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The nature of life is change. Organisms change developmen-
tally, morphologically, and physiologically, and they also mod-
ify their environments in the process. Such change can be
gradual, abrupt, or even imperceptible components of steady
states. Temporally, change can range from deterministic and
regular processes to stochastic and unusual events. Unusual
changes can result from relatively frequent occurrences, such
as particularly devastating storms or instead highly uncom-
mon events such as volcanic eruptions, ice ages, and asteroid
impacts.

The scale of environmental change can be local or global,
seasonal or climatic. The change can be caused by organisms,
including as incidental consequences of their activities, such as
our own anthropogenic influences on ecosystems and climate.
Responses of organisms to change ranges from behavioral to
physiological to developmental, and can occur over ecological as
well as evolutionary time scales. The study of ecologically relevant
physiological responses is described as physiological ecology, or
ecophysiology, while evolutionary responses represent Darwinian
evolution.

Among effectors of change are parasites, including viruses. In
considering the viruses of bacteria—bacteriophages or phages—
change to hosts can vary from devastating lytic infections
to simple genetic modification via lysogeny. In between are
phages that are released from bacteria chronically, with produc-
tively infected bacteria continuing to replicate. Phage-induced
change also can range from seemingly cosmetic chromatin
rearrangements, as triggered by phage T2 during infection
of Escherichia coli (Murray et al., 1950) to lysogenic conver-
sion as can result in phage-encoded augmentation of bac-
terial pathogenesis (Addy et al, 2012). Bacteria also can
change in response to phage infection, becoming immune to
infecting phages by producing virus-specific interfering RNAs
that are associated with CRISPR/Cas systems (Richter et al.,
2012).

Change within the context of phages themselves is often
more subtle. Phage virions can diffuse or be moved between
microenvironments or ecosystems, resulting in changes in
abiotic conditions. These environmental changes can cause
physiological changes to their adsorption abilities (Conley
and Wood, 1975). Phage physiology also changes dramat-
ically as phages transition from their virion or free state
to that of infecting bacteria, and then again from their
phage-infecting form back to the free virion state. These

transitions sometimes include a state of quiescence called
pseudolysogeny. These pseudolysogenic states can be brought
about by environmental conditions, such as bacterial starvation,
and might help to promote phage survival (Ripp and Miller,
1997).

Examination of populations, communities, and entire ecosys-
tems reveals that phages play integral roles in both eliciting
and responding to disturbances (Figure 1). Phage biology and
the relative impact of phages on bacterial populations can
change, particularly as phage densities increase from those caus-
ing lower versus higher multiplicities of infection (Abedon, 2012).
Environmental change in turn can impact viral population den-
sities, including in terms of antibiotic induction of prophages
(Allen et al., 2011). Bacterial fitness can change not just with
phage quantity but also with phage quality, with greater bacte-
rial fitness costs potentially associated with bacterial evolutionary
responses to predation by multiple versus individual phage types
(Koskella et al., 2012).

Selection on phages acts primarily on host acquisition, on
rates of progeny production, and on survival until host acqui-
sition again becomes a possibility. Suggesting an existence of
tradeoffs associated with the optimization of these organismal
properties, phage infection strategies may change in their effec-
tiveness, pleiotropically, as phages change from infecting one
bacterial strain to another (Duffy et al., 2006). Changes in
the abundances of phages and other viruses in complex com-
munities can occur seasonally in estuarian habitats (Winget
et al., 2011) or in halophilic viral communities in response
to environmental stressors (Santos et al., 2011). Phage abun-
dance also can vary as a function of bacterial abundance,
and in turn the cost to bacteria of phage sensitivity can
increase as a function of phage abundance. Bacterial exis-
tence at high densities thus can result in phage-induced catas-
trophic changes in bacterial densities, a phenomenon that has
been dubbed, “Killing the winner” (Rodriguez-Valera et al.,
2009).

On the level of ecosystems, phages can be key con-
tributors to the mineralization of nutrients as they solu-
bilize host bacteria via lysis. As such they contribute to
the primary ecological process of soils, that of decompo-
sition and decay. In aquatic environments, phages poten-
tially impact global carbon cycling by short circuiting the
movement of carbon and energy to heterotrophic bacte-
ria rather than from cyanobacteria to consumer eukaryotes
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FIGURE 1 | Bacteriophage population, community, and ecosystem impacts. Examples of phage-associated changes are italicized. Adapted from

(Wilhelm and Suttle, 1999). In addition, phages can be added
deliberately to environments to motivate change, as seen with
phage-mediated biocontrol or phage therapy.

Change thus represents an ongoing and intrinsic aspect
of phage biology, with phages both affecting and effecting
organismal- population-, community-, ecosystem-, and even
global environmental change. In this Research Topic we consider
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