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Phages infecting lactic acid bacteria have been the focus of significant research attention
over the past three decades. Through the isolation and characterization of hundreds
of phage isolates, it has been possible to classify phages of the dairy starter and
adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and
Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized
and serve as an excellent model system to address issues that arise when attempting
taxonomic classification of phages infecting other LAB species. Here, we present
an overview of the current taxonomy of phages infecting LAB genera of industrial
significance, the methods employed in these taxonomic efforts and how these may be
employed for the taxonomy of phages of currently underrepresented and emerging phage
species.

Keywords: Lactococcus, Streptococcus, Lactobacillus, dairy, food fermentation, genetics

INTRODUCTION
The lactic acid bacteria (LAB) are a heterogeneous group of
Gram positive, non-spore-forming bacteria with a rod-shaped or
coccoid morphology. As their name suggests, lactic acid is the
predominant end-product when LAB engage in hexose fermen-
tation, and it is due to the pre-servative and palatable properties
of lactic acid that has for many centuries rendered this group of
bacteria applicable in food and feed fermentations, in particu-
lar for the production of dairy products. Strains of Lactococcus
lactis and Streptococcus thermophilus are the most intensely
employed starter bacteria in the dairy fermentation industry
globally (Deveau et al., 2006), while strains of Lactobacillus spp.
and Leuconostoc spp. are widely used as adjuncts in such pro-
cesses (Nieto-Arribas et al., 2010). Furthermore, in vegetable
fermentations, ecological studies have reported the complex
and evolving microbial landscape with strains of Lactobacillus,
Pediococcus, Leuconostoc and Weisella spp. implicated at vari-
ous stages of the fermentation (Lu et al., 2003, 2012). However,
as with most living organisms, LAB are susceptible to viral
infection by (bacterio) phages, which may impact on the qual-
ity, flavor and texture of the final product. The application of
these bacteria in modern fermentation processes involves inten-
sive production and throughput, thereby increasing the risk of
bacteriophage infection. Phages are particularly problematic in
fermentation systems that repeatedly use the same cultures or
culture mixes/rotations as phages are known to persist in the
processing environs until a suitable host is available to infect.
Consequently, phages of LAB have enjoyed significant atten-
tion, particularly over the past three decades. All LAB-infecting
phages belong Caudovirales order and most of them to the
Siphoviridae family that possess long non-contractile tails and
isometric or prolate capsids (Mahony et al., 2012a). Additionally,

phages with short non-contractile tails (Podoviridae) and those
displaying long contractile tails (Myoviridae) have also been
described for some LAB genera (Chibani-Chennoufi et al., 2004;
Chopin et al., 2007; Deasy et al., 2011). Undoubtedly, the most
intensely researched LAB-infecting phages are those of the dairy
starter bacteria L. lactis and S. thermophilus (Neve et al., 1998;
Lucchini et al., 1999; Quiberoni et al., 2000; Brussow and Desiere,
2001; Proux et al., 2002; Mahony et al., 2006; Guglielmotti et al.,
2009; Rousseau and Moineau, 2009; Collins et al., 2013). In
recent years, genome sequencing technologies have improved
and diversified drastically, and this has probably been the sin-
gle greatest driving force behind the acquisition of current data
regarding LAB-infecting phage biodiversity, taxonomy and evo-
lution. Current phage taxonomic efforts significantly depend on
comparative genomic analysis and derived information. Phage
taxonomy is a contentious issue, yet a highly important one since
such classifications are core to the development of detection tools
and prevention and control measures. Here, we will review the
changing face of LAB phage taxonomy, the major advances to date
and how such taxonomic efforts may influence future efforts at
minimizing the risk of phage infection.

LACTOCOCCAL PHAGES
Phages that infect host strains with resident prophages and/or
phage-resistance systems are subject to significant genome rear-
rangements, which appears to be a major evolutionary driving
force among such phages (Labrie and Moineau, 2007). Therefore,
it is of great significance that the genome sequences of a number
of lactococcal strains and their resident prophages have become
available to understand the dynamic processes that may lead
to such genome rearrangements (Chopin et al., 2001; Ventura
et al., 2007; Wegmann et al., 2007; Siezen et al., 2010; Ainsworth
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et al., 2013; Du et al., 2013). L. lactis strains employed in the
dairy industry belong to one of two subspecies, namely L. lac-
tis ssp. lactis or L. lactis ssp. cremoris. While lactococcal strain
diversity may be limited, their infecting phages have proven
their genomic elasticity and evolutionary capabilities in order
to survive and evade hygiene measures, processing conditions
and host-encoded phage-resistance mechanisms (McGrath et al.,
1999; Scaltriti et al., 2010; Samson et al., 2013). To a large degree,
this co-evolution, coupled to the intensity of production, has sup-
ported the ever-increasing genetic diversity of these phages as we
currently recognize and classify them.

Phages of L. lactis were first classified in 1984 into four
groups based on morphology, serological reactions and DNA-
DNA hybridization of 25 phages (Jarvis, 1984). This study was the
basis of further classifications of lactococcal phages resulting in
the identification of dominant species in isolation studies and fur-
thermore the identification of rarely encountered and emerging
species (Prevots et al., 1990).

In 1991, this classification was updated and 12 species were
identified based on DNA homology and morphology (Jarvis et al.,
1991). The virion morphologies were identified as belonging to
one of two families i.e., Siphoviridae and Podoviridae. In 2002,
the lactococcal phage BK5-t was proven to be a member of the
polythetic P335 species, which has both lytic and temperate mem-
bers (Labrie and Moineau, 2002), thus reducing the number of
lactococcal phage species to eleven.

Most recently, in 2006, Deveau and colleagues reassessed exist-
ing phage isolates of L. lactis and reduced the number of cur-
rently existing lactococcal phage species to ten (Deveau et al.,
2006). This re-classification highlighted the extinction of the P107
species and the amalgamation of BK5-t, 1483 and T187 in the
P335 species (Deveau et al., 2006). Furthermore, it also high-
lighted the emergence of new species, such as the Q54 and 1706
species, which were previously unknown or unclassified (Deveau
et al., 2006). Over the past decade, representative members of the
rare and emerging lactococcal phage species, 949 (Samson and
Moineau, 2010), P087 (Villion et al., 2009), P034 (Kotsonis et al.,
2008), Q54 (Fortier et al., 2006), 1358 (Dupuis and Moineau,
2010), KSY1 (Chopin et al., 2007) and 1706 species (Garneau
et al., 2008), have been sequenced and providing essential infor-
mation to corroborate this classification scheme.

The above taxonomic studies have all compounded the
necessity of combining taxonomic methods (including electron
microscopy, DNA-DNA hybridizations/genome sequencing) that
complement each other and provide an effective means for group-
ing phages (Jarvis, 1984; Jarvis et al., 1991; Deveau et al., 2006).
In 1990, Prevots and colleagues identified that the virulent 936
species dominated their collection of 101 phage isolates (Prevots
et al., 1990) and from information gathered over the ensuing
23 years, this dominance has been retained (Deveau et al., 2006;
Rousseau and Moineau, 2009; Castro-Nallar et al., 2012; Murphy
et al., 2013). The genome architecture and content of the 936
phages is highly conserved and the success of this species may be
attributed to the limited number of strains available to the dairy
industry, permitting their propagation and evolution (Mahony
et al., 2012b). The P335 phage species is currently the second
most frequently isolated species in the dairy industry and this

represents a genetically diverse group of phages that may be lytic
or temperate (Mahony et al., 2013). Correlating with their indus-
trial significance, the 936 and P335 species phages also dominate
in terms of fundamental research pertaining to their genomics
and phage-host interactions and serve as models for phages of
a variety of Gram positive bacterial hosts (Veesler et al., 2012;
Bebeacua et al., 2013; Collins et al., 2013). To date, in excess of
70 lactococcal phage genomes have been sequenced to comple-
tion with approximately 70% of these belonging to the 936 species
according to the EMBL-EBI website at the time of writing (www.

ebi.ac.uk/genomes/phage.html) (Table 1). Given the lack of com-
plexity of most lactococcal starter cultures, it is not surprising that
these species continue to dominate and evolve, however, there are
ample possibilities for genetic rearrangements and development
of novel species as has been observed in the case of the Q54 species
(Fortier et al., 2006). The emergence of such novel species high-
lights the necessity of regular revisions of the taxonomy of these
phages. Furthermore, while the small, isometric-headed phages
are the most abundant morphotype of lactococcal phages, the
observation of lactococcal siphophages with unusually long tails
(949 species), or Podoviridae with decorated capsid structures
(KSY1), indicates that morphological assessment remains a use-
ful tool in the taxonomic characterization of such phages as a
complement to genotyping.

S. thermophilus PHAGES
In contrast to the phages of L. lactis, all phages infecting S. ther-
mophilus display a similar morphology with long, non-contractile
tails (typically more than 200 nm in length) and isometric cap-
sid structures, thus belonging to the Siphoviridae family (Brussow
et al., 1994; Bruttin et al., 1997; Levesque et al., 2005; Guglielmotti
et al., 2009; Zinno et al., 2010; Mills et al., 2011). Therefore,
electron microscopy and associated morphological analysis pro-
vides little scope for differentiation between these phages, thus
necessitating the application of other methods of discernment.

In 1994, host range and serological reaction analysis of 81
phages infecting S. thermophilus directed the first significant
classification of these phages into four classes (Brussow et al.,
1994). Only a few years later in 1997, a refinement of this clas-
sification was determined through the combined application of
DNA restriction profiling, structural protein profiling and host
range analysis defined that these phages should be classified into
two major groups (Le Marrec et al., 1997). These groups were
accordingly named the cos (cohesive ends) and pac (headful pack-
aging method) groups, in congruence with their mode of DNA
packaging. This taxonomic system was upheld until the recent
isolation of phage 5093, which infects the Mozzarella starter
strain CSK939 (Mills et al., 2011). The genome of this phage was
sequenced and revealed a novel genotype among S. thermophilus
phages. It possesses greater homology to non-dairy strepto-
coccal prophage sequences than to the genomes of sequenced
S. thermophilus phages. This singular phage represents the newest
addition to the lactic streptococcal phage taxonomic grouping
system and, as yet, remains the only known member of this third
species of S. thermophilus phages (Table 1). Furthermore, mor-
phological analysis of this phage revealed globular structures at
the tail tip region, a novel feature among lactic streptococcal
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Table 1 | Current taxonomy of LAB phages with sequenced members.

Host Phage family Phage species No. of fully sequenced members Taxonomy reference(s)

L. lactis Siphoviridae 936 51 Deveau et al., 2006

P335 15 Deveau et al., 2006

c2 2 Deveau et al., 2006

1358 1 Deveau et al., 2006

Q54 1 Deveau et al., 2006

P087 1 Deveau et al., 2006

1706 1 Deveau et al., 2006

949 2 Deveau et al., 2006

Podoviridae P034 1 Deveau et al., 2006

KSY1 1 Deveau et al., 2006

S. thermophilus Siphoviridae cos 6 Le Marrec et al., 1997

pac 6 Le Marrec et al., 1997

5093-like 1 Mills et al., 2011

Ln. mesenteroides Siphoviridae Group Ia and b 2 Ali et al., 2013

Ln. peudomesenteroides Siphoviridae Group IIa–d 2 Ali et al., 2013

Lb. brevis Myoviridae Unnamed 1 Deasy et al., 2011; Jang et al., 2011

Lb. casei Siphoviridae Unnamed 1 Villion and Moineau, 2009

Lb. delbrueckii Siphoviridae Unnamed 6 Villion and Moineau, 2009

Lb. fermentum Siphoviridae Unnamed 2 Yoon and Chang, 2011; Zhang et al., 2011

Lb. gasseri Siphoviridae Unnamed 1 Villion and Moineau, 2009

Myoviridae Unnamed 1 Villion and Moineau, 2009

Lb. helveticus Myoviridae Unnamed 1 Zago et al., 2013

Lb. paracasei Siphoviridae Unnamed 2 Villion and Moineau, 2009

Myoviridae Unnamed 1 Alemayehu et al., 2009

Lb. plantarum Siphoviridae Unnamed 5 Villion and Moineau, 2009

Myoviridae Unnamed 1 Villion and Moineau, 2009

Lb. rhamnosus Siphoviridae Unnamed 1 Villion and Moineau, 2009

Lb. sanfranciscensis Siphoviridae Unnamed 1 Ehrmann et al., 2013

phages, again reinforcing the application of morphological assess-
ment of phage isolates in parallel with other characterization
tools.

Leuconostoc PHAGES
Leuconostoc spp. are part of undefined composite starter mixes
of many semi-hard cheeses and are required for aroma and fla-
vor formation in such cheeses (Cogan and Jordan, 1994). Phages
of Leuconostoc spp. have received growing and deserved atten-
tion in recent years in terms of phage isolation studies and
genomic analysis pertaining to vegetable and dairy fermentations
(Sutherland et al., 1994; Gindreau et al., 1997; Greer et al., 2007;
Lu et al., 2010; Kleppen et al., 2012; Ali et al., 2013; Kot et al.,
2013). With respect to those infecting dairy starter and adjunct
strains of Leuconostoc mesenteroides and pseudomesenteroides, the
most significant taxonomic classification has been provided this
year following the analysis of 83 phages by host range, mor-
phology and DNA homology (Ali et al., 2013). This resulted in
the identification of species-specific groups capable of infecting
one species of Leuconostoc (Table 1). The phages were primarily
grouped into two major classes based on their non-overlapping
host ranges, I and II (i.e., those capable of infecting either Ln.
mesenteroides or Ln. pseudomesenteroides strains). All phages were

observed to possess long non-contractile tails and isometric cap-
sids, consistent with the features of Siphoviridae phages but with
distinct baseplate appendages at their tail tip regions. In the case
of Ln. mesenteroides (group I), one dominant species of phages
with globular appendages (15 of 16 phages assessed) classified as
species Ia, while a second species Ib is represented by a single iso-
late that did not display the globular appendages in its baseplate,
but was shown to contain extended Y-shaped appendages (Ali
et al., 2013). Phages capable of infecting Ln. pseudomesenteroides
(group II) are grouped into four sub-groups and all present
with a smaller baseplate structure than their Ln. mesenteroides-
infecting counterparts (25 nm vs. 40 nm). Phages possessing a
distinct collar structure below the phage head were classified
as group IIa, while those without a collar were termed mem-
bers of group IIb. A third group, IIc, is composed of isolates
presenting with a “fluffy” baseplate appendage while the fourth
group, IId, contains members that display unusual striations in
the phage tail (Ali et al., 2013). In contrast to Ln. mesenteroides
and pseudomesenteroides, phages infecting Leuconostoc lactis are
rarely reported, representing a major knowledge gap in terms of
the overall taxonomy of dairy Leuconostoc phages (Johansen and
Kibenich, 1992), however, this underrepresentation may be due to
the relatively low levels of usage of strains of this species in dairy
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fermentations (Zamfir et al., 2006). The morphological diversity
of phages infecting Leuconostoc species is quite striking given the
limited number of strains that are available in the dairy setting.
Considering the important role of Leuconostoc strains in flavor
and aroma development in many fermented dairy products, this
may represent an interesting and emerging area of LAB phage
research. The isolation and characterization of further phages
and of the dominant species as well as those of Ln. lactis would
permit the development of further classification schemes and
increasingly sophisticated detection tools for Leuconostoc phages,
perhaps allowing a correlation to be made between phage preva-
lence and flavor development (or lack/reduction thereof), thus
revealing the exact role of Leuconostoc strains within a given
fermentation.

Lactobacillus PHAGES
Lactobacillus species are widely used as starter and adjunct cul-
tures for certain food fermentations including the production
of yoghurt, cheese, sauerkraut, pickles, and, in conjunction with
yeasts, sourdough (Lu et al., 2003; Foschino et al., 2005). Some
are used in the dairy industry for their purported probiotic effects
(Felis and Dellaglio, 2007). In addition to these food fermentation
uses of lactobacilli, some species are associated with food spoilage,
e.g., Lactobacillus casei and Lactobacillus brevis are common beer
spoilers (Asano et al., 2007). Lactobacillus phages belonging to
the families Siphoviridae andMyoviridae have been isolated, while
only a single Lactobacillus phage described thus far belongs to
the Podoviridae family (Ackermann, 2007; Villion and Moineau,
2009). There is a relative paucity of genomic information regard-
ing phages infecting members of this large and diverse genus, and
there is limited taxonomic data regarding these phages (Mahony
et al., 2012a). There are over distinct 100 species recognized
within the Lactobacillus genus and with such host heterogeneity, it
seems unsurprising that phages infecting species of this genus are
equally complex and difficult to classify (Claesson et al., 2007).
Currently, Lactobacillus phages are primarily classified based on
the host species and subsequently into morphological or host
range specific groups for a second tier of classification (For an
extensive review of these phages, see Villion and Moineau, 2009).
To date, the phage genomes of 24 Lactobacillus phages have been
fully sequenced (http://www.ebi.ac.uk/genomes/phage.html) and
their genetic complexity is clear with genome sizes ranging from
∼31–42 kb. It is possible that with increased genome sequence
data, identification of taxonomic groups for this diverse genus
may be possible. Lactobacillus phages also exhibit morphologi-
cal diversity and this characteristic may thus be used in their
differentiation and taxonomy.

CURRENT LIMITATIONS AND FUTURE PERSPECTIVES
Taxonomy of LAB-infecting phages has been the cornerstone of
the development of detection and control tools, particularly per-
taining to dairy fermentations. For example, several multiplex
PCR systems have been established for the detection of lactococ-
cal, S. thermophiles, and Leuconostoc phages (Labrie and Moineau,
2000; Del Rio et al., 2007, 2008; Ali et al., 2013). Such systems are
essential to fermentation industries which rely on rapid identifi-
cation of potentially problematic phages in order to limit phage

proliferation within a plant. The practical relevance of phage tax-
onomy by far outweighs the apparent redundancy of repeated
phage isolation, characterization and genomics studies as novel
genetic elements, emerging phage species and evolving genome
sequences continue to emerge. The vast information that cur-
rently exists for lactococcal phages has provided a solid basis
for classification phages of LAB and other Gram positive bacte-
ria. This data is based on more than three decades of isolation
and characterization studies and genome sequencing efforts and
have compounded the need for continual monitoring of phage
populations. The loss of certain species (as single phage iso-
lates may represent an entire species) and the identification of
emerging and evolving phages present a significant challenge to
phage taxonomy. With the exception of the Felix d’Herelle ref-
erence center for bacterial viruses in Canada, the general lack
of centralized phage collection centers or the low uptake on
requests for deposition of phage isolates in such collection centers
is another issue that limits phage preservation and some phage
isolates/species become obsolete if phage stocks are not main-
tained. Added to this is the lack of uniformity of classification
methods. Classical studies relied upon serotyping and DNA-DNA
hybridizations, which are time-consuming and not entirely dis-
cerning. In contrast, modern methodologies are becoming more
reliant on genome sequencing, which has been possible through
significant advances in sequencing technologies and through-
put (Ronaghi et al., 1998; Eid et al., 2009; Meyer and Kircher,
2010). These advances together with the reduced cost of sequenc-
ing will be central to improving our knowledge of complex
phage taxonomy groups, such as those represented by phages of
the lactobacilli and those of underrepresented genera, including
Weisella, Oenococcus, non-dairy lactococci, and Leuconostoc spp. It
is evident that combinatorial strategies in phage taxonomy are still
as useful today as they were in the past. Genomics combined with
microscopic analysis is the current standard approach toward the
classification of LAB phages with a decreased need for serotyp-
ing and exhaustive hybridization studies. One of the first attempts
at unifying phage taxonomy was in 2002 by selecting a single
structural protein (capsid or tail) as a phylogenetic marker and
through this effort, Siphoviridae phages were classified into four
groups (Proux et al., 2002). Following this, more sophisticated
proteomic trees using overall proteomic data have been developed
as a genome-based strategy for classifying phages. In 2002, the
first phage proteomic tree of 105 phages was constructed. In this
study, the Siphoviridae LAB-infecting phages clustered into one
group of the proteomic tree, which may be sub-divided into the
monophyletic taxonomic groups: sk1-like, TP901-1-like, Sfi21-
like and the λ-like phages (Rohwer and Edwards, 2002). The
Siphoviridae phages displayed most heterogeneity, while phages
belonging to the remaining taxonomic groups (e.g., Myoviridae
and Podoviridae) clustered into neat groups. This system places
the LAB-infecting phages as part of the broader community of
sequenced phages and such classification schemes are essential to
understanding the overall relatedness and evolution of phages.
In more recent years, this system has been expanded upon for
Myoviridae and Podoviridae phages (Lavigne et al., 2006, 2009)
and has endorsed the application of proteomics as a classification
tool.
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It is likely that LAB phage research will continue to focus on
those phages that infect industrially significant genera as have
been described above. It is also evident that the taxonomy of these
phages requires regular review as the lessons learned from lacto-
coccal phage taxonomy highlight the adaptive nature of phages
in response to selective pressures in the industrial setting or the
availability of alternative hosts (Fortier et al., 2006; Garneau et al.,
2008). Therefore, phage taxonomy should be considered a fluid
process that reflects the dynamic industrial environment which
phages inhabit.
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