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Dengue Virus (DV) infects between 50 and 100 million people globally, with public health
costs totaling in the billions. It is the causative agent of dengue fever (DF) and dengue
hemorrhagic fever/dengue shock syndrome (DHF/DSS), vector-borne diseases that initially
predominated in the tropics. Due to the expansion of its mosquito vector, Aedes spp., DV
is increasingly becoming a global problem. Infected individuals may present with a wide
spectrum of symptoms, spanning from a mild febrile to a life-threatening illness, which
may include thrombocytopenia, leucopenia, hepatomegaly, hemorrhaging, plasma leakage
and shock. Deciphering the underlining mechanisms responsible for these symptoms has
been hindered by the limited availability of animal models that can induce classic human
pathology. Currently, several permissive non-human primate (NHP) species and mouse
breeds susceptible to adapted DV strains are available. Though virus replication occurs in
these animals, none of them recapitulate the cardinal features of human symptomatology,
with disease only occasionally observed in NHPs. Recently our group established a DV
serotype 2 intravenous infection model with the Indian rhesus macaque, which reliably
produced cutaneous hemorrhages after primary virus exposure. Further manipulation
of experimental parameters (virus strain, immune cell expansion, depletion, etc.) can
refine this model and expand its relevance to human DF. Future goals include applying
this model to elucidate the role of pre-existing immunity upon secondary infection and
immunopathogenesis. Of note, virus titers in primates in vivo and in vitro, even with
our model, have been consistently 1000-fold lower than those found in humans. We
submit that an improved model, capable of demonstrating severe pathogenesis may only
be achieved with higher virus loads. Nonetheless, our DV coagulopathy disease model
is valuable for the study of select pathomechanisms and testing DV drug and vaccine
candidates.
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INTRODUCTION
Dengue Virus (DV), the causative agent of dengue fever (DF),
is the most important vector-borne human pathogen, infect-
ing between 50 and 100 million people annually (Who, 2012).
Moreover, DF is an escalating human problem that is increas-
ingly spreading across the globe and extending in seasonality.
This recent growth is attributed to the expansion in the niche
of the virus-transmitting vectors, primarily Aedes albopictus and
Aedes aegypti (Who, 2011). Thanks to the lack of vector control,
increased human travel and global warming, DF, once considered
a tropical disease, may reach a worldwide distribution.

The majority of DV infections are asymptomatic or mild, but
for about a quarter of infected people, disease may present as an
illness that is indistinguishable from other febrile diseases or as
DF with minor hemorrhagic abnormalities, bone pain, decreases
in platelet counts and leucopenia, the most common form of
disease. Rarely, people present with the severe forms—dengue
hemorrhagic fever (DHF) in which patients display hematomas

with a marked thrombocytopenia or extremely low platelet
counts and dengue shock syndrome (DSS), a disease similar to
DHF but including plasma leakage/heme concentration, pleural
effusion and the increased risk of multi-organ failure (Who and
Tdr, 2009). Other symptoms (abnormal bleeding, melena, hep-
atomegaly, vomiting, etc.) have also been reported (Cobra et al.,
1995). The majority of severe DHF/DSS cases in endemic coun-
tries occur in healthy adolescents 10–24 years of age (Tsai et al.,
2012). Early identification of the causative agent and immedi-
ate hydration therapy with extensive monitoring of symptoms is
important for resolving symptoms and preventing fatal outcomes
(Who and Tdr, 2009). There is currently no targeted therapy to
modulate disease severity of those most vulnerable.

It has been surmised that factors such as genetic susceptibility,
developmental stage, environmental exposures and immune sys-
tem programming induced by previous infections may predispose
young adults to more severe disease (Halstead et al., 2007).
Epidemiological data obtained from endemic countries reveal
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that DHF/DSS most often occurs in people with a secondary anti-
body response, which has led many to champion the antibody-
dependent enhancement (ADE) of infection hypothesis (Endy
et al., 2004; Fox et al., 2011). ADE proponents believe that weakly
specific, cross-reacting antibodies facilitate virus entry into per-
missive cells, increasing titers and thus, disease. Though some
ADE proponents suggest that dengue-specific antibody increases
immunopathology without necessarily enhancing virus replica-
tion (Markoff et al., 1991; Lei et al., 2001; Oishi et al., 2003). On
the contrary, many reports have failed to demonstrate an associ-
ation of DHF/DSS with secondary infection (Murgue et al., 1999,
2000; Cordeiro et al., 2007; Guilarde et al., 2008; Libraty et al.,
2009; Meltzer et al., 2012). A better association may exist between
virus titers and disease severity (Murgue et al., 2000; Libraty
et al., 2002). Despite the uncertainty over ADE, it is required that
this potential risk factor be considered during the formulation
of all vaccines under development (Who, 2011). Standard pre-
ventative modalities incorporate representative antigens of each
serotype in effort to simultaneously induce protection to all four
DV strains.

In the past, vaccines were designed without an exact under-
standing of the mechanism(s) responsible for disease pathogene-
sis; this was done by selecting for candidates that reduced viremia
and elicited strong antibody responses (Cox, 1953; Togo, 1964).
Unfortunately this approach has failed with DV, a pathogen
that does not elicit strong humoral immunity in natural infec-
tions. Neutralizing antibody to DV can be elicited in a variety
of primates (chimpanzees, cynomolgus macaques, African green
monkeys, etc.) after primary infection, but they are often weak
and short-lived (Scherer et al., 1978; Bernardo et al., 2008;
Martin et al., 2009). In addition, protection from viremia has
been reported in rhesus macaques that develop poor neutraliz-
ing antibody titers (Scott et al., 1980; Putnak et al., 1996) and
after the response waned (Raviprakash et al., 2000). Interestingly,
some evidence suggests that humans may also be protected from
disease during high viremia without ever developing specific
antibodies (Stramer et al., 2012; Perng and Chokephaibulkit,
2013); these observations raise concern that neutralizing anti-
body quantification is not the best approach to evaluate vaccine
efficacy.

A more thorough understanding of the mechanisms con-
tributing to disease and protection in humans is clearly needed
to accelerate progress toward better drug and vaccine candidates.
Severe disease is known to arise after the clearance of viremia,
suggesting that DHF/DSS and lethality are more likely immune
than viral-mediated (Who and Tdr, 2009). In fact, immune
activities elicited via antibodies (Saito et al., 2004), complement
(Avirutnan et al., 2006) and T cells (Green et al., 1999) have
been associated with disease in human studies. Importantly, the
delay in severe disease presentation until late after infection lim-
its our ability to interrogate early events that set the stage for
immunopathogenesis. Thrombocytopenia, plasma leakage, and
coagulation abnormalities appear to be the critical phenomena
to prevent in patients, but the events preceding these phenomena
have been incompletely elucidated. Carefully controlled experi-
ments performed in relevant animal models are needed to explore
the dynamics of hematological dysfunction and other factors

potentially involved in dengue disease. Unfortunately an adequate
animal model that is capable of recapitulating human disease is
largely unavailable.

DEVELOPMENT OF DV INFECTION ANIMAL
MODEL SYSTEMS
The search for animal model systems began in the early 1900s,
far before the availability of cell culture techniques to propagate
or quantify virus stocks. Pathogens had to be amplified in ani-
mals that were permissive and quantified by mortality studies.
Unfortunately none of the animals tested (hamster, mouse, rat,
lizard, etc.) ever displayed signs of disease, limiting the progress
in studying DV (Simmons et al., 1931). The research that was
conducted often involved virus propagation in human volunteers,
who suffered from typical DF (Simmons et al., 1931). Eventually,
a young suckling mouse model inoculated intracranially with DV
that displayed mild disease was developed (Sabin and Schlesinger,
1945). This model was quite limited, with paralysis observed only
after 3–4 weeks in 10–20% of the mice, but this provided a start-
ing point for virus adaptation and lead to the first small animal
infection model.

MOUSE MODEL
There are a number of mouse breeds that have been employed
in DV investigations–wildtype, engrafted-SCID, AG129, RAG-hu,
and the NOD/SCID/IL-2Rγ/human CD34 transplant or human-
ized mouse (Lin et al., 1998; Kuruvilla et al., 2007; Zhang et al.,
2007; Mota and Rico-Hesse, 2011; Zompi et al., 2011). AG129
mice have been the most commonly utilized strain; they are highly
susceptible to dengue, replicate virus to high titers and display
vascular leakage (Shresta et al., 2006; Zompi and Harris, 2012).
The NOD/SCID/IL-2Rγ mice reconstituted with human CD34+
cells are infrequently used but have the greatest potential as future
mouse models. These animals demonstrate several symptoms of
human disease (fever, erythema, thrombocytopenia) (Mota and
Rico-Hesse, 2011; Cox et al., 2012).

However, the symptomatology observed with inbred,
immune-compromised mice differs from that seen in humans,
likely because of the susceptibility of various cell lineages and the
extensive differences in immune system dynamics (Nussenblatt
et al., 2010). AG129 mice predominantly display neurological
symptoms and splenomegaly (Schul et al., 2007; Zompi and
Harris, 2012) and engrafted-SCID mice present with paralysis
(Zompi and Harris, 2012). While the humanized mouse may be
the closest to replicating patient pathology, there still remain a
few caveats to using this model. Challenges involved in human-
ized mouse preparation and data interpretation are compounded
by the considerable mouse-to-mouse variation observed (Akkina
et al., 2011). Additionally this mouse model, with murine
stroma and endothelium, cannot completely mimic the immune
response of humans. A number of mechanisms suspected to play
critical roles in dengue pathology are differentially regulated in
these mice. Processes that are dependent on stromal cell inter-
actions, such as B lymphocyte maturation and specific antibody
production (Akkina, 2013), and involve endothelial microparticle
signaling, such as the coagulation cascade (Mairuhu et al., 2003;
Lynch, 2007), may unfold differently in these mice and lead
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to alternative outcomes. The human CD34+ engrafted mouse
model system can provide a great starting point in interpreting
important biological processes involved in human DV disease
but results will still need to be confirmed in non-human primate
(NHP) species.

NON-HUMAN PRIMATE (NHP) MODELS
It has been hypothesized that the close genetic relationship
between primates and humans and the presence of a compara-
ble immune responses make NHPs the best models for studying
DV. While this may be, NHPs have been particularly unreliable
at modeling DV pathology, producing mild symptoms at best
(Scherer et al., 1972; Halstead et al., 1973b). Monkeys thus far
appear to be incapable of succumbing to life-threatening DV dis-
ease. However, several Old and New World primate species are
in fact permissive to experimental DV infection (Scherer et al.,
1978; Schiavetta et al., 2003; Onlamoon et al., 2010; Yoshida et al.,
2012). A recently published review detailed the characteristics of
viremia in many of these species (Hanley et al., 2013). Table 1
summarizes the pathology and immunopathology observed thus
far in ∼20 NHP species from 15 different genera.

The most consistent pathological finding in these animals have
been lymphadenopathy of the inguinal and auxiliary lymph nodes
(Halstead et al., 1973a; Marchette et al., 1973; Scherer et al.,
1978; Schiavetta et al., 2003). In one species, Chlorocebus aethiops
sabaeus, the absence of lymphomegaly (Martin et al., 2009) and
in a few reports, splenomegaly (a rare symptom in humans) were
noted (Scherer et al., 1978; Schiavetta et al., 2003). Fever is a valid
parameter to assess, but its recording in DV-infected primates
is logistically difficult, and is therefore rarely reported (Scherer
et al., 1972). NHPs in general have higher body temperatures
and greater variability than human bodies (Scherer et al., 1972;
Fuller et al., 1985), so unless readings are measured on awake
animals by telemetry, the anesthesia used profoundly alters the
body’s temperature, making accurate readings impossible (Baker
et al., 1976). Another human dengue symptom, cutaneous rashes,
are not commonly observed in primates but may be underre-
ported; also tourniquet tests are never performed on primates
to assess capillary fragility. Behavioral changes, like lethargy, have
been documented in only a few studies (Chandler and Rice, 1923;
Scherer et al., 1978; Schiavetta et al., 2003). In general, primates
kept and bred in captivity rarely display overt disease.

Despite the low incidence of pathology observed in these stud-
ies, dengue infections in primates share many characteristics with
human disease. The onset and duration of viremia is similar to
humans, or about 3–6 days starting from the second day after
inoculation (Freire et al., 2007; Koraka et al., 2007). Leucopenia
has been observed (Onlamoon et al., 2010). Thrombocytopenia
has never been captured in NHPs, likely because of their natu-
rally high platelet counts, but moderate platelet decreases have
been document in M. mulatta (Halstead et al., 1973a; Onlamoon
et al., 2010). A DV-induced reduction of dengue-specific antibod-
ies during the early phases of secondary homologous infection, a
phenomenon observed in viremic patients, has been seen in mar-
mosets (Omatsu et al., 2011). The anti-dengue antibodies that are
elicited in primates are highly cross-reactive against other closely
related flaviviruses (Scherer et al., 1978). DV infection of monkeys

elicits a vigorous innate response (Sariol et al., 2007) leading to
activation and marked shifts in circulating subsets of T, NK, and
NK-T cells in the marmoset model (Yoshida et al., 2013). The
role of DV specific cell-mediated responses in NHP models has
received relatively less attention, although some studies reported
recognition of non-structural proteins in addition to viral com-
ponents by both CD4+ and CD8+ T cells (Koraka et al., 2007;
Mladinich et al., 2012). However, such responses have been dif-
ficult to detect in immunized monkeys, even in those that show
protection from challenge (Chen et al., 2007; Porter et al., 2012).

The similarities observed in these studies imply that primates
may present with more suitable symptoms than mouse mod-
els upon further manipulation. A comparison of the benefits to
using the NHP and murine animal models is given (Table 2).
Several strategies to improve the NHP model may be explored—
for instance increasing the number of permissive cells or altering
the immune environment. Here we discuss boosting viremia with
different virus delivery strategies.

VIRUS DELIVERY
Only a limited number of studies have attempted determining the
infectious dose delivered during natural dengue infection. One
study suggests the amount of DV transmitted by A. aegypti ranges
from 1 × 104 to 1 × 105 (Gubler and Rosen, 1976). However,
there are disagreements over the best methods to conduct such
studies; the controversial points include mosquito species, gen-
eration number, feeding strategy, infection method, incubation
temperature and length, virus strain and technique used to quan-
tify transmitted virus. All these variables have the potential to
affect the infection dynamics and alter the conclusions of the
study (Chamberlain et al., 1954; Grimstad et al., 1980; Mellink,
1982; Watts et al., 1987; Colton et al., 2005; Smith et al., 2005).
Some studies have suggested levels as high as 1 × 108.7 genome
equivalents or almost 1 × 107 PFUs can be transmitted, though
rarely (Colton et al., 2005; Styer et al., 2007). Currently we know
as few as 1000 PFUs can cause viremia and disease symptoms in
humans (Sun et al., 2013). Ultimately the natural inoculum dose
is more suggestive of the amount of virus needed for continual DV
transmission in vivo and does not necessarily reflect the quantity
required for disease induction. Viremia levels and disease may be
less dependent on inoculum size and more contingent on host-
pathogen interactions. These matters should be considered when
modeling DV infection in animals.

Virus delivery to the proper tissues is important for inducing
the appropriate interactions with the host and promoting dis-
ease presentation. DV deposition is believed to occur exclusively
by direct inoculation into the subcutaneous layer by mosquitoes.
However, the subcutaneous infection route does not promote
adequate virus dissemination (Marchette et al., 1973; Pamungkas
et al., 2011). Potentially the virus is restricted by less frequent
encounters with migrating cells and immobilization by attach-
ment to extracellular matrix proteins (Anez et al., 2009). Consider
that mosquito feeding involves the probing of all layers of skin,
including the cutaneous layer and capillaries, to find a blood
meal. These tissues are an integral part of the arbovirus-vector
lifecycle and are frequently evaluated in transmission studies
(Chamberlain et al., 1954; Styer et al., 2007). Virus injected
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Table 1 | Summary of in vivo DV studies.

Primate Route Strain Type Virus

stocka

Doseb Infected Viremiac Findings (source)

Macaca mulatta iv, sc ND ND Humans ND ND ND No disease, leucopenia
(Lavinder and Francis, 1914)

Macaca cyclopis sc, iv, ip ND ND Humans ND ND ND No disease (Koizumi and
Tonomura, 1917)

Macaca mulatta NI ND ND Humans ND Yes ND Animal chilly and morose, rash
on chin, and throat (Chandler
and Rice, 1923)

Macaca fascicularis sc ND ND Humans ND Yes ND First to demonstrate
unquestionably that some
primates were permissive to DV

Cercopithecus callitrichus ND ND Humans ND Yes ND infection but that they are
asymptomatic

Papio spp. ND ND Humans ND No ND

Cercocebus spp. ND ND Humans ND No ND (Blanc et al., 1929)

Macaca mulatta sc, mi ND ND Humans,
mosquitoes

ND No ND

Macaca fascicularis
philippinensis

sc, mi, ic ND ND Humans,
mosquitoes

ND Yes ND No fever, some leukopenia and
lymphocytosis, demonstrated
transmission of DV from
primates to humans through
mosquitoes

Macaca fascicularis
fusca*

sc, mi ND ND Humans,
mosquitoes

ND Yes ND (Simmons et al., 1931)

Pan troglodytes* sc, id Hawaiian NI Human ND Yes ND Mild fever (101◦F) (Paul et al.,
1948)

Homo sapiens id NI NI Human 1d Yes + Low dose gave multiple
patterns of disease: (1)
unmodified attack, (2) short
febrile illness without rash or 3)
no illness but partial immunity

id 10d Yes + Progression of symptoms:(1)
edema and erythema, (2) fever,
(3) maculopapular eruptions
with sparing at the site of the
original skin lesion

into scars Conc.
human
serum

Yes + Unmodified dengue

eye 2E5d Yes + Typical dengue

eye 1E4d No − No disease or immunity

in 1E6d Yes + Unmodified dengue or mild rash

in 1E4d No − No disease or immunity (Sabin,
1952)

(Continued)
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Table 1 | Continued

Primate Route Strain Type Virus

stocka

Doseb Infected Viremiac Findings (source)

Cebus capucinus sc or ip Hawaiian,
NGC

DV1, DV2 Human ND Yes + No overt signs of illness

Ateles geoffroyi Yes +

Ateles fusciceps Yes +

Alouatta palliata Yes +

Callithrix geoffroyi* Yes ND

Saimiri oerstedii Yes ND

Aotus trivirgatus Yes ND (Rosen, 1958)

Hylobates lar sc BKM725-
67

DV1 LLC-MK2 800 Yes + Fever and hemorrhagic
manifestations occurred but
were associated with acute

BKM1179-
67

DV1 800 Lymphomatous leukemia, no
correlation between antibody
titers to

BKM1749 DV2 1.6E3 DV and protection from viremia

24969 DV3 6.6E2

KS168-68 DV4 5E3 (Whitehead et al., 1970)

Saimiri sciureus sc Hawaii DV1 Mice 1E6.4e Yes + Some fever in DV1 infection,

16007 DV1 LLC-MK2 1E5.7 Yes − No platelet, hematocrit or
leukocyte count changes

NGC DV2 Mice 1E6.7e Yes +

NGC DV2 mosquitoes 1E2.5 Yes +
16681 DV2 LLC-MK2 1E5.5 Yes −

Pak-20 DV3 LLC-MK2 1E3.4 Yes 50

16562 DV3 LLC-MK2 1E5.7 Yes −
4328S DV4 LLC-MK2 1E3.9 No −

Saguinus oedipus sc Hawaii DV1 Mice 1E6.4e Yes + Brief fever in DV1 infection

NGC DV2 Mice 1E6.7e Yes +
NGC DV2 Mosquitoes 1E2.5 Yes +
H87 DV3 Mice 1E5.8 Yes −

Pak-20 DV3 LLC-MK2 1E3.4 Yes −
H241 DV4 Mice 1E6.6e No −

Saimiri sciureus in Hawaii DV1 Mice 1E6.4e Yes ND No disease reported

NGC DV2 Mice 1E5e No ND

NGC DV2 mosquitoes 1E2.5 No ND

Pak-20 DV3 LLC-MK2 1E2.1 No ND

H-241 DV4 Mice 1E6.6e No ND

(Continued)
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Table 1 | Continued

Primate Route Strain Type Virus

stocka

Doseb Infected Viremiac Findings (source)

Saguinus oedipus in NGC DV1 Mice 1E5.3e Yes +
H87 DV3 Mice 1E6.2e Yes ND

Pak-20 DV3 LLC-MK2 1E2.7 No ND

H241 DV4 Mice 1E5.6e No ND

Aotus trivirgatus in Hawaii DV1 Mice 1E5.7e No ND

NGC DV2 Mice 1E6.6e Yes ND

Pak-20 DV3 LLC-MK2 1E2.1 Yes ND (Scherer et al., 1972)

Macaca mulatta (Indian) sc 16007 DV1 LLC-MK2 5E5 Yes 1.7E3 Lymphadenopathy in DV1, 2, &
4, rare hemorrhaging in DV1& 4,
leucopenia

16681 DV2 LLC-MK2 5E5 Yes 4.8E2 In DV2 & 4, lymphocytosis was
common

16562 DV3 LLC-MK2 5E5 Yes + Thrombocytopenia in 21–33%
of animals with all serotypes

4328S DV4 LLC-MK2 5E5 Yes 2.8E2 Complement decreases in
secondary DV2, no change in
behavior, eating or prothrombin

Macaca sc, id 16007 DV1 LLC-MK2 NI Yes − No disease

fascicularis 16681 DV2 NI Yes −

fascicularis* 16562 DV3 NI Yes −

4328S DV4 NI Yes −

Chlorocebus sc, id 16007 DV1 LLC-MK2 1E5 Yes + No disease

aethiops* 16681 DV2 1E5 Yes +

16562 DV3 1E4.5 Yes +

Erythrocebus sc, id 16007 DV1 LLC-MK2 NI Yes + No disease

patas 16681 DV2 1E5 Yes +

16562 DV3 1E4.5 Yes −

4328S DV4 1E3.3 Yes − (Halstead et al., 1973a,b)

Macaca mulatta sc 16007 DV1 LLC-MK2 1.2E5 Yes 350 Lymphadenopathy, virus
distribution after sc injection
indicated that most virus did not
move far from the inoculation
site, day after viremia virus was
distributed widely throughout
skin (Marchette et al., 1973)

16681 DV2 2E6 Yes 443

16562 DV3 1E5 Yes 40

4328S DV4 1E6 Yes 1085

Pan troglodytes id, sc 49313 DV1 Mosquitoes 1E3.1 Yes 1E6.6g Nasal discharges and
lymphadenopathy

NC38 DV2 Humans 1E3.6 Yes 1E5.6g Symptoms found in individual
animals

49080 DV3 Mosquitoes 1E2.7 Yes 1E5.2g Splenomegaly, leucopenia

17111 DV4 Mosquitoes 1E2.8 Yes 1E6g Hemorrhage, shaking chill,
lethargy (Scherer et al., 1978)

(Continued)
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Table 1 | Continued

Primate Route Strain Type Virus

stocka

Doseb Infected Viremiac Findings (source)

Macaca mulatta sc 16681 DV2 LLC-MK2 1E5 Yes 1E5.7 Cyclophosphamide treatment
caused chronic infection, 3/9
died, internal hemorrhaging,
enlarged kidney, severe acute
proliferative glomerulonephritis,
pleural effusion, passively
transferred antibody aided viral
clearance (Marchette et al.,
1980)

Macaca mulatta sc PR-159 DV2 FRhL 5.6 Yes ND No disease

H-241 DV4 1.44 (Kraiselburd et al., 1985)

Macaca mulatta &
Macaca fascicularis

is, im, it 16007 DV1 PDK 2.5E5 Yes ND Mild neurovirulence
(Angsubhakorn et al., 1987)

Aotus nancymae sc Western
Pacific 74

DV1 NI 2E4 Yes + Pathology more pronounced in
DV1, mild leucopenia, changes
in attitude and appetite

S16803 DV2 Changes in fecal consistency,
2/20 became lethargic

CH53489 DV3 Common symptoms:
lymphadenopathy, nasal
discharges and splenomegaly
(Schiavetta et al., 2003)

341750 DV4

Aotus sc IQT6152 DV1 NI 1E4 Yes + No disease

nancymae IQT2124 DV2 −
OBS8041 DV2 + (Kochel et al., 2005)

Macaca sc 60305 DV1 Vero 1E5 Yes 1E1.6 No disease

mulatta 16007 DV1 Vero 1E5 Yes 1E2.4

16007 DV1 C6/36 1E5 Yes 1E1.9

40247 DV2 C6/36 1E5 Yes 1E3.6

44/2 DV2 Vero 1E5 Yes 1E2.9

H87 DV3 Vero 1E5 Yes 1E2.7

16562 DV3 Vero 1E5 No −
74886 DV3 C6/36 1E5f Yes 1E2.2 (Freire et al., 2007)

Macaca fascicularis sc 40514 DV1 NI 1E6.4f Yes 400f No disease, characterized T-cell
and neut antibody
cross-reactivity, no changes in

28128 DV4 1E6.2f 20f IFN-γ, TNFα, IL4, IL8, IL10
transcription during infection
(Koraka et al., 2007)

Macaca mulatta sc Western
Pacific 74

DV1 NI 1E4 Yes ND No disease, increases in AST,
transcriptional upregulation of

(Continued)
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Table 1 | Continued

Primate Route Strain Type Virus

stocka

Doseb Infected Viremiac Findings (source)

ISGs, OASs, Mxs, etc., no
increases in cytokine gene
expression (Sariol et al., 2007)

Chlorocebus aethiops
sabaeus

sc SB8553 DV2 NI 1E6 Yes + No fever or lymphomegaly, no
changes in behavior or weight,
no respiratory, digestive or
nervous system disturbances,
lower inoculum titers gave
prolonged viremia and better
neut antibody responses (Martin
et al., 2009)

Macaca mulatta (Indian) iv 16681 DV2 Vero 1E7 Yes ∼8E3 Consistent hemorrhaging in 9/9
animals, decline in platelet
count and leucopenia, elevated
thrombin-antithrombin,
D-dimers, ALT, and CK, no
increases in hematocrit,
prothrombin or activated PTT
(Onlamoon et al., 2010)

Callithrix jacchus sc 02–17/1 DV1 C6/36 3.5E7 Yes 5E5h No disease

DHF0663 DV2 6.7E7 1.6E7h Found differing NK, NKT, and
niave effector memory and
central T-cell kinetics during DV
infection with different strains

DSS1403 DV3 4.5E6 5.5E4h

05-40/1 DV4 1.5E6 2.5E4h

Jam/77/07 DV2 1.2E5 2.8E6h

Mal/77/08 DV2 1.9E5 9.6E6h (Omatsu et al., 2011; Yoshida
et al., 2013)

Homo sapiens sc 45AZ5 DV1 FRhL 2E3 Yes + CD8+T-cell-dervied IFN-γ
associated with protection from
fever and viremia, sIL-R2α

correlated with disease onset
and severity, PBMC-derived
TNF-α, IL-2, 4, 5, 10 did not
correlate with protection or
disease (Gunther et al., 2011;
Sun et al., 2013)CH53489 DV3 FRhL 1E5

Macaca nemestrina sc 98900645 DV3 C6/36 1E7-
1E8

Yes 62.94 Inoculation route influenced
virus-tissue distribution

id 47.98 Minimal hepatitis

iv 58.62 (Pamungkas et al., 2011)

Saguinus midas and
Saguinus labiatus

sc DHF0663 DV2 C6/36 6.7E7 Yes 2.7E6h No disease, CD16+ NK cell
depletion did not alter virus
replication or pathogenesis

iv 2E7h (Yoshida et al., 2012)

(Continued)
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Table 1 | Continued

Primate Route Strain Type Virus

stocka

Doseb Infected Viremiac Findings (source)

Macaca mulatta (Indian) sc NGC DV2 NI 1E5 Yes 257 Day 14 PI showed the highest
levels in T-cell activation,
Anti-NS1, 3, & 5 T-cell
responses were characterized
(Mladinich et al., 2012)

Macaca mulatta
(Chinese)

iv, sc 16681 DV2 Vero 1E7 Yes + Hemorrhaging in 50% of iv
inoculated primates
(unpublished)

aCell type or organism in which DV stock was propagated; bHighest inoculum dose is given when there were variable doses; cTiters given when available; d HID;
eMLD50 or MLD50/ml; f TCID50 or TCID50/ml; gMID50/ml; hRNA/ml; +/−, indicates presence or absence of viremia, ic, intracardial; mi, mosquito inoculation;

iv, intravenous; sc, subcutaneous; id, intradermal, ip, intraperitoneal; in, intranasal; im, intramuscular; is, intraspinal; it, intrathalmic; NI, not indicated; ND, not

determined; MID50, mosquito infectious dose 50; TCID50, tissue culture infectious dose 50; MLD50, suckling mouse intracranial lethal dose 50; HID, human

minimal infectious dose; *indicates species name change.

Table 2 | Relative advantages in using primate and murine model

systems to study DV disease.

Primate models Murine models

Ease of use/cost − +
Susceptibility to human DV strains + −
Mimic human viremia (+) reduced +
Mimic human immune responses + −
MODEL HUMAN DISEASE

Fever − CD34-engrafted
humanized
mouse

Hemorrhages Indian rhesus
monkey

CD34-engrafted
humanized
mouse, C57BL/6

Platelet count reduction Indian rhesus
monkey

CD34-engrafted
humanized
mouse

Hepatomegaly − Balb/c
Pleural effusion − −
CNS disease* − +
DHF/DSS − −
Lethality − +

+, commonly present; −, absent; *Rarely observed in human dengue infections.

directly into these tissues have better access to and faster dissem-
ination throughout the body, affording the virus more oppor-
tunities to rapidly reach distant target cells (Pamungkas et al.,
2011). Additionally, pathology induction is likely promoted by
rapid viral dissemination and replication in distant cells and
organs. This assumption led us to hypothesize that an intravenous
infection strategy would favor wide dissemination and allow
for rapid simultaneous replication of virus in various tissues,
invoking a more pronounced innate immune response, poten-
tially reflective of the human immune environment during high
viremia. Although the kinetics of viremia did not markedly
differ between subcutaneous and intravenous DV2 infection

(Onlamoon et al., 2010; Omatsu et al., 2011), it will be critical
to delineate the overall kinetics of DV dissemination to and repli-
cation in various tissues and how this relates to the induction of
symptoms.

RHESUS MACAQUE MODEL OF COAGULOPATHY
Only a few NHP dengue investigations have reported rashes post-
infection (PI) (Lavinder and Francis, 1914; Halstead et al., 1973b;
Onlamoon et al., 2010). In most of these studies, hemorrhaging
was a rare event. However, our group reported a reproducible
coagulopathy disease model in the Indian rhesus macaque when
9 out of 9 monkeys inoculated intravenously with 1 × 107 PFUs
of DV2 (16681) displayed evidence of subcutaneous hemorrhage
(Onlamoon et al., 2010). The viremia noted in these animals
remained at the high end of the range typically reported in other
NHP studies and were reached relatively consistently at early time
points PI.

The most prominent symptoms observed in our studies
with the Indian rhesus macaque were cutaneous hemorrhages,
starting at Days 3 and 4 PI and lasting as long as 10 days
(Figure 1A) (Onlamoon et al., 2010). In a pilot study using
Chinese rhesus macaques, disease presentation with the same
virus was more modest, suggesting that these NHPs may be
less susceptible to disease. Large hematomas developed in only
one of the two primates infected intravenously with DV2
(Figure 1B).

The dynamics of various leukocyte subsets were followed
longitudinally PI. Similar to human dengue, these animals
experienced the typical leucopenia or a modest but consistent
decrease in white blood cells that reached a nadir at Day 7 PI,
but returned to normal levels by Day 10 (Onlamoon et al., 2010).
Platelets also modestly decreased until Day 3, corresponding to
the time of peak DV RNA load (Noisakran et al., 2012). While
these leukocyte values did not fall out-of-range for macaques the
changes were clearly noticeable and consistent. There was also
a modest decrease in hematocrit, which resolved with the clear-
ance of viremia at Day 7, in spite of continuous blood and bone
marrow (BM) draws (Onlamoon et al., 2010).
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FIGURE 1 | Hematomas are seen in intravenously inoculated rhesus

macaques. (A) Indian rhesus macaques were injected intravenously with
1 × 107 PFUs of DV2 16681 as previously reported (Onlamoon et al., 2010).
Hematomas of various degrees of severity were present on Days 3 till 14
PI. Prominent ecchymoses were visible in two young male animals, RNell
and RYc11, on Day 7. (B) Four Chinese rhesus macaques were injected
intravenously (n = 2) or subcutaneously (n = 2) with 1 × 107 PFUs of DV2
16681 strain. Hemorrhaging was only observed in 1 of 2 IV-injected
monkeys (GT49), depicted in the picture above on Day 6 PI. No hematomas
were observed in subcutaneously inoculated macaques.

A longitudinal monitoring of coagulatory parameters hinted
that a number of features may be important for hemorrhage for-
mation (Onlamoon et al., 2010). Increased time to clotting was
noted during blood collection of some Indian rhesus macaques,
indicating an increased susceptibility toward bleeding. However,
thromboplastin and prothrombin times did not indicate abnor-
mal clotting. Protein C and anti-thrombin III levels did not vary
from pre-inoculation values, but they were predominantly in the
high end of the reference range. Marked elevations were noted for
D-dimers, TAT complexes and protein S, with peaks most consis-
tently present on Days 5–10 PI, corresponding to the resolution
of viremia. This data requires further confirmation with addi-
tional time points, more animals spanning various ages and other
DV isolates. However, we submit that we might for the first time
have a model to investigate coagulopathy similar to DHF, which
can allow for better evaluation of preventative and therapeutic
strategies to prevent pathogenesis, not just infection.

Interestingly, analysis of serum chemistry parameters indi-
cated relatively modest changes for all parameters except cre-
atine phosphokinase (CK), which was markedly elevated on
Day 7 (Onlamoon et al., 2010). CK is a component in
energy metabolism (with multiple isoenzymatic forms: MM,
MB, and BB) that are altered in individuals with a number of
different illnesses (Roberts and Sobel, 1973; Saks et al., 1978).
Heightened levels of CK have been noted in Crimean Congo and
Influenza patients (Middleton et al., 1970; Ergonul et al., 2004).
Additionally, a recent report confirms elevation of this enzyme
in dengue patients and suggests it is linked to muscle weak-
ness/dysfunction during malaise (Misra et al., 2011). However,
CK is a non-specific biomarker that is elevated in various condi-
tions, and thus its diagnostic value is limited. Since these enzymes
are quite highly elevated during DV infection, there could be a

meaningful relationship between CK and disease. CK and cre-
atine phosphates in combination are known as ADP scavengers
and participate in modulating platelet activities, such as aggrega-
tion (Chignard et al., 1979; Chesney et al., 1982; Krishnamurthi
et al., 1984; Jennings, 2009), which may consequently modulate
immune cell activation/function and by extension, pathogenesis
(Wong et al., 2013).

BONE MARROW (BM) TARGETING
The BM can be involved in hemodynamic defects; alterations in
the BM environment may result in altered leukocyte function
and contribute to pathogenesis (Wilson and Trumpp, 2006; Duffy
et al., 2012). DV has long been known to alter hematopoiesis
in human BM (Bierman and Nelson, 1965; La Russa and Innis,
1995). However, collecting BM aspirates from DV patients is
contraindicated. Additionally, infections in patients can be mis-
leading due to the variability in disease onset and the uncertainty
of sample time points. Experimentation in animal models in
which the induction of infection is known allows for better anal-
ysis in real time. Our rhesus monkeys were sampled for BM
repeatedly on a rotating basis resulting in the collection of at least
3 samples at each time point spanning Days 1–14 PI. This has
allowed for us to confirm that BM cellularity is indeed depressed
during early acute DV infection (Noisakran et al., 2012). Aspirates
were also monitored for the presence of DV in attempts to iden-
tify the initial cellular reservoirs of infection. While the general
consensus is that DV targets phagocytes, such acquisition could
be secondary to amplification in other cell types. In vitro both
human and monkey BMs are permissive for DV replication, and
similar to in vivo, peak titers differ by 1000-fold (Figure 2) (Clark
et al., 2012). Characteristics of the early host cells were also eval-
uated in our model both in vivo and in vitro (Clark et al., 2012;
Noisakran et al., 2012). Of interest DV antigen was primarily
detected in CD41+ CD61+ cells during the first 3 days, followed
by a gradual shift toward CD14+ phagocytes at later time points,
coinciding with viral clearance (Clark et al., 2012). The results
suggest that megakaryocytes represent the initial target of DV
in BM, rather than a member of the monocytic lineage. Direct
infection of these cells may account for the altered megakaryocyte
composition (Nelson et al., 1964), impaired platelet function
(Srichaikul and Nimmannitya, 2000; Cheng et al., 2009) and the
incidence of platelet phagocytosis observed in previous studies
(Nelson et al., 1966; Honda et al., 2009; Onlamoon et al., 2010).
Platelet activation and function during the course of infection
has been under-investigated but may be critical for unraveling the
mechanisms responsible for dengue pathology.

PLATELET ACTIVITIES
The role of platelets in the crafting of the immune response
is imperfectly defined and only recently becoming recognized
(Klinger and Jelkmann, 2002; Ombrello et al., 2010). These anu-
cleated cells are able to associate with and deliver signals to
other lineages and shape immune responses. Abnormal platelet
behavior during dengue infection may play a significant role
in modifying lymphocyte, monocyte and granulocyte function.
When platelet-leukocyte interactions were quantified in vivo,
macrophages/monocytes appeared to be the most commonly
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FIGURE 2 | Peak DV titers in rhesus macaque BMs is markedly lower

than that of humans. BMs were acquired and infected as previously
described (Clark et al., 2012). Samples from Days 1 through 14 were
quantified by realtime PCR. Human (red) and monkey (green) titers are
depicted in RNA copy numbers per ml. The in vitro experimentation of
whole BM indicates that human BM is able to produce far more virus than
monkey BM. Titers appear to max out on average closer to Day 1 in monkey
BM but reach their peak (∼1000-fold higher) on Day 3 PI in humans.

associated cell lineage with platelets (Onlamoon et al., 2010),
with a majority of these monocyte-platelet aggregates expressing
activation marker CD62P (Onlamoon et al., 2010). This data is
reminiscent of other reports linking activated monocytes to dis-
ease pathology in humans (Mustafa et al., 2001; Bozza et al., 2008;
Durbin et al., 2008).

Platelets binding to neutrophils and lymphocytes were less
frequent (Figures 3A–C) (Onlamoon et al., 2010). Only about
20–40% of neutrophils were bound with platelets, with 30–60%
expressing CD62P. However, the extend of neutrophil-platelet
aggregatation may be underestimated, since these cells are short-
lived and other markers for neutrophil (CD11b and CD66b) and
platelet (CD154, cleaved PAR1, CD63) activation were not tested
(Heijnen et al., 1999; Claytor et al., 2003; Kinhult et al., 2003;
Sprague et al., 2008). Lymphocyte-platelet aggregation occurred
the least (Figures 3B,C). This was examined with Indian and
Chinese rhesus macaques during primary DV2 (16681) infec-
tion and in Chinese macaques during secondary DV3 (Hawaii)
infection (Figures 3B,C respectively). Since the dominant pheno-
type of the lymphocyte-platelet aggregate (LymPA) population
was CD62P negative, this was the only population evaluated.
Chinese and Indian macaques have different baseline levels of
CD41+CD61+CD62P− lymphocytes, approximately 2% and
12%, respectively (Figures 3B,C). The average response from 5
Indian macaques suggests that the LymPA population is down-
regulated (to about 7%) during infection but returns to normal
levels after viral clearance (Figure 3B). In Chinese macaques,
there appeared to be higher LymPA frequencies with the IV-
inoculated monkeys, ranging up to 8% but only as high as 4%
in SC-inoculated primates (Figure 3C). There was a late phase

expansion of this population after primary but not after sec-
ondary infection. The functional significance of such changes is
unclear at the present, but it would be interesting to compare
these findings with other viral infections, like influenza, which
produce robust long-lived B cell memory responses (Ikonen et al.,
2010; Li et al., 2012). It remains to be seen whether this obser-
vation represents a common immune phenomenon or a DV
specific response, which would potentially open a new line of
investigation.

POTENTIAL REFINEMENTS TO THE COAGULOPATHY
MONKEY MODEL
VIRUS SELECTION
While the data obtained with our rhesus macaque model appears
promising, many parameters remain to be examined and refined.
Arguably, the most important factor to evaluate is different
strains. The viruses we used had been propagated extensively in
cell culture, and thus the next step will be to evaluate primary DV
strains, which are considered more capable of inducing pathology.
Interestingly, the earliest DV studies (pre-1940s) in primates were
conducted with human-derived virus that had never been propa-
gated through cell culture (Lavinder and Francis, 1914; Chandler
and Rice, 1923; Blanc et al., 1929; Simmons et al., 1931), yet
these investigations induced minimal overt disease. The human-
derived Hawaiian and New Guinea strains from Sabin’s work
were pathogenic in humans (when inoculated intradermally) but
demonstrated no pathology in Rosen’s study when inoculated
into various primate species via a subcutaneous or intraperi-
toneal route (Sabin, 1952; Rosen, 1958). In recent studies, a large
number of the strains employed were recent clinical isolates min-
imally passaged in vitro (Freire et al., 2007; Omatsu et al., 2011;
Pamungkas et al., 2011; Yoshida et al., 2012). While these viruses
are often close in sequence to the original isolate, these strains
are not necessarily the most virulent or capable of achieving the
targeted pathology in primates (Omatsu et al., 2011) and may
require further evaluation before use in vivo.

The major drawbacks of primate models are the logistics and
cost. Ideally one would perform preliminary experiments and
evaluate strain virulence through a screening tool before in vivo
studies with NHPs. Virulence could be assessed by testing the
induction of disease in the humanized mouse or potentially
by growth characteristics in monkey whole BM. Alternatively,
passage of dengue in organisms (humanized mice or rhesus
macaques) may ensure that the strain is more fit for these stud-
ies. It has been suggested that mouse-passaged viruses are more
capable at causing viremia in NHPs than in vitro-passaged strains
(Scherer et al., 1972).

Considering the viruses that have already been tested in NHPs,
a select few appear promising for future studies. WP-74 (DV1)
and S16803 (DV2) caused extreme lethargy in owl monkeys
(Schiavetta et al., 2003) but not in cynomolgus (Koraka et al.,
2007) or rhesus macaques (Ajariyakhajorn et al., 2005; Robert
Putnak et al., 2005). Besides the 16681 DV2 virus, strains 49313
(DV1), 16007 (DV1), and 43283 (DV4) were associated with
hemorrhage in previous studies (Halstead et al., 1973b; Scherer
et al., 1978). Testing these strains in our Indian macaque model
could lead to a more frequent presentation of coagulopathy and
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FIGURE 3 | Dynamics of lymphocyte-platelet aggregates (LymPA) during

DV infection. Indian and Chinese rhesus macaques were infected as detailed
in Figure 1. In addition, the Chinese macaques were challenged 2 months
later with DV3 strain Hawaii. Peripheral blood samples obtained on Days 1
through 14 were subjected to flow cytometric analysis with CD45, CD41,
CD61, and CD62P fluorescent antibodies. The frequencies of
CD45+CD41+CD61+CD62P− cells over time is graphed. (A) Panels to
illustrate the gating strategy employed to analyze lymphocyte-platelet

aggregates (LymPA). (B) The kinetics of LymPA in Indian rhesus macaques.
The top graph displays LymPA frequencies from 3 individual macaques and
the bottom graph, the average population frequency from 5 primates. The
LymPA population is down-regulated during DV infection in Indian rhesus
macaques. (C) LymPA kinetics in subcutaneously and intravenously infected
Chinese rhesus macaques during primary DV2 (green line) and secondary
DV3 infection (red line). The frequency of LymPA increases late after primary
but not after secondary infection.

models for 3 of the 4 dengue serotypes. For future preclinical
vaccine and drug studies, one strain of each serotype that can
induce easily quantifiable disease will be needed for better vaccine
evaluation.

OTHER PARAMETERS
A number of additional parameters may be manipulated in rhe-
sus macaques that could amplify disease severity. Factors from
infected mosquito saliva may potentiate the virus in down-
modulating immune responses during the initiation of infec-
tion and help raise peak titer levels (Cox et al., 2012; Reagan
et al., 2012; Surasombatpattana et al., 2012; Le Coupanec et al.,
2013). Mosquito inoculation of DV into NHPs was modeled
long ago without inducing much disease (Simmons et al.,
1931). However, a number of confounding factors (preexisting
immunity, inoculum quality, etc.) were not accounted for in these
studies, indicating that this approach is worth revisiting.

Modulation of in vivo cell populations with drug treatments
has rarely been attempted (Marchette et al., 1980; Yoshida et al.,
2012). Potential treatment of macaques with megakaryocytic
growth factors, like thrombopoetin, could increase the number
of early permissive targets and enhance peak viral load if indeed
megakaryocytes are the primary replication site for DV (Nakorn
et al., 2003). General immunosuppression has been attempted but
led to chronic viremia, which does not mimic human DV disease
(Marchette et al., 1980). Depletion of macrophages, neutrophils
or other innate immune responders may enhance titers by altering
the dynamics of viral clearance. One previous attempt at CD16+
natural killer cell depletion did not modulate virus titers (Yoshida
et al., 2012), although such depletions are generally partial at
best. Additionally, various inoculum sizes and alternative inocula-
tion routes may be tested. The intradermal inoculation route was
suggested to lead to better virus tissue distribution, but did not
result in better dissemination to the BM (Pamungkas et al., 2011).
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Characterization of these parameters are necessary for the further
refinement of the coagulopathy disease animal model.

HOST CHARACTERISTICS OR GENETIC FACTORS THAT
INCREASE SUSCEPTIBILITY TO COAGULOPATHY
Epidemiological studies of dengue patient characteristics, includ-
ing age, sex and genetic polymorphisms have been frequently
studied, but none of these findings have been validated in ani-
mal models (Loke et al., 2001; Stephens et al., 2002; Cordeiro
et al., 2007; Kalayanarooj et al., 2007; Soundravally and Hoti,
2007; Stephens, 2010). In humans, the age of greatest suscepti-
bility to disease is seen in young adults (Tsai et al., 2012). In
our Indian rhesus macaques, we have evaluated age as a con-
tributing factor to viremia by comparing the titers of DV when
propagated in whole BM in vitro (unpublished data). However,
no difference was noted in virus growth kinetics or magnitude
related to age of BM donors (n = 11), which spanned 2–15 years
of age. In vivo, anecdotal observations suggested that coagulopa-
thy appeared to be more extensive in older female macaques
when compared to young males, which were the populations
included in the study, although sample size was too low to be
conclusive. This nevertheless raises an interesting question about
the potential for host factors contributing to the severity of
symptoms.

Various MHC alleles, blood group and platelet antigens have
been found to be associated with dengue disease and protec-
tion (Kalayanarooj et al., 2007; Soundravally and Hoti, 2007;
Alagarasu et al., 2013; Weiskopf et al., 2013). Although in gen-
eral these associations are weak as biomarkers of disease. One
of our goals is to assess gene alleles involved with regulat-
ing platelet activation and the coagulatory cascade e.g., HPA1,
HPA2 for association with disease presentation. Available tech-
niques, such as Macaca mulatta typing and gene expression
analyses, will need to be an integral part of future experi-
ments with the rhesus monkey model to facilitate identifica-
tion of genetic factors involved with dengue-induced abnormal
coagulation.

CONCLUSION
The induction of disease symptoms upon the inoculation of DV
in primates has been an elusive objective. Recently a coagulopathy
disease model was developed using the serotype 2 strain 16681
injected intravenously into Indian rhesus macaques. We submit
that this approach provides a strategy for detailed investigation
of the mechanisms potentially involved in DHF. Moreover, the
model provides an attractive algorithm for testing the efficacy of
preventative vaccines and therapeutics that not only limit virus
replication but also prevent disease development in vivo. Various
host and viral parameters can begin to be evaluated in vivo to
help us gain a better understanding of dengue biology and dis-
ease pathogenesis. Can pathology be induced in other NHPs by
switching to the intravenous route? Will different virus strains
promote coagulopathy, or other symptoms? Can we alter other
parameters and achieve a more severe disease model? The estab-
lishment of this new rhesus macaque infection model has proved
insightful on ways to improve disease presentation in primates.

HUMAN SUBJECT AND ANIMAL RESEARCH
Use of deidentified human BM was provided by Emory Hospital
and approved by the Emory University Internal Review Board.
Investigations with rhesus macaques were approved by Yerkes
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Tulane National Primate Research Centers. Research was per-
formed in accordance with institutional and national guidelines
and regulations.
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