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Budding is the final step of the late phase of retroviral life cycle. It begins with the
interaction of Gag precursor with plasma membrane (PM) through its N-terminal domain,
the matrix protein (MA). However, single genera of Retroviridae family differ in the way
how they interact with PM. While in case of Lentiviruses (e.g., human immunodeficiency
virus) the structural polyprotein precursor Gag interacts with cellular membrane prior to
the assembly, Betaretroviruses [Mason-Pfizer monkey virus (M-PMV)] first assemble their
virus-like particles (VLPs) in the pericentriolar region of the infected cell and therefore,
already assembled particles interact with the membrane. Although both these types of
retroviruses use similar mechanism of the interaction of Gag with the membrane, the
difference in the site of assembly leads to some differences in the mechanism of the
interaction. Here we describe the interaction of M-PMV MA with PM with emphasis on
the structural aspects of the interaction with single phospholipids.
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In the late phase of retroviral life cycle, all structural proteins are
produced in a host cell as a polyprotein precursor Gag. Such pre-
arrangement ensures their equimolar incorporation and proper
functioning in a viral particle (Hunter, 1994). Gag proteins of
most retroviruses (formerly described as C-type retroviruses) are
immediately after the synthesis transported to the plasma surface
where they interact with the plasma membrane (PM) and assemble
to an immature viral particle simultaneously with its budding.

Mason-Pfizer monkey virus (M-PMV) belongs to Betaretro-
virus genus of Orthoretroviridae subfamily and is also reffered to as
SRV type 3(Montiel, 2010). It is a simple simian exogenous, non-
transforming, horizontally transferred retrovirus, which causes
failure of the immune system of the infected animal. Initially it was
isolated from breast tumor of rhesus monkey (Macaca mulatta),
but as it was learned shortly after its discovery, it is not the direct
cause of a carcinoma development (Chopra and Mason, 1970).
Although it causes similar disease as simian immunodeficiency
virus (SIV), it is not related to it and belongs to different genus.
M-PMV was formerly described as B/D-type retrovirus, which
means that its Gag proteins are first transported to a periplasmic
region of the cell, where they assemble (Vlach et al., 2008). Result-
ing immature virus particle is then transported to the PM where
budding occurs. The membrane interaction of Gag proteins, as
well as intracellular transport is facilitated by their N-terminal
domain – the matrix protein (MA). MA is localized on the surface
of the virus particle and remains associated with the virus mem-
brane after maturation of Gag, which is cleaved by viral protease
to individual structural proteins. MAs of most retroviruses are
N-terminally myristoylated.

The interaction of MAs with the PM is enabled by a bipartite
signal which consists of the myristoyl and a surface displayed patch
of basic residues, mostly arginines and lysines. This is a canonical

arrangement of the binding epitope shared by most retroviral
proteins interacting with phospholipids (Bryant and Ratner, 1990;
Zhou et al., 1994; Freed, 1998). While positively charged amino
acids of MA interact with phosphate groups of the membrane,
the myristic acid is in a close contact with phospholipid long
aliphatic chains. Both interactions are additive, i.e., they contribute
to the overall affinity of MA toward the PM. The interaction of the
myristoyl with the membrane is not strong enough to mediate the
membrane binding of MA (Gag) without contribution of other
forces (Peitzsch and Mclaughlin, 1993). The basic residues on the
surfaces of lipid binding proteins warrant this function as they are
responsible for non-specific electrostatic interactions with nega-
tively charged polar heads of phospholipids. However, differently
phosphorylated phosphoinositides are present in membranes of
various cellular organelles serving as specific markers which are
recognized by numerous cargo transferring proteins (Roth, 2004).

Myristoylated human immunodeficiency virus (HIV-1) MA
interacts with the membrane by using a mechanism called myris-
toyl switch (Zhou and Resh, 1996). In cytosol or in vitro, the
myristoyl of MA is sequestered inside the protein core. However,
it is released and serves as one of the interaction epitopes of Gag
(virions) upon approaching the membrane of infected cell. The
process must be carefully controlled to ensure both the binding of
MA to the membrane to enable budding, however, loose enough
to allow release of the mature virus from its membrane during the
early phase of infection.

In retroviruses, the mechanism was well described for the
interaction of HIV-1 MA with PM (Zhou and Resh, 1996; Tang
et al., 2004; Saad et al., 2006). Saad reported that the switch
was triggered by the interaction with phosphatidylinositol-4,5-
bisphosphate [PI(4,5)P2], a phospholipid present exclusively in
the PM. PI(4,5)P2 binds to a binding site on the surface of MA
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and causes myristoyl to be released from the protein and ready
for binding. The interaction of HIV-1 MA with PI(4,5)P2 com-
posed of shorter fatty-acid chains (4 and 8 carbons in length), was
experimentally proved as suitable for solution nuclear magnetic
resonance (NMR) measurements because these soluble PI(4,5)P2

bind in a cleft between the second and fifth helix. The bind-
ing has also been confirmed for phosphatidylinositolphosphates
(PIP) containing natural fatty-acid residues (C18 and C20) either
by interaction of MA with artificial liposomes mimicking PM or
by blocking PI(4,5)P2 synthesis leading to the HIV-1 virus parti-
cles to be unable to assembly on PM (Chukkapalli et al., 2008).
The interaction of PIP was also proved for other retroviruses:
HIV-2, moloney murine leukemia virus (MoMuLV) and equine
infectious anemia virus (EIAV). HIV-2 MA interacts with PIP in
a similar way as HIV-1 MA, but it was reported that the inter-
action with neither C4 nor C8 PI(4,5)P2 leads to the release of
the myristate (Saad et al., 2008). The authors concluded that the
reason was a weaker affinity of PI(4,5)P2 to the HIV-2 MA and
further speculated that the rationale behind this phenomenon
might be that HIV-2 is less infectious than HIV-1. Both HIV-1
and HIV-2 show stronger preference for PI(4,5)P2 compared to
the other, differently phosphorylated PIPs. EIAV MA is naturally
non-myristoylated, so its interaction is fully dependent on the
interaction of basic amino-acid residues with membrane phos-
pholipids (Chen et al., 2008). Chen has reported that PI(4,5)P2

specifically interacts with EIAV MA and also induces its oligomer-
ization, which promotes the assembly of virus particle. MoMuLV
MA also interacts with PIPs, but without any discrimination of
PI(4,5)P2. However, in the presence of phosphatidylserine, it
exhibits stronger and more specific interaction over other differ-
ently phosphorylated PIPs (Hamard-Peron et al., 2010). Similar
behavior, i.e., preferential and stronger binding of a chosen phos-
phoinositide in the presence of other phospholipids, mostly in the
form of micelles was also described for proteins bearing pleckstrin
homology domain (Sugiki et al., 2012). An important role of dif-
ferent phospholipids for the interaction of HIV-1 MA with the
PM has been proposed recently by Vlach and Saad (2013). They
found that phosphatidylserine, phosphatidylcholine, and phos-
phatidylethanolamine bound to HIV-1 MA, however, to a different
binding site than PI(4,5)P2 and that the interaction was weaker.
The authors concluded that this interaction further stabilizes the
binding of MA to the membrane.

The first evidence of the interaction of M-PMV MA with
PI(4,5)P2 was reported by Stansell et al. (2007). She observed that
depletion of PI(4,5)P2 from PM by overexpression of active form
of PI-5-phosphatase IV led to 90% decrease of particles release
from M-PMV infected cells. Direct evidence of the interaction of
M-PMV MA with PI(4,5)P2 was then confirmed by Prchal et al.
(2012).

Similarly to HIV-1 and HIV-2 MAs, the interaction of M-PMV
MA with PI(4,5)P2 was studied using NMR spectroscopy and sol-
uble forms of PI(4,5)P2 with 4 and 8 carbon fatty-acids. While
dibutanoyl PI(4,5)P2 did not interact, dioctanoyl PI(4,5)P2 inter-
acted specifically with KD of about 100 μM, which is a comparable
affinity as that of the interaction of HIV-1 MA with C4-PI(4,5)P2

(Saad et al., 2006). Similarly as for HIV-2, the interaction did not
trigger the myristoyl switch.

The M-PMV MA molecule contains one PIP binding site
located between the first, second and fourth helices (Figure 1).
Comparison of the structures of the myristoylated and non-
myristoylated M-PMV MAs showed that this binding site is
present only on the surface of the myristoylated protein. Due to a
slightly different orientation of the helices in the structure of the
non-myristoylated MA, the proper binding pocket is inaccessible
for PIP.

The PIP binding site follows the canonical shape of epitopes for
binding phosphoinositides, i.e., it is composed of a hydrophobic
pocket formed by all four helices and a patch of basic residues
on the surface (Roth, 2004). This pocket is connected with the
cavity where the myristoyl is sequestered. One of PIP’s fatty-
acid chains is buried inside this hydrophobic pocket while the
phosphates interact with positively charged amino acids form-
ing the basic patch. The structure has been solved only for the
complex of MA with C8-PIP, so it might be expected that one
of the naturally long PIP’s fatty-acid chains will somehow inter-
fere with the myristoyl which might lead to its exposure from
the cavity. The PI(4,5)P2 molecule is sequestered deeper in the
protein core, compared to HIV-1 MA, where PI(4,5)P2 remains
on the surface of MA (Figure 2).The surface part of the inter-
action site is formed mainly by lysines and arginines from the
loop between the first and second helices and terminal parts of
the first, second and fourth helices. The electrostatic interac-
tion between positively charged lysine residues (K16, K25, K27,
K33, and K74) and negatively charged inositol phosphate groups
is important for the interaction of M-PMV MA with the mem-
brane, as it was proven by mutation studies (Stansell et al., 2007).
Stansell found that mutations of basic residues in the proximity of
PIP binding site influenced both the transport of immature viral
particles and their binding to PM. Virus-like particles (VLPs) bear-
ing mutations K16A or K20A budded into intracellular vesicles.
This may indicate that the mutations disrupted the recognition

FIGURE 1 | Structural model of the myristoylated MA – C8-PI(4,5)P2

complex. MA is shown in green, with helices numbered by roman
numbers. C8-PI(4,5)P2 molecule colors correspond to its composition –
carbons are shown in blue, oxygens in red and phosphors in orange.
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FIGURE 2 |The comparison of the myristoylated M-PMV MA – C8-PI(4,5)P2and HIV-1 MA C4-PI(4,5)P2 complex structures. MAs are shown in green,
with helices numbered by roman numbers. C8-PI(4,5)P2 molecule colors corresponds to their composition – carbons are shown in blue, oxygens in red and
phosphors in orange.

of the target membrane, likely by changing the affinity of MA
for differently phosphorylated PIPs than PI(4,5)P2. VLPs bearing
R10A, R22A, K27A, K33A, or K39A mutations were accumu-
lated near the PM, indicating that the mutations prevented the
interaction of MA with PI(4,5)P2, or other phospholipids in
the membrane. The mutation K25A disrupted some early stages
of VLP transport, since they were randomly distributed in the
cytoplasm.

Accumulation of VLPs near PM can also be caused by mutations
of non-basic amino-acid residues in M-PMV MA. Double muta-
tions T41I/T78I, Y11F/Y28F, and Y28F/Y67F blocked the release
of VLPs from the host cell, while single mutations only slowed
down the release of VLPs, but failed to fully arrest it (except
of T41I mutation, that showed wt-like virus release; Rhee and
Hunter, 1991; Stansell et al., 2004). Since all these mutations intro-
duce more hydrophobic amino acids, Stansell speculated that they
created a pocket capable of stronger hydrophobic interactions of
mutated residues with the myristoyl and thus block its release from
the protein core and therefore, prevents the interaction with PM.
However, our results based on the known structure of the com-
plex between myristoylated MA and PI(4,5)P2 show that all the
mutated residues are too distant from the myristoyl to interact with
it (except for T41) but they are part of the PIP binding site (Prchal
et al., 2012). Therefore, it is more likely that the mutations rather
prevent the interaction of MA with (membrane) phospholipids,
than block the myristoyl switch due to a stronger hydrophobic
interaction of the myristoyl with exchanged amino acids.

In summary, the MA interaction with the PM is an essential
step of retroviral life cycle that allows virus release. A firm contact
of Gag with the PM is mediated by the bipartite signal, where the
key player is the interaction of MA with PI(4,5)P2. This ensures the
selectivity for the PM over the membranes of cellular organelles.
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