to
separate files. These data files are in turn processed by the parseEr-
rorAnalysis.py script to summarize the types of errors found in
the input reads.

Read quality score
The rQ score (read Q score), defined as rQ = −10× log(E),
where E, the average predicted error rate for the read, is calculated
as

E = 1

n

n∑

i = 1

10− Qi

10

from the per-base Q scores (Phred quality scores) provided by the
sequencer base-calling software, where n is the number of bases
in the read.

DEFINED COMMUNITY COMPOSITION
The nifH defined community contains three organisms:
Desulfitobacterium hafniense DCB-2, Nostoc sp. PCC 7120, and
Burkholderia xenovorans LB400. The genomic DNA was mixed
together and amplified using the Poly primers (Poly et al., 2001)
with one barcode (Wang et al., 2013) to produce sample NIFH.
This defined community contains six nifH and nifH-like genes.
The butyrate kinase (buk) defined community contains genomic
DNA from five strains: Clostridium perfringens ATCC 13124, C.
difficile 630, C. acetobutylicum ATCC 824, Bacillus licheniformis
14580, and Bacteroidetes thetaiotaomicron E50. All the strains
contain a single buk gene, except C. acetobutylicum ATCC 824,
which contains two copies. Samples BUK1 and BUK2 were
each prepared separately. The buk defined community was PCR
amplified in three reactions using three barcoded forward and
three reverse primers as described by Vital (Vital et al., 2013). The
three barcoded buk amplifications were then combined together.
Sample NIFH and Sample BUK1 were sequenced on the 454 GS
FLX Titanium platform at the Michigan State University Research
Technology Support Facility (http://www.rtsf.msu.edu). Sample
BUK2 was sequenced on the 454 GS Junior platform and
obtained from Christopher Radek of Michigan State University.
Sequencer base calling software version 1.1.03 was used for all
three runs. We chose these three data sets because they were
sequenced at different times and each represents different error
characteristics. These sequences have been submitted to ENA
Short Read Archive (http://www.ebi.ac.uk/ena/) under accession
numbers PRJEB4229 and PRJEB4242.

TOOL DESCRIPTIONS
FunGene REPOSITORY
The FGR website provides an interface to interactively explore
sequences and associated metadata for genes chosen for their util-
ity in microbial community analysis. FGR currently (release 7.3)
maintains a collection of 77 gene families in seven categories.
Most of these genes are for key steps in important environmen-
tal processes. Many were chosen in collaboration with microbial
ecologists and we continue to expand the numbers and cate-
gories of genes based on interests of the research community.
New FGR releases occur bi-monthly to coincide with GenBank
releases. For each release, new candidate CDS for the gene families
are extracted and classified using protein profile HMMs.

The FGR organizes gene families by function. Detailed infor-
mation is provided for each family, including sequence annota-
tions, publication references, homology measures, and alignment
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views. Researchers can evaluate FGR sequences for a single fam-
ily, as a selected subset, or as individual sequences. Researchers
are able to explore the homology space of a gene family to
help perform tasks such as correlating functional and phylo-
genetic diversities to disentangle orthologous from paralogous
gene sequences, developing and assessing amplification primers,
and compiling vetted reference sequence sets. Such reference sets
can be used for refining HMMs, with FGP tools for frameshift
detection/correction and for nearest neighbor assignment.

Gene family pages are accessible from the main page, each
presents records of protein and nucleotide CDS matching an
HMM that define one gene family. Researchers can set specific
selection criteria for subsets of records to be rendered using the
combination of filter options on sequence length, percentage of
the HMM covered, and HMM matching score. The HMM for
each gene family can be downloaded via a link on the gene
family page.

The top of each page contains the gene symbol, total number of
sequence records in this family, and HMM length. Data for each
sequence in a gene family are presented in table format with up to
12 columns, described in Table 4, depending on display options.
The table can be sorted on any column by clicking the column
header. Records used to build the protein HMM for the gene fam-
ily are highlighted in pink, making it easy to visually determine if
the seed set could be improved, and for easy inclusion of the seeds
in sequence subsets for further analysis.

“Display Options” opens a page with options related to
the current session view, including types of sequences dis-
played (environmental, isolates, or both), columns displayed,
default sort column, sequences per page, and default sequence
record format (GenBank or FASTA). “Show/Hide Filter Options”
allows filtering displayed sequences by HMM score, pro-
tein length, and HMM coverage. The filtering criteria for
each gene family are saved separately allowing researchers
to navigate between gene families without losing their filter
settings.

Sequence selections can be modified by using the links located
at the top of the page: (1) Select the Entire Page, (2) Select
All Sequences, (3) Deselect All Sequences, and (4) Select Seed
Sequences. The sequences selected are dependent on the current
filtering criteria. Individual records can be selected/deselected
using the checkbox in the corresponding row of the table. A
sequence counter at the top of the page shows the total num-
ber of sequences selected for the current gene family. Selections
are saved for each gene family separately allowing researchers to
navigate between gene families without losing their selections.

“Begin Analysis” opens a panel with options: (1) download
selected sequences; (2) build a phylogenetic tree using Tree
Builder; (3) test primers using Probe Match.

The Download panel provides options for download of either
protein or nucleotide sequences in either aligned or unaligned
FASTA or PHYLIP formats to allow users flexibility in additional
analysis. FGR’s alignments can be used for further analysis using
third-party tools.

Tree Builder provides rapid phylogenetic tree reconstruc-
tion for selections of 4–200 sequences using the Approximate-
Maximum-Likelihood method of FASTTREE (Price et al., 2010)

Table 4 | Data columns on gene family pages.

Heading Action

[+] Click to view the protein sequence aligned to HMM
and reference consensus sequence

Select Check to mark the selection for analysis (selections
are saved in the researcher’s session and are not lost
when navigating to a new page)

Score The HMM alignment score in bits saved (the higher
the score, the higher the probability this sequence is
a member of this gene family)

New_Hit Marker for sequence records new to the current
release

Environmental Marker for non-cultured, environmental samples

Prot_Accno GenBank protein accession number (also links to the
actual protein record in GenBank or FASTA format
depending on the researcher’s current display
settings)

Nuc_Accno GenBank nucleotide accession number (also links to
the actual nucleotide record in GenBank or FASTA
format depending on the researcher’s current display
settings)

Organism Name of source organism as annotated in the
GenBank record

Definition Gene and product as annotated in the GenBank
record

Reference Publication from GenBank record, links to NCBI
PubMed live records when available

Size Protein length (number of amino acids, proxy for
completeness of the sequence)

HMM_Coverage How completely the sequence covers the model’s
length (measured by the percentage of HMM
positions to which the sequence is aligned, can be
used to filter out partial sequences and poor HMM
matches)

from the choice of either protein or nucleotide alignment. The
tree is displayed in a Java applet that allows interactive exploratory
manipulations, such as selecting nodes, and swapping branches.
Additional viewing options, as well as download options, are
described on the tree page. Any selection made to the tree can
be used to update the sequence selections for that gene family for
further analysis using the FGR tools or for download.

Probe Match (Myers, 1999; Cole et al., 2005) performs a search
against the selected nucleotide sequences (subjects) for matches to
the entered oligonucleotide sequence (query). Standard IUPAC
characters are allowed if “Allow ambiguity matches” is checked.
The strand orientation of the subjects has to be specified. “Probe
targets plus strand” should be checked for a reverse primer,
and left unchecked for a forward primer. “Maximum distance”
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box is used to specify the total number of allowed differences
(substitutions and indels) in the priming/probing region.

Probe Match returns results summary and search param-
eters. A table of individual hits contains six columns: (1)
“Selection”—check to select the sequence; (2) “Detail”—protein
accession number; (3) “Distance”—number of differences; (4)
“Target/Probe”—the query aligned with the matching sub-
ject sequence region and differences marked in red; (5)
“Definition”—gene and product as annotated in the original
GenBank record; (6) “Organism”—name of the source organism
as annotated in the original GenBank record. Within this result
page, sequences can be selected/deselected as a whole through
the “Select All/Deselect All” button or individually through the
checkbox. Similar to the gene detail page, sequences selected here
are available for additional analysis or download.

FunGene PIPELINE
The FGP allows researchers to analyze their own functional gene
sequence data. The FGP has reference sets for a subset of the gene
families available in the FGR but can be used with any reference
set (for any gene family) a researcher has created using FGR or
other resources. The FGP contains a set of tools for processing and
performing unsupervised analyses and reference-based analyses
on functional gene data.

Many tools offered through the FGP can take up to several
hours to run with large sequence datasets; the FGP was designed
with this in mind. Most tools in FGP require an email address
for the job to be submitted. This email address is only used to
send a link to the result archive. The progress of a job can also be
monitored in real-time on the job status page. This page shows
the current processing step and is refreshed every 30 s until the
job is completed. Upon completion the result archive will auto-
matically start downloading. Researchers can optionally specify
a job name that will be included in the results email and be the
name of the archive containing the result files. The FGP automat-
ically dereplicates uploaded sequence files to collapse duplicate
sequences into a single sequence. After all processing for a job
is complete, the resulting sequence files are then “re-replicated”
and the final sequence files are placed in the “filtered_sequences”
directory.

The FGP accepts compressed files for upload and supports the
Gzip, Tar, Zip, and bzip2 formats. All FGP downloads are TAR-
formatted archives compressed with Gzip that can be opened
natively on OS X and Linux. On windows, several third-party
tools exist for opening these types of archives, a common program
being 7zip.

The tools are offered in a modular fashion allowing researchers
to choose the appropriate ones based on their needs, and to
assemble analysis procedures using our tools along with other
third-party tools for individual processing steps. For instance,
a researcher might cluster samples from two different analyses
using the memory-efficient, complete-linkage algorithm imple-
mented in mcClust. Or, a researcher might want to use a different
chimera check tool other than UCHIME to identify chimeric
sequences.

The FGP offers a “pipeline” where researchers can assemble
a set of analysis tools to process a nucleotide sequence file, filter

chimeric sequences, translate the nucleotide sequences, align, and
cluster the protein sequences and additionally run the optional
cluster file analysis tools. By using the pipeline, instead of running
the individual tools, researchers can avoid uploading and down-
loading all the intermediate result files and, instead, get one result
archive containing all the files generated during processing.

INITIAL PROCESS TOOL
This tool takes read files produced by the sequencer software,
separates the reads by sample for multiplexed runs, and discards
reads not passing researcher-specified quality filter values. If a tag
[also known as barcode or Multiplex Identifier (MID)] file is spec-
ified, input sequences are sorted by tag before processing. PCR
primers are identified and the read is trimmed up to or includ-
ing the sequencing primer. The sequencing primer can optionally
be left on reads; this can be beneficial when working with very
short amplicons. This process, illustrated in Figure 1, discards
sequences failing the following filters (in order): (1) number of
differences to the forward amplification primer (Forward Primer
filter), (2) number of differences to the reverse amplification
primer (Reverse Primer filter), (3) number of ambiguous bases (N
filter), (4) length of the sequence (Length filter), and (5) estimated
read error rate (Read Q Score filter).

Inputs
Read files in FASTA, FASTQ, and SFF format, or a compressed
file containing multiple sequence files. If a FASTA file is uploaded,
researchers can optionally supply a separate quality file in QUAL
format, a FASTA-like format where the sequence string is replaced
by the integer quality scores for a sequence, each separated by a
space. Researchers can optionally upload a Tag File containing a
tab-delimited list of tag, sample ID pairs. Researchers supply a list
of forward primers using standard IUPAC ambiguity characters
for degenerate positions and an optional list of reverse primers.
At least one sequence file and one forward primer are required.

The Forward Primer filter searches the read for the best match
to one of the specified forward primers, allowing up to a specified
number of differences (default: 2). If a match is not found, the
read is discarded. The 5′ end of the read, up to and including the
match, is then removed unless the Keep Primer option is specified.

FIGURE 1 | Inputs, outputs, and the filters applied, in order, by Initial

Process.
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The Reverse Primer filter is similar to the Forward Primer
filter. This filter searches for the best match to one of the speci-
fied reverse primers up to a user-specified number of differences
(default: 1). However, since in practice sequencers often do not
read to the end of the template, this filter then attempts to find a
reverse primer prefix at the end of the read using a relaxed match-
ing heuristic that weights a match as 1, a difference as −6, and
requires a final weight of 6 or more. No differences are allowed if
the user specifies 0 differences. If a match is not found, the read
is discarded. The 3′ portion of the read starting at the match is
then removed unless the “Keep Primer” option is specified. If no
reverse primer sequences are provided, this filter is not applied.

The N filter discards reads containing more uncalled bases,
“N”s, than the allowance specified by the researcher (default: 0).

The Length filter discards reads that are shorter than the
researcher-specified minimum length (default: 150) after apply-
ing the above filters. The measured length will not include the
primer portion unless the “Keep Primer” option is specified.

The Read Q Score filter discards reads with a predicted error
rate greater than specified. Input as rQ (default: 20; See methods),
where the predicted error rate is 10(−rQ/10).

Outputs
A compressed file of a directory containing a set of subdirecto-
ries, one for each tag plus a NoTag subdirectory for reads that did
not match any of the input tags. Each directory contains trimmed
sequences and quality files in FASTA format, quality and length
statistics in text and graphical formats, a text file listing the reads
that failed a filtering step and which filter it failed, a text file list-
ing the best matching primer and the edit distance for each read,
and a summary file with information such as the number of reads
matching the tag and passing each filter. The trimmed sequence
and quality files are ready for use in additional analysis steps. The
other output files can be useful in troubleshooting sequencing
problems such as excessive numbers of short reads, high errors
in primer regions or low sequence quality.

DEREPLICATOR TOOL
The dereplicator tool is designed to “de-duplicate” one or more
input sequence files to speed up computationally intensive tools
by avoiding performing the same analysis on exact duplicate
sequence strings. The dereplicator tool works by collapsing iden-
tical sequence strings down to a single unique entry, keeping
track of the IDs of the duplicate sequence strings in an ID map-
ping file, and for each sequence, the input file name in a sample
mapping file. The explode mappings tool takes a de-duplicated
sequence file and associated ID and sample mapping to reinflate
to a fully replicated sequence file. To improve the speed, many
of the web tools use the dereplicator tool internally. These tools
return the intermediate de-duplicated output files along with the
fully replicated results.

Inputs
Nucleotide sequence file(s).

Outputs
(1) A FASTA file of the unique sequences from the input sequence
file, (2) an ID mapping file, with each line consisting of a list of

sequence IDs for identical sequences in the input sequence file,
the first of which is used in the FASTA output file, (3) a sample
mapping file containing a list of sequence ID, sample name pairs
for each sequence.

CHIMERA CHECK
The Chimera Check tool uses UCHIME from the USEARCH
package (Edgar et al., 2011) to detect chimeric sequences from
an amplicon sequence file. Note that UCHIME is run in de
novo mode, which relies on abundance information contained
in the original sequence read files. Sequence files in which read
abundances have been altered are not appropriate in this mode.

Inputs
Nucleotide sequence file(s).

Outputs
(1) A directory named “chimera_check” which contains the
raw UCHIME results for unique sequences only, (2) a direc-
tory named “chimera_filtered_sequences” containing FASTA files
for the non-chimeric sequences, (3) a directory named “fil-
tered_mapping” containing the ID mapping and sample mapping
files for the non-chimeric sequences.

DEFINED COMMUNITY ANALYSIS TOOL
This tool compares reads to the set of known sequences for ampli-
fication targets in the amplified DNA. It determines the numbers
of amplicons corresponding to each amplification target and the
numbers and types of errors present in the reads. Three types of
errors are measured: nucleotide insertion, deletion, and substi-
tution. All of these measures can be used to assess the quality
of a sequencing run, and tune processing and quality filtering
parameters for analysis of experimental samples.

Inputs
A nucleotide sequence file containing the input reads in
FASTA/FASTQ format, an optional quality file in QUAL format
if a FASTA sequence file is used, and a FASTA file containing
the known amplification target reference sequences. The ampli-
con reads and the reference sequences should cover the identical
region. It may be convenient to trim the reference sequences
to match the exact region being sequenced by using the Initial
Process tool with corresponding forward and reverse primers.

Outputs
A compressed file containing the following results: (1) a text
file with pairwise alignments between each read and its closest
reference sequence, (2) a tab-delimited file containing detailed
information about each substitution error, including the read ID,
closest reference sequence ID, substitution position in the align-
ment, the expected base and observed base, (3) a tab-delimited
file containing detailed information about each insertion and
deletion error, including read ID, closest reference sequence ID,
indel position in the alignment, expected homopolymer length,
observed homopolymer length, indel base, indel position in
the read, indel position in the reference, and Q score of the
extra base for insertions, (4) a tab-delimited file containing
rQ scores for each sequence if quality file provided, and (5) a
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summary file including total substitutions and indels, the num-
ber of reads per target reference, and errors summarized by
type, reference and rQ score. This summary can be input into
a spreadsheet program to produce summary charts. A Python
script can be downloaded from the RDPStaff GitHub reposi-
tory (http://github.com/rdpstaff/fungene_pipeline/) to produce
the summary from the other four output files with additional
options or on a subset of the reads to avoid having to reprocess
an entire defined community to tweak input parameters.

FRAMEBOT
FrameBot (Wang et al., 2013) is a frameshift-correction and near-
est neighbor assignment tool. The online version of FrameBot
has reference sequence sets compiled for all the genes included
in the FGP through collaboration with researchers. Researchers
can alternatively supply their own reference set when processing
sequences with FrameBot.

Inputs
Nucleotide sequence file(s) and either a Gene Name chosen from
the pre-configured reference sets or a file with target protein refer-
ence sequences. The aligned protein length cutoff option (default:
80) discards sequences that are below the length cutoff. The per-
cent protein identity cutoff (default: 0.4) discards the reads with
lower protein identity. These options can be used to filter out
non-target reads.

Outputs
The compressed output file, when expanded, contains: (1) a direc-
tory named “framebot” containing the raw FrameBot results
for unique sequences only, a text file containing the pairwise
alignment of the passed sequences to the nearest neighbor in
the reference set, a FASTA file with frameshift-corrected pro-
tein sequences, a FASTA file with frameshift-corrected nucleotide
sequences, a text file containing the pairwise alignment of the
failed sequences, and a FASTA file with the failed nucleotide
sequences; (2) a directory named “filtered_sequences” containing
FASTA files of the frameshift-corrected protein sequences; (3) a
directory named “filtered_mapping” containing the ID mapping
and the sample mapping files for the sequences passing FrameBot.

ALIGNER
The alignment tool uses HMMER3 to align protein sequences
to a model for a gene family. Sequence alignments attempt to
place homologous residues for the different sequences into the
same alignment column, enabling downstream analysis, e.g., phy-
logenetic reconstruction and gene family modeling. Alignments
produced by the FGP Aligner are comparable to each other, for
the same gene family, however, the files cannot be concatenated
to create a valid alignment file. Instead the alignments must be
merged; this is done automatically by FGP tools when a researcher
uploads multiple aligned sequence files.

Inputs
FASTA formatted protein sequence file(s). The researcher must
also select the gene family with which to align the uploaded
sequences.

Outputs
The resulting alignment file is contained in the result archive. The
alignment file is in FASTA format and contains one additional
meta sequence: #=GC_RF. This sequence defines the columns of
the MSA that are comparable (non-insert) positions and must be
present in all alignment files uploaded to FGP tools.

MCCLUST
The mcClust tool computes the pairwise uncorrected distances
between sequences and then performs complete linkage hierar-
chical clustering on the resulting distance matrix. Clustering is
used in OTU analysis and is typically an intermediate step to
obtain an OTU by sample matrix for statistical analysis. mcClust
reports all clusters up to a specified distance cutoff at a set inter-
val (step). A sample mapping file can be provided to override
mcClust’s default behavior of treating each input file as a distinct
sample. The sample mapping file should contain the same num-
ber of sequence IDs as the sequences uploaded. Each line contains
a sequence ID and the name of the sample it comes from sep-
arated by a space, the sample name should not contain spaces.
The output cluster file can be converted to BIOM (McDonald
et al., 2012) format using a tool available in the mcClust pack-
age. Also the cluster file can be converted to a tab delimited OTU
abundance matrix format usable by many statistical tools via the
Cluster to R-Format tool.

Inputs
Aligned sequence file(s), distance cutoff (default: 0.5), step size
(default: 0.01), and optional sample mapping file.

Outputs
A cluster file in the RDP cluster file format (.clust). The first line
contains a list of the sample names and the second the number
of sequences from each sample. Then, at each cutoff, the distance
is listed along with the total number of clusters at that distance
followed by the detailed cluster membership. Each cluster is one
line per sample with the same cluster ID, followed by the name of
the sample, number of sequences in the cluster, and finally a list
of all sequence IDs in that cluster. Samples with no sequences in a
given cluster are not listed in the cluster file to save space.

REPRESENTATIVE SEQUENCE TOOL
The representative sequence tool selects a sequence from each
cluster in a cluster file as the representative for that cluster.
Researchers can then use this single sequence as a proxy for
the cluster in downstream analysis and apply the results to all
sequences in the cluster. Care must be used to ensure results trans-
ferred from a representative sequence to a cluster are not overly
specific for the distance between the sequences in the clusters.
For instance, at a 10% protein distance, all sequences in a cluster
may not be from the same species. The representative sequence is
selected by the method of least squares.

Inputs
A cluster file in RDP cluster file format (.clust) and sequence
alignment file as well as the clustering distance at which to find
representative sequences.
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Outputs
The resulting archive contains a FASTA file with the aligned rep-
resentative sequence for each cluster; the cluster is listed in the
description field for each sequence in the FASTA file.

DIVERSITY ESTIMATES
The FGP offers diversity estimate tools for computing several
alpha and beta diversity estimates and rarefaction curves from a
cluster file.

Rarefaction estimates OTU richness as a function of sampling
effort and is commonly used to assess whether the sequencing
depth is sufficient to capture most diversity. The output archive
file contains graphs of the rarefaction curves for each sample in
the uploaded cluster file and text files containing the data used to
generate the rarefaction curves.

Shannon and Chao1 Indices are two alpha diversity estimates.
Shannon Index is used to assess both richness and evenness of
OTUs in the sample, while Chao1 estimates the number of OTUs
in the sample adjusted for unseen diversity. The result archive
contains a text file listing alpha diversity estimates for every
sample at each distance cutoff in the uploaded cluster file.

Jaccard and Sørensen Indices are two beta diversity measures
of the similarity between samples. In FGP, these two indices are
computed with Chao abundance corrections (Chao et al., 2006).
This tool requires that two or more samples be represented in
the input cluster file, i.e., a cluster file derived from two or more
alignment files. The result archive contains the sample similarity
matrices, one file per distance measure (Jaccard or Sørensen) and
per distance cutoff. A dendrogram generated from the UPGMA
clustering of the sample similarity matrices as well as a heatmap
representing the sample similarities are included for each distance
cutoff. These images are generated using R with a script, which
is also included in the download archive and can be modified to
regenerate the images.

USE CASE
Here we use the three defined community data sets to demon-
strate use of the FGP analysis tools on NGS sequencing data. We
concentrate on samples amplified from genomic DNA of a set of
known organisms (a “mock community”), as it is good practice
to include one or more such control samples with each sequencer
run. This helps troubleshoot any problems that may arise during
both amplification and sequencing steps, and can provide impor-
tant quality control information for the sequencer run. These data
can be used to optimize the processing parameters for the partic-
ular amplicon and, more importantly, help validate comparisons
between samples sequenced on different sequencer runs, as the
quality of sequencing data can vary between different runs and
between minor vender platform updates.

A well-constructed defined community should contain organ-
isms for which whole genome sequences are available and
where copies of the targeted gene(s) are found across multi-
ple organisms representing the range of diversity expected in
the experimental samples. Inclusion of organisms with closely
related paralogs can help define the primer specificity, as can
inclusion of targets with varying degrees of differences to the
primers. For example, the Human Microbiome Project (HMP)

developed a defined community consisting of genomic DNA
from 22 organisms as proxy for human associated communities
(http://www.hmpdacc.org).

First we examine amplification of a 321 bp region of the nifH
gene coding for nitrogenase reductase from a defined commu-
nity made up of three organisms known to fix nitrogen. Although
a community of only three members, this example illustrates
several important points in a control. The chosen organisms
come from three different bacterial phyla. The genome of one,
Desulfitobacterium hafniense DCB-2, in addition to the nifH gene,
contains three copies of nifH-like genes with different degrees of
primer match that could possibly co-amplify with nifH. Another
member, Nostoc sp. 7120, contains two nifH gene copies with
different degrees of primer match. Careful selection of PCR con-
ditions could be used to optimize nifH target amplification while
limiting amplification of non-target nifH-like genes (although
beyond the scope of this work). The nifH control amplifica-
tion was multiplexed with 10 other amplified nifH samples and
sequenced on the 454 GS FLX Titanium platform.

INITIAL PROCESSING
We first processed the sequencing run containing the NIFH
defined community sample using the Initial Processing tool to
sort reads by tag using the default quality filtering parameters:
maximum forward primer differences 2, reverse primer differ-
ences 1, no Ns, minimum length 300, and minimum rQ score
20. Some of these choices are pragmatic; the chance of iden-
tifying the wrong read region as a primer match, even when
allowing for two differences, is low for primers of average length
and degeneracy. The presence of Ns (uncalled bases) in primer
regions has been linked to low quality sequences (Huse et al.,
2007). The length filter setting should normally reflect what is
known about the expected amplicon length distribution. For the
vast majority of nifH genes, the amplified gene fragment will be
about 321 bp long. Using a slightly lower cutoff will still remove
aberrant short amplicons, such as primer-dimers. We applied
a moderate rQ score filter of 20. Using an rQ cutoff can help
remove low quality sequences, but a high cutoff, as was suggested
(Kunin et al., 2010), can lead to taxon specific bias, as shown
below.

From the summary output file, 5790 reads matched the tag,
and 5505 (95%) passed all filter steps. There were 249 reads that
failed either the Forward Primer or Reverse Primer filters, 23 that
failed the 0 N filter, nine that were shorter than 300 bases, and
four with rQ score less than 20. These filters removed abnor-
mal reads—those from aberrant PCR products, for example. In
our experience, it’s not uncommon for 5–10% of reads to be fil-
tered from an otherwise good run. If there are more than this, the
Initial Process output files can be used to examine the reason each
read failed to help troubleshoot the amplification and sequencing
steps.

At this stage we can use the FrameBot tool to detect and
correct frameshifts, and to determine the source of each read.
If this were a sample of unknowns, FrameBot could be used
to find the closest matching reference sequence to each read,
along with the percent identity. FrameBot requires a set of ref-
erence sequences. Here we used a set of nifH gene sequences
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derived from the FGR, making sure to include the seven nifH
and nifH-like genes carried by the three defined community
members (Table 5). The Poly primers we used do not perfectly
match the reference organisms with the exception of B. xenovo-
rans LB400. [A recent review of nifH primers found several other
primer pairs with better overall coverage (Gaby and Buckley,
2012)]. Only three genes, one from each organism, produced
significant reads. It is notoriously hard to quantify and mix
equimolar amounts of genomic DNAs, but discrepancies between
input molar ratios of genomic DNAs and numbers of amplicon
sequence reads have been noted before (Jumpstart Consortium
Human Microbiome Project Data Generation Working Group,
2012). The results between the four D. hafniense genes and
between the two Nostoc sp. genes correlate with the num-
ber of differences to the PCR primer regions on the genome
sequences. Note that this is not because the resulting ampli-
cons were rejected by the primer filters. After the initial rounds
of primer hybridization and extension, the amplicon primer
regions match the sequence of, and are physically derived
from, the synthetic oligonucleotide primers, not the genome
sequence.

DEFINED COMMUNITY ERROR ANALYSIS
It can be very difficult to assess the quality of a sequencer run
from the sequencer output statistics or even from the num-
ber and types of anomalies flagged by the Initial Process tool.
Also, the effects of the Initial Process filters can vary depend-
ing on the specific amplicon and the overall quality of the
sequencer run, so examining the effects of the Initial Process
options on a defined community sample can help optimize the
analysis parameters used for the experimental samples. Here we
used our Defined Community Analysis tool to measure error
types and rates, and two third-party tools to detect chimeric
and contaminant reads. In addition to the NIFH-defined com-
munity sample used above, we will analyze two samples of buk

Table 5 | Number of amplicon reads that passed Initial Process

assigned to each NIFH defined community organism.

Gene ID Strain Primer differences Reads

Forward Reverse

ACL19109.1 Desulfitobacterium
hafniense DCB-2

1 0 3784

ACL19859.1 Desulfitobacterium
hafniense DCB-2

2 2 4

ACL19409.1 Desulfitobacterium
hafniense DCB-2

4 6 0

ACL19588.1 Desulfitobacterium
hafniense DCB-2

1 3 0

BAB73411.1 Nostoc sp. 7120 1 1 405

BAB72831.1 Nostoc sp. 7120 1 2 2*

YP_553849.1 Burkholderia
xenovorans LB400

0 0 1310

*These two sequences were poor matches at the amino acid level. Further

testing found that both were chimeric sequences between Nostoc sp. 7120 and

B. xenovorans LB400.

gene fragments (coding for butyrate kinase) amplified from a
second defined community. To better match the diversity of
known buk genes, three primer sets were used and the prod-
ucts mixed after amplification. The amplicon region between the
three forward primers and three reverse primers does not start
or end at the same position (off by 1, or 3). We truncated the
primer sequences submitted for Initial Process such that they
ended at the same relative position (Figure 2). The BUK1 and
BUK2 samples were amplified separately and each was multi-
plexed with additional samples for sequencing. The BUK1 sample
was sequenced using the 454 FLX Titanium platform, while the
BUK2 sample was sequenced on the 454 GS Junior platform
(Table 6).

To examine the errors in all three defined community samples,
we first passed the raw read data through the Initial Processing
tool using less stringent filtering than above: maximum for-
ward primer differences 2, reverse primer differences 2, no Ns,
minimum length 300, and rQ score of 0. This allowed more

FIGURE 2 | buk amplification primers (Vital et al., 2013). Bases in gray
were not used as the primer sequence inputs in the Initial Process in order
to capture the same gene region from each read.

Table 6 | Number of amplicon reads that passed Initial Process

assigned to each BUK defined community organism.

Gene ID Strain Primer differences Match

BUK1

reads

Match

BUK2

readsForward Rev.

NP_811465.1 B.
thetaiotaomicron
Strain E50

3 3 0 0

YP_079736.1 B. licheniformis
14580

0 0 749 363

NP_349675.1 C.
acetobutylicum
ATCC 824

0 0 68 229

NP_348286.1 C.
acetobutylicum
ATCC 824 2nd

0 1 38 22

YP_001086582.1 C. difficile 630 0 1 1183 82

YP_697036.1 C. perfringens
ATCC 13124

0 0 244 1110
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error-prone sequences to pass so we could explore the relation-
ship of the number of reverse primer differences and quality
score to sequence errors. In this example, we focus on the impact
of the rQ Score filter, to show the potential unintended conse-
quences of too stringent quality filtering, and the Reverse Primer
filter because errors tend to occur more frequently in the distal
end of the reads (Gilles et al., 2011) hence errors in the reverse
primer may be an indication of high distal sequence error rates.
But the tools provide the necessary information to allow users
to examine the effects of the Forward Primer filter and N filter,
if desired.

Errors were quantified using the Define Community Analysis
tool, which compares the nucleotide reads to the correspond-
ing amplicon region from the defined community organisms.
The summary files for the three samples were then loaded into
Excel spreadsheets to calculate the error rates. A small number
of reads had a relatively high percentage of differences to the
known defined community. These usually represent small num-
bers of chimeric or contaminant reads. The sensitivity of the
amplicon PCR sequencing method is one of its strengths, but
it also means that it is common for small amounts of contami-
nants to be represented in the resulting reads. If the numbers are
small, they will have little effect on experimental samples and,
if desired, can be excluded when the summary files are regen-
erated using an option with the Python script described in the
Tool Description section. For these examples, we verified that
some of the reads with ≥10% differences to the closest com-
munity sequence were chimeric, using UCHIME (Edgar et al.,
2011), and using BLASTN via the NCBI BLAST website (Altschul
et al., 1990) we verified most others were closely related to nifH
genes from organisms not in the defined community and thus
likely contaminants (Table 7). These reads were excluded from
further analysis. The overall error rate per base was 0.13% for
NIFH, 0.41% for BUK1, and 1.2% for BUK2. The rates for the
first two compare favorably with the claimed error rate for
the 454 Titanium platform (1.07%; Gilles et al., 2011), while
the error rate for BUK2 is similar to the claimed error rate
for the junior platform (1.88%; Loman et al., 2012). The num-
ber of errors (nucleotide insertions, deletions, and substitutions)
for each sequence ranged from 0 to 39. For the NIFH sample,
76.3% of reads perfectly matched the defined community, while
only 28.1% and 3% of the BUK1 and BUK2 reads, respectively,
matched the defined community perfectly. The buk amplicon is
longer than the nifH amplicon, 420 vs. 321 bp, explaining some
of the error rate differences; but as the two BUK samples illus-
trate, there can be a large difference in error rates between runs,
even when both runs have error rates better than the expected
platform performance.

To examine the effects of the two filters in detail, the result
files were parsed using the Python script to produce additional
summary files for various subsets of the reads. For example,
by excluding reads with 0 difference to the reverse primer, we
obtained the summary result for reads with 1 or 2 differences to
the reverse primer.

Changing the Initial Process filters will modify both the
number and quality of sequences passing the filters. To illus-
trate this point, we re-ran the three samples allowing only
0, 1, or 2 differences to the Reverse Primer (Figure 3).
Only a few additional sequences passed with 2 differences
for the BUK1 and BUK2 samples and none for the NIFH
sample. In all three cases, reads with no reverse primer
differences averaged fewer errors, even though the primer
regions were not included in the error count. This is largely
due to increasing indel errors with increasing primer differ-
ences. Substitution errors differed only slightly with primer
differences. Whether it makes sense to discard reads with

FIGURE 3 | Indels and substitutions varying by differences to reverse

primer. (A) Fraction of reads with the given number of indels for each
reverse primer difference. (B) Fraction of reads with the given numbers of
substitutions for each reverse primer difference. (C) Fraction of total reads
with exactly the specified number of differences to the reverse primer.
Eight BUK1, 57 BUK2, and no NIFH reads had two primer differences (NIFH
and BUK1 with two differences were not shown).

Table 7 | Summary information for the three defined community samples.

Sample Reads passed filtering Average length Error rate per base Reads with no errors(%) Reads with indels(%) Chimeras Contaminants

NIFH 5509 321 0.13 76.3 14.3 25 1

BUK1 2334 420 0.41 28.1 54.6 2 0

BUK2 2206 421 1.2 3.0 85.9 5 11
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FIGURE 4 | (A) Expected error rate and observed error rate per
base (nucleotide insertions, deletions, and substitutions) from the
three defined community data sets. Only data points with more
than 5 reads are shown. The expected error rate was calculated
based on the formula in the Materials and Methods. (B–D)

Percentage of sequences matching each defined community
organism by read Q score for Samples NIFH, BUK1, and BUK2,
respectively. Symbol “×” represents the relative abundance of
reads at each read Q score, and solid lines represent the percent
of sequences above the read Q score cutoff from each sample.

reverse primer errors would depend on the experimental goals.
If the reads are going to be matched to references, e.g., using
FrameBot, additional random errors are unlikely to change
the identity of the nearest matching reference. For the NIFH
sample, less than 6% of reads have reverse primer differ-
ences, while 35% of the BUK2 reads have such differences.
About half BUK2 reads have multiple substitutions, inde-
pendent of primer difference. For unsupervised approaches,
such as clustering, even a small number of reads with high
level of substitutions will greatly inflate the diversity esti-
mates (Reeder and Knight, 2009; Kunin et al., 2010). Using
the Defined Community Analysis tool can help flag this
problem.

Similarly, we modified the rQ Score cutoff to discard those
reads expected to have more sequencing errors. On average,
the actual error rates tracked the expected rates reasonably
well for the NIFH and BUK1 sample, but for the BUK2
sample, lower expected error rates did not translate to fewer
errors for the better scoring reads (Figure 4A). Of more inter-
est was the distribution of read quality scores between dif-
ferent taxa (Figures 4B–D). The effect was not pronounced
for the NIFH sample, only becoming noticeable above an rQ
score of 25, but the effect was much larger for the BUK1
and especially the BUK2 sample, where differences were appar-
ent between taxa at rQ scores below 20. Although judicious
use of a quality cutoff can remove a few aberrant high-error
sequences from an otherwise high quality sequencer run, apply-
ing a stringent quality filter is unlikely to salvage a marginal
sequencer run.

SUMMARY
Microbial processes are interdependent and underpinned by the
community metabolic network, made up of interactive activities
from individual organisms in complex modes. The genes coding
for these activities form the fundamental framework of such
systems and help define the potential relationships between the
microbial populations and the environment. Studying such func-
tional genes, their products, and their spatial-temporal patterns
provides a direct approach for developing dynamic community
models. The FGR provides collections of such genes in an inter-
active platform, while the FGP offers a suite of tools for functional
gene amplicon processing and analysis. Together they enable the
key steps in functional gene-based microbial community analysis,
from target selection and primer analysis to amplicon processing
and ecological discovery.
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