
“fmicb-04-00328” — 2013/11/7 — 13:43 — page 1 — #1

REVIEW ARTICLE
published: 08 November 2013

doi: 10.3389/fmicb.2013.00328

Mechanisms of pathogenesis induced by bovine leukemia
virus as a model for humanT-cell leukemia virus
Yoko Aida1*, Hironobu Murakami 1,2 , MasahikoTakahashi 3 and Shin-NosukeTakeshima1

1 Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
2 Laboratory of Animal Health II, Azabu University, Sagamihara, Kanagawa, Japan
3 Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

Edited by:

Akio Adachi, The University of
Tokushima Graduate School, Japan

Reviewed by:

Toshiki Watanabe, The University of
Tokyo, Japan
Takeo Ohsugi, Kumamoto University,
Japan

*Correspondence:

Yoko Aida, Viral Infectious Diseases
Unit, RIKEN, 2-1 Hirosawa, Wako,
Saitama 351-0198, Japan
e-mail: aida@riken.jp

Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a
unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with
BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of
BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia
and a long latency period. These viruses encode at least two regulatory proteins, namely,
Tax and Rex, in the pX region located between the env gene and the 3′ long terminal
repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is
also the key protein involved in viral replication. However, BLV infection is not sufficient for
leukemogenesis, and additional events such as gene mutations must take place. In this
review, we first summarize the similarities between the two viruses in terms of genomic
organization, virology, and pathology. We then describe the current knowledge of the BLV
model, which may also be relevant for the understanding of leukemogenesis caused by
HTLV-1. In addition, we address our improved understanding of Tax functions through the
newly identified BLVTax mutants, which have a substitution between amino acids 240 and
265.
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INTRODUCTION
Bovine leukosis was first reported in 1871 as the presence
of slightly yellow nodules in the enlarged spleen of cattle
(Leisering, 1871). Spleen disruption consecutive to tumor for-
mation is one of the most important clinical manifestations of
bovine leukemia. Bovine leukosis is classified into two types,
sporadic bovine leukosis (SBL) and enzootic bovine leuko-
sis (EBL), which are characterized by T- and B-cell leukosis,
respectively (Gillet et al., 2007). The occurrence of EBL in cat-
tle is much higher than that of SBL (Theilen and Dungworth,
1965; Onuma et al., 1979). Bovine leukemia virus (BLV), which
belongs to the Retroviridae family and Deltaretrovirus genus,
is the etiologic agent of EBL, although it remains unknown
what causes SBL (Gillet et al., 2007). The natural hosts of
BLV are domestic cattle and water buffaloes; however, exper-
imental infection with BLV in sheep can lead to the devel-
opment of lymphoma (Djilali and Parodi, 1989). Interestingly,
BLV is consistently associated with leukemia only in cattle and
sheep, even though it can infect many cell lines (Graves and
Ferrer, 1976) and can be experimentally transmitted to rab-
bits (Wyatt et al., 1989; Onuma et al., 1990), rats (Altanerova
et al., 1989), chickens (Altanerova et al., 1990), pigs, goats, and
sheep (Mammerickx et al., 1981). Most BLV-infected cattle are
asymptomatic, but approximately one-third of them suffer from
persistent lymphocytosis (PL) characterized by non-malignant
polyclonal B-cell expansion and 1–5% of them develop B-cell
leukemia/lymphoma after a long latency period (Gillet et al.,2007).
On the other hand, sheep that are experimentally inoculated
with BLV develop B-cell tumors at a higher frequency and

with a shorter latency period than those observed in naturally
infected cattle (Ferrer et al., 1978; Burny et al., 1979; Kenyon
et al., 1981; Aida et al., 1989). Interestingly, the transformed
B-lymphocytes in cattle are CD5+ IgM+ B-cells (Aida et al.,
1993), whereas in sheep they are CD5− IgM+ B-cells (Murakami
et al., 1994a,b), suggesting that the mechanisms of leukemo-
genesis induced by BLV may differ (Graves and Ferrer, 1976;
Djilali and Parodi, 1989).

BLV is closely related to human T-cell leukemia virus type 1
(HTLV-1), which is the causative agent of adult T-cell leukemia
(ATL) and a chronic neurological disorder known as tropical
spastic paraparesis or HTLV-1-associated myelopathy HAM/TSP
(Gessain et al., 1985; Osame et al., 1986; Gillet et al., 2007). There-
fore, studies on BLV may facilitate our understanding of the
mechanism of leukemogenesis induced by HTLV-1.

BLV AND HTLV-1
All retroviruses are encoded by gag, pro, pol, and env essential
genes, which are necessary for the production of infectious viri-
ons, and are flanked by two identical long terminal repeats (LTRs;
Figure 1). The gag, pro, pol, and env genes encode the internal
structural proteins of the virion, the viral protease, the reverse
transcriptase, and the envelope glycoproteins of the virion, respec-
tively. The genome sequences of BLV and HTLV-1 are different,
but have a unique sequence called the pX situated between the env
gene and the 3′LTR and encoded by the regulatory gene (Figure 1).
The pX sequence is not of host cell origin; that is, it is not an
oncogene. It has been reported that both viruses have an ability to
immortalize primary cells in vitro (Grassmann et al., 1989; Willems
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FIGURE 1 | Schematic representation of genome organization of retroviruses. HTLV-1 and BLV encode unique regulatory and accessory proteins in the pX
region. RSV, Rous sarcoma virus; MuLV, murine leukemia virus.

et al., 1990). Because their structure and properties differ from any
other class of retroviruses, BLV and HTLV-1 viruses were classi-
fied into a new group of retroviruses (Gillet et al., 2007). In both
viruses the regulatory proteins Tax and Rex are encoded in the pX
region. The R3 and G4 proteins are encoded in the BLV pX region,
while p12I, p13II, and p30II are encoded in the HTLV-1 pX region
(Sagata et al., 1984b; Franchini et al., 2003; Figure 1). Interestingly,
the HTLV-1 genome codes for HBZ, a unique gene encoded by the
minus strand chain (Gaudray et al., 2002; Figure 1). The major
functions of the viral proteins encoded in the BLV and HTLV-1
pX regions are summarized in Table 1. The Tax protein has been
extensively studied, and it is believed to play a critical role in leuke-
mogenesis induced by BLV and HTLV-1 (Katoh et al., 1989; Tanaka
et al., 1990; Willems et al., 1990). The Rex protein is responsible
for nuclear export of viral RNA and promotes cytoplasmic accu-
mulation and translation of viral messenger mRNA in BLV- and
HTLV-1-infected cells (Felber et al., 1989). BLV R3 and G4 pro-
teins contribute to the maintenance of high viral load (Willems
et al., 1994; Florins et al., 2007). The G4 protein is particularly
relevant to leukemogenesis, since it can immortalize primary rat
embryo fibroblasts (REFs; Lefebvre et al., 2002). HTLV-1 p12I is
similar to the R3 protein, in that it contributes to the maintenance
of infectivity (Collins et al., 1998), and both proteins are located
in the nucleus and cellular membranes (Gillet et al., 2007). On the
other hand, HTLV-1 p13II protein resembles the G4 protein, since
both proteins bind to farnesyl pyrophosphate synthetase, which

farnesylates Ras (Lefebvre et al., 2002), and the p13II protein pro-
motes Ras-dependent apoptosis (Hiraragi et al., 2005). HTLV-1
p30II protein regulates gene transcription through its interac-
tion with the cAMP responsive element (CRE) binding protein
(CREB)/p300 (Zhang et al., 2001). The HBZ protein plays a crit-
ical role in the leukemogenesis of HTLV-1, and HBZ knockdown
inhibits the proliferation of ATL cells (Satou et al., 2006). How-
ever, since the BLV genome does not code for HBZ, it is assumed
that the Tax protein plays a central role in the leukemogenesis
of BLV.

The infection route of BLV and HTLV is by horizontal and
vertical transmission. BLV is transmitted via direct contact (Kono
et al., 1983), milk, and insect bites (Ferrer and Piper, 1978), while
HTLV-1 is transmitted via milk and sexual intercourse (Bang-
ham, 2003). Moreover, the artificial transmission of BLV is caused
by iatrogenic procedures such as dehorning, ear tattooing, and
reuse of needles (Hopkins and DiGiacomo, 1997), whereas the
artificial transmission of HTLV-1 is caused by blood transfusion
and needle sharing among drug abusers (Robert-Guroff et al.,
1986). Since cell contact is required for the efficient transmission
of both BLV and HTLV-1, cell-free infection by these viruses is
believed to be very inefficient, most probably due to virion insta-
bility (Voneche et al., 1992; Johnston et al., 1996; Igakura et al.,
2003).

As shown in Figure 2, an infection with BLV is characterized
by three progressive stages of disease, including an asymptomatic
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Table 1 | Viral proteins are encoded in BLV and HTLV-1 pX regions.

Virus Viral protein Major reported functions Reference

BLV Tax Transcriptional activator of viral expression Derse (1987), Willems et al. (1987), Katoh et al. (1989)

Oncogenic potential Willems et al. (1990)

Activation of NF-kappa B (NF-κB) pathway Szynal et al. (2003), Klener et al. (2006)

Rex Nuclear export of viral mRNAs Felber et al. (1989)

G4 The maintenance of high viral load Willems et al. (1994), Florins et al. (2007)

Oncogenic potential Kerkhofs et al. (1998), Lefebvre et al. (2002)

R3 The maintenance of high viral load Willems et al. (1994), Florins et al. (2007)

HTLV-1 Tax Transcriptional activator of viral expression Kashanchi and Brady (2005)

Oncogenic potential Matsuoka and Jeang (2011)

Induction of DNA damage, cellular senescence and apoptosis Chlichlia and Khazaie (2010)

Functional regulation of many cellular proteins by direct binding Boxus et al. (2008)

HBZ Inhibition of HTLV-1 transcription Lemasson et al. (2007)

Suppression of the classical pathway of NF-κB Zhao et al. (2009)

Enhancement of TGF-β signaling Zhao et al. (2011)

Oncogenic potential Satou et al. (2006, 2011)

Rex Nuclear export of viral mRNAs Felber et al. (1989)

p12I Maintenance of viral infectivity Collins et al. (1998)

Activation of nuclear factor of activated T-cells (NFAT) pathway Ding et al. (2002)

p13II Suppression of viral replication Andresen et al. (2011)

Interaction with farnesyl pyrophosphate synthetase Lefebvre et al. (2002)

Activation of Ras-mediated apoptosis Hiraragi et al. (2005)

p30II Suppression of viral replication Nicot et al. (2004)

Regulation of gene transcription by binding with p300 Zhang et al. (2001)

Enhancement of Myc transforming potential Zhang et al. (2001)

stage, PL, and lymphoma. Most BLV-infected cattle are asymp-
tomatic, but approximately one-third of them suffer from PL
characterized by a permanent and relatively stable increase in the
number of B-lymphocytes in the peripheral blood. PL is con-
sidered to be a benign form of the disease resulting from the
accumulation of untransformed B-lymphocytes. Finally, 1–5% of
BLV-infected cattle develop B-lymphoma in various lymph nodes
after a long latency period (Schwartz and Levy, 1994; Florins et al.,
2008). Although BLV can also infect CD4+ T-cells, CD8+ T-cells,
γ/δ T-cells, monocytes, and granulocytes in cattle (Williams et al.,
1988; Stott et al., 1991; Schwartz et al., 1994; Mirsky et al., 1996; Wu
et al., 1996; Panei et al., 2013), a large number of the tumor cells are
derived from CD5+ IgM+ B-cell subpopulations (Schwartz and
Levy, 1994). Interestingly, the full-length BLV proviral genome
is maintained in each animal throughout the course of the dis-
ease (Tajima et al., 1998a). In addition, previous studies have
shown that both large and small deletions of proviral genomes
may be very rare events in BLV-infected cattle. Thus, the proviral
loads were significantly increased at the PL stage compared with
the aleukemic stage and were further increased at the lymphoma
stage (Jimba et al., 2010, 2012; Figure 2B). These findings clearly
demonstrated that the BLV proviral copy number increases with
increasing severity of the disease. On the other hand, unlike BLV,

HTLV-1 is associated with ATL and with the chronic neurological
disorder, HAM/TSP, and induces not only a malignant tumor but
also an inflammatory disease (Gessain et al., 1985; Osame et al.,
1986). Although the pathogenesis of HTLV-1 is slightly different
from BLV, HTLV-1, like BLV, can infect many cells in addition to
T-cells, including B-cells and monocytes (Koyanagi et al., 1993;
Schwartz and Levy, 1994). In contrast to BLV, defective HTLV-1
proviral genomes have been found in more than half of all exam-
ined patients with ATL (Konishi et al., 1984; Korber et al., 1991;
Ohshima et al., 1991; Tsukasaki et al., 1997).

MECHANISM OF LEUKEMOGENESIS BY BLV
Animal retroviruses, which belong to the Alpharetrovirus and
Gammaretrovirus genera, induce tumors by one of two mecha-
nisms: either by activation of the “viral oncogene” or by “inser-
tional activation” of a cellular gene such as a proto-oncogene
(Weiss et al., 1985; Figure 1). By contrast, BLV lacks a known onco-
gene (Sagata et al., 1984a,b) and does not integrate into preferred
sites in their host cell genomes, which related to the disruption of
the host gene but not to the suppression of viral gene expression
(Murakami et al., 2011b).

Most studies of BLV-induced leukemogenesis have focused on
the Tax protein because it is believed to be a potent transcriptional
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FIGURE 2 | BLV-induced leukemogenesis is a multistep process. (A) An
infection with BLV is characterized by three progressive stages of disease:
asymptomatic stage, persistent lymphocytosis (PL), and lymphoma. BLV
infects to cells non-specifically. Among them, BLV Tax protein immortalizes a
part of BLV-infected cells, probably only CD5+ IgM+ B-cells, and induces

polyclonal proliferation of the cells. However, the Tax protein does not have
the ability to transform the cells. For lymphoma to develop, a malignant
transformation needs to occur with the help of host factors, such as p53
mutation, TNF-α activities or bovine leukocyte antigen (BoLA) class II
phosphorylation. (B) The provirus load increases with disease progression.

activator of viral gene expression. In addition to its function as a
transcriptional activator, Tax induces immortalization of primary
REFs (Willems et al., 1990, 1998). Furthermore, Tax cooperates
with the Harvey rat sarcoma viral oncoprotein (Ha-ras) for the
induction of full transformation of primary REF (Willems et al.,
1990). Importantly, the Tax transformed cells induce tumors in
nude mice. The ability of the Tax protein to induce immortal-
ization may be the first step in the BLV-mediated transformation
process. Moreover, after the infection of cattle and during the
latency period, the expression of BLV becomes blocked at the
transcriptional level (Kettmann et al., 1982; Lagarias and Radke,
1989). Such repression appears to be very important for the escape
of BLV from the host’s immunosurveillance system, and later only
a certain small proportion of infected animals rapidly develop a
terminal disease (Gillet et al., 2007). Indeed, transcription of the

BLV genome in fresh tumor cells or in fresh peripheral blood
mononuclear cells (PBMCs) from infected individuals is almost
undetectable by conventional techniques (Kettmann et al., 1982;
Tajima et al., 2003b; Tajima and Aida, 2005). In situ hybridization
has revealed the expression of viral RNA at low levels in many
cells, and at a high level in only a few cells within PBMCs freshly
isolated from BLV-infected asymptomatic animals (Lagarias and
Radke, 1989). Thus, BLV infection is probably not sufficient for
leukemogenesis and some additional events such as gene muta-
tions might be involved in the leukemogenic process (Figure 2A).
Taken together, Tax may induce immortalization of only CD5+
IgM+ B-cells among BLV-infected B-cells, CD4+ T-cells, CD8+
T-cells, γ/δ T-cells, monocytes, and granulocytes in cattle, thereby
conferring a selective transformation advantage to the infected
CD5+ IgM+ B-cells by a second event.
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A mutation in the p53 tumor suppressor gene is one of sev-
eral genetic changes known to be involved in the development
of lymphoma (Figure 2A). The protein encoded by the p53
tumor suppressor gene plays a critical role in transducing a sig-
nal from the damaged DNA to genes that control cell cycle and
apoptosis. Approximately half of the solid tumors induced by
BLV in cattle (Dequiedt et al., 1995; Ishiguro et al., 1997; Zhuang
et al., 1997; Tajima et al., 1998b) and three of four bovine B-cell
lymphoma lines (Komori et al., 1996) were shown to harbor mis-
sense mutations in p53. By contrast, very few mutations were
found in B-cells from cows with PL and none of the uninfected
cattle harbored a mutated p53 gene. These observations indi-
cate that p53 mutations frequently occur at the final stage of
lymphoma in cattle. A previous study of the molecular mech-
anism of mutations at codons 206, 207, 241, and 242, which
were identified in lymphoma, showed that these mutations may
potentially alter the wild-type function of the bovine p53 pro-
tein, including the conformation and transactivator and growth
suppressor activities, and then cause lymphoma (Tajima et al.,
1998b). These four mutations were clearly divided into two func-
tionally distinct groups: (i) the mutant forms with substitutions
at codons 241 and 242, which were mapped within an evo-
lutionarily conserved region and corresponded to the human
“hot-spot” mutations, and had completely lost the capacity for
transactivation and growth suppression while gaining transdom-
inant repression activity in p53-null SAOS-2 cells; and (ii) the
mutations at codons 206 and 207, which were located outside
the evolutionarily conserved regions and partially retained the
capacity for transactivation and growth suppression. Collectively,
these naturally occurring mutations may potentially alter the
wild-type function, and in addition, out of the four missense
mutations, at least two mutations may be sufficient to cause
lymphoma. However, since the other two mutations may be
insufficient to induce lymphoma, it is possible that other cancer-
related genes may contribute to lymphoma in concert with the p53
mutations.

A major factor involved in the clinical progression of
BLV-infected animals is the bovine leukocyte antigen (BoLA;
Figure 2A), which plays a crucial role in determining immune
responsiveness (Lewin and Bernoco, 1986; Lewin et al., 1988;
Zanotti et al., 1996; Takeshima and Aida, 2006). Several stud-
ies have shown that genetic variations in BoLA-DRB3, which is
a functionally important and the most polymorphic BoLA class
II locus in cattle, influence resistance and susceptibility to a wide
variety of infectious diseases, including lymphoma (Aida, 2001)
and PL (Xu et al., 1993; Sulimova et al., 1995; Starkenburg et al.,
1997; Juliarena et al., 2008), and affect BLV proviral load (Miyasaka
et al., 2013). For example, the presence of the amino acids Glu–
Arg (ER) at positions 70–71 of the BoLA-DRβ chain was associated
with resistance to PL in BLV-infected cattle (Xu et al., 1993). Fur-
thermore, the BoLA-DRB3 alleles encoding Glu, Arg, and Val at
positions 74, 77, and 78, respectively, of the BoLA-DRβ chain
might be associated with resistance to tumor development (Aida,
2001). In a related study, Nagaoka et al. (1999) and Konnai et al.
(2003) found that the ovine leukocyte antigen (OLA)-DRB1 alleles
encoding the Arg–Lys (RK) and the Ser–Arg (SR) motifs at posi-
tions 70–71 of the OLA-DRβ chain are associated with resistance

(RK motif) and susceptibility (SR motif) to the development of
lymphoma after experimental infection of sheep with BLV. The
sheep with alleles encoding the RK motif produced neutralizing
antibodies against BLV and interferon-γ, eliminated BLV com-
pletely, and did not develop lymphoma (Konnai et al., 2003).
The susceptibility to the monoclonal expansion of BLV-infected
B-lymphocytes is thus associated with specific alleles of BoLA
system.

A polymorphism in the promoter region of the tumor necro-
sis factor (TNF)-α gene is one of several genetic changes involved
in the development of lymphoma (Figure 2A). A previous study
found that, in sheep experimentally infected with BLV, the fre-
quency of the TNF-α-824G allele, which has been associated with
low transcription activity of the promoter/predicted enhancer
region of the bovine TNF-α gene, was higher in animals with
lymphoma than in asymptomatic carrier animals. In addition, a
tendency was observed for increased BLV-provirus load in cat-
tle homozygous for the TNF-α-824G/G allele compared to cattle
homozygous for the TNF-α-824A/A or TNF-α-824A/G alleles.
These data suggest that the observed polymorphism in the pro-
moter region of the TNF-α gene could at least in part contribute
to the progression of lymphoma in BLV infection (Konnai et al.,
2006).

The BLV studies have also focused on understanding the
process of signal transduction such as B-cell receptor (BCR)
signaling (Alber et al., 1993), since many signal transduction
factors have been implicated in leukemogenesis of B-cells in
humans (Murakami et al., 2011a). For example, the immunore-
ceptor tyrosine-based activation (ITAM) motifs present in the
transmembrane gp30 proteins of the BLV envelope are impor-
tant for the incorporation of envelope proteins into the virion
(Inabe et al., 1999) and are required for infectivity in vivo
(Willems et al., 1995). In addition to the viral signaling motif,
the spleen tyrosine kinase (Syk) mRNA expression was signif-
icantly increased in PL samples, whereas it was decreased in
tumor samples, suggesting that Syk mRNA expression dynam-
ics is closely related to the progression of BLV-induced disease
(Murakami et al., 2011a).

BLV Tax FUNCTION
As mentioned above, the Tax gene is a key contributor to the
oncogenic potential, as well as a key protein involved in the repli-
cation of the virus. Table 1 summarizes the functions of the Tax
protein. The Tax open reading frame is mainly encoded in the
pX region, and its translation occurs upstream of the pol stop
codon. The Tax protein is modified by phosphorylation of two
serine residues and is detected as a 34–38 kDa product (Chen
et al., 1989; Willems et al., 1998). In addition, the Tax protein has
T- and B-cell epitopes corresponding to regions 110–130/131–
150 and 261–280, respectively (Sakakibara et al., 1998). One of
the best characterized functions of Tax is the activation of viral
transcription. The Tax protein acts on a triplicate 21 bp enhancer
motif known as the Tax-responsive element (TxRE) in the U3
region of the 5′LTR, and it stimulates transactivation of the viral
genome (Derse, 1987; Willems et al., 1987; Katoh et al., 1989).
The TxRE consists of a cyclic AMP-response element (CRE)-like
sequence, and it has been suggested that Tax binds to this element
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indirectly through cellular factors, such as the members of the
CREB/activating transcription factor (ATF) family of basic leucine
zipper proteins that have been shown to bind to the CRE-like
sequence (Adam et al., 1994, 1996; Boros et al., 1995). Further-
more, the Tax protein modulates the expression of cellular genes
that are involved in the regulation of cell growth (Tajima and Aida,
2002). In addition to its function in the regulation of cellular
and viral transcription, the Tax protein can induce immortal-
ization of primary REF and cooperates with Ha-Ras oncogene
to fully transform the primary cells (Willems et al., 1990). On
the other hand, the transactivation and transformation of Tax
may be independently induced by each mechanism, since phos-
phorylation of Tax is required for its transformation but not
for its activation (Willems et al., 1998). Moreover, the expres-
sion of Tax in primary ovine B-cells, which depends on CD154
and interleukin-4, affects B-cell proliferation, cell cycle phase dis-
tribution, and survival, leading to cytokine-independent growth
(Szynal et al., 2003). This immortalization process is also associ-
ated with increased B cell leukemia/lymphoma 2 (Bcl-2) protein
levels, nuclear factor kappa B (NF-κB) accumulation, and a series
of intracellular pathways that remain to be characterized (Klener
et al., 2006). In addition, Tax inhibits base-excision DNA repair of
oxidative damage, thereby potentially increasing the accumulation
of ambient mutations in cellular DNA (Philpott and Buehring,
1999).

NEGATIVE REGULATION OF BLV Tax BY THE REGION
BETWEEN RESIDUES 240–265
Our studies (Tajima and Aida, 2000) demonstrated new functions
of the region between amino acids 240 and 265 of BLV Tax. As
shown in Figure 3, a series of mutants with at least one amino acid
substitution between amino acids 240 and 265 of BLV Tax were
identified, including TaxD247G and TaxS240P, which exhibit an
enhanced ability to stimulate and reduce viral LTR-directed tran-
scription respectively, compared to the wild-type protein (Tajima
and Aida, 2000). Transient expression analysis revealed that the
TaxD247G mutant increased the production of viral protein and
particles from a defective recombinant proviral BLV clone to a
greater extent than the wild-type Tax (TaxWT). Conversely, the
TaxS240P mutant was unable to induce the release of viral parti-
cles. The microarray data in human HeLa cells and its validation
of differentially expressed genes at the RNA and protein levels in
bovine 23CLN cells revealed several alterations in genes involved in
many cellular functions such as transcription, signal transduction,
cell growth, apoptosis, and the immune response (Arainga et al.,
2012). In both of human HeLa cells and bovine 23CLN cells, the
TaxD247G mutant induced higher gene expression compared with
TaxWT and TaxS240P and many of these genes were expressed at
the lowest level in the TaxS240P-transfected cells. In particular, our
results showed that Tax activates the proteins which are involved
in activator protein 1 (AP-1) signaling pathway [FBJ osteosarcoma

FIGURE 3 | Schematic representations of BLVTax protein mutants and

function. (A) Missense mutations between amino acids 240 and 265
containing D247G and S240P influence the transactivation activity of the BLV

Tax protein. A putative zinc finger structure (amino acids 30–53) and a
leucine-rich activation domain (amino acids 157–197) are also indicated.
(B) Multiple functions of the region between amino acids 240 and 265.
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oncogene (FOS), jun proto-oncogene (JUN), etc.] via interactions
with other transcriptional pathways (G-protein, GTP-binding
proteins, etc.). Likewise, the TaxD247G mutant induced apoptosis
in transfected cells more effectively than the TaxWT (Takahashi
et al., 2005). These results suggest that the region between amino
acids 240 and 265 of the Tax protein might act as a negative regu-
latory domain, and missense mutations in this region might lead
to enhanced transactivation activity of Tax, expression of many
cellular genes and induction of apoptosis. Our results raise the pos-
sibility that the target sequence specificity of retroviral enhancers
of Tax might be limited by this region because TaxD247G, but not
TaxS240P, was found to activate other retroviral enhancers such
as HTLV-1, HIV-1, and mouse mammary tumor virus (MMTV)
and Moloney murine leukemia virus (M-MuLV), and c-fos, which
are not activated by TaxWT (Tajima and Aida, 2000; Figure 3B).
The microarray data also raised the possibility that BLV Tax reg-
ulates the innate immune response (Figure 3B): the largest group
of downregulated genes was related to the immune response,
and the majority of these genes belonged to the interferon fam-
ily of antiviral factors, such as interferon-induced protein with
tetratricopeptide repeats 1 (IFIT1; Arainga et al., 2012). Interfer-
ons are major components of the innate immune system, and
are recognized for their antiviral function in addition to their
antiproliferative and immunomodulatory effects on cells (Hu
et al., 1993). It is likely that BLV Tax downregulates the innate
immune response, thereby increasing the production of viral
protein.

An infectious molecular clone of BLV encoding the TaxD247G
was examined for the viral expression and propagation, as well
as for the induction of apoptosis in a sheep model (Tajima et al.,
2003a; Takahashi et al., 2004, 2005). Interestingly, the infectious
molecular clone of BLV encoding the TaxD247G produced more
viral particles and was transmitted at an elevated rate in vitro,
but with no significant differences in the proviral load and the
expression of viral RNA between sheep experimentally injected
with BLVs encoding the TaxWT or the mutant TaxD247G pro-
teins (Tajima et al., 2003a). These findings suggest the presence of
a dominant host defense mechanism regulating BLV–LTR-directed
transcription by Tax that may play an important role in viral
silencing in vivo (Figure 4). Likewise, although the transient

FIGURE 4 | Proposed mechanism for the regulation of BLV expression

and apoptosis induction inTaxD247G-encoded BLV-infected sheep.

expression of TaxD247G induced apoptosis in transfected cells
in vitro more effectively than TaxWT, higher level of protec-
tion against apoptosis was observed in PBMCs isolated from
sheep infected with TaxD247G-encoded BLV compared to TaxWT-
encoded BLV (Takahashi et al., 2005; Figure 4). These findings
demonstrate that TaxD247G has an increased potential to induce
apoptosis, which could be beneficial for BLV propagation like other
viruses (Wurzer et al., 2003; Richard and Tulasne, 2012). One pos-
sible explanation for our results might be that TaxD247G-induced
apoptosis is modulated by a dominant mechanism ex vivo, so the
function might be suppressed.

CONCLUSION
BLV is the etiologic agent of EBL, which is the most common
neoplastic disease in cattle. It infects cattle worldwide, thereby
imposing a severe economic burden on the dairy cattle industry.
In this review, we evaluated existing information on the mech-
anism of BLV-induced leukemogenesis. We propose that, since
BLV Tax induces immortalization of only CD5+ IgM+ B-cells
within BLV-infected B-cells, CD4+ T-cells, CD8+ T-cells, γ/δ
T-cells, monocytes, and granulocytes in cattle, it may confer a
selective transformation advantage to the infected CD5+ IgM+
B-cells by a second event, such as p53 mutation, polymorphisms
of BoLA, or the promoter region of the TNF-α gene. We also pro-
pose new functions of the region between amino acids 240 and
265 of BLV Tax (Figure 3). Namely, the transactivation activity
and target sequence specificity of BLV Tax might be limited or
negatively regulated by this region. The most interesting point
regarding the ability of TaxD247G to enhance BLV expression and
apoptotic induction in vitro is that it might be suppressed in vivo
or ex vivo. Thus, we hypothesize that there could be dominant
mechanisms controlling the functions of TaxD247G ex vivo and in
vivo, as shown in Figure 4. For HTLV-1, it has been reported
that CD8+ cell-mediated cytotoxic T-lymphocytes (CTLs) tar-
get Tax-expressing cells, thereby reducing the number of infected
cells (Hanon et al., 2000). Likewise, BLV-infected cells expressing
Tax may be exposed to the host defense system, and BLV may
evolve in a manner that promotes the shielding of their potential
abilities. Therefore, a strong transactivation activity of BLV Tax
might not be advantageous for the propagation of BLV in vivo.
Taken together, the findings discussed in this review suggest that
there might be a dominant mechanism involved in the induction
of apoptosis and expression of HTLV-1 in vivo. To address our
hypothesis, it seems necessary to evaluate whether possible host
responses against BLV infection, such as the induction of CTLs,
genetic, and epigenetic alterations in apoptosis-regulatory genes,
and DNA and chromatin modifications of BLV promoter for the
suppression of viral expression, could be enhanced in animals
infected with TaxD247G-encoded BLV. Thus, future investigations
of the relationship between apoptosis and viral expression using
BLV containing the mutant D247G Tax as a model will broaden
our understanding of the replication and propagation of HTLV-1,
and leukemia progression.
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