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We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated
with the Nitrospirae phylum in a viscous liquid under the influence of an externally
imposed, time-dependent magnetic field. By assuming that fluid motion driven by the
translation and rotation of a swimming bacterium is of the Stokes type and that inertial
effects of the motion are negligible, we derive a new system of the twelve coupled
equations that govern both the motion and orientation of a swimming rod-shaped
magnetotactic bacterium with a growing magnetic moment in the laboratory frame of
reference. It is revealed that the initial pattern of swimming motion can be strongly
affected by the rate of the growing magnetic moment. It is also revealed, through
comparing mathematical solutions of the twelve coupled equations to the swimming
motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria,
that the laboratory trajectories of the swimming motion can be approximately reproduced
using an appropriate set of the parameters in our theoretical model.
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1. INTRODUCTION
By converting the mechanical energy of convection-driven fluid
motion into the ohmic dissipation taking place in the Earth’s
outer core, the geodynamo generates and sustains the geo-
magnetic field (Moffatt, 1978; Zhang and Schubert, 2000) that
protects or affects a wide range of life, from human being to
micro-scale organisms, on our planet Earth. The whole evolu-
tion has taken place in the presence of the Earth’s magnetic field
and therefore has brought about phenomena such as magne-
totaxis and magnetoreception (Winklhofer, 2010) A particular
class of living microorganisms is magnetotactic bacteria, first dis-
covered nearly four decades ago by Blakemore (1975), which
contain the magnetic crystal of a narrow size carrying perma-
nent magnetization (Bazylinski and Frankel, 2004; Faivre and
Schüler, 2008; Lei et al., 2012; Prozorov et al., 2013) that allow
them to swim along the lines of the Earth’s magnetic field. In
other words, the majority of them are north-seeking in the north-
ern hemisphere while south-seeking in the southern hemisphere
(Blakemore et al., 1980; Kirschvink, 1980; Frankel, 1984).

It is now well known that, driven by rapid rotation of its heli-
cal flagellar filaments which generates torque, a magnetotactic
bacterium swims in the form of helical fashion against the vis-
cous drag and torque under the influence of an external magnetic
field (Berg and Anderson, 1973; Jones and Aizawa, 1991). From a
dynamical point of view, the swimming style and speed of mag-
netotactic bacteria would sensitively depend on its shape and
the strength of its magnetization. The simplest model of swim-
ming magnetotactic bacteria can be constructed upon making the
following two assumptions: (1) the bacteria have perfect spher-
ical geometry (Nogueira and Lins de Barros, 1995; Pan et al.,
2009) and (2) their movement is extremely slow such that the

Stokes approximation can be made (Batchelor, 1967; Koiller et al.,
1996). A huge mathematical advantage of spherical geometry is
that the Stokes solution is not only very simple but also available
(Batchelor, 1967). The drag force Dμ on a translating spherical
body is given by

Dμ = −6πμr0v, (1)

where r0 is the radius of the sphere, μ is the dynamical viscosity of
the fluid and v is the translating velocity, while the viscous torque
Tμ on a rotating spherical body is

Tμ = −8πμr3
0�, (2)

where � represents the angular velocity of its rotation. On the
basis of these simple expressions for the viscous drag and torque
of a spherical body, Nogueira and Lins de Barros (1995) derived
a system of six simple ordinary differential equations that govern
the motion of a swimming spherical magnetotactic bacterium. An
important characteristic of the spherical model is, as clearly indi-
cated by Equations (1, 2), that the size of its drag force Dμ and its
viscous torque Tμ does not depend on the direction of its transla-
tion or rotation. Erglis et al. (2007) studied the swimming motion
of the motile magnetotactic bacterium in a rotating magnetic field
by assuming that the velocity of a bacterium is in the direction of
its long axis.

While spherical geometry or the swimming direction in the
direction of a symmetry axis would dramatically simplify the rel-
evant mathematical analysis, it does not capture the key dynamics
of swimming magnetotactic bacteria that are typically non-
spherical and may swim in an arbitrary direction. By keeping
inertial effects of the swimming motion and using a prolate
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spheroid with moderate eccentricity, Cui et al. (2012) derived a
system of twelve coupled non-linear ordinary differential equa-
tions that govern both the motion and orientation of swimming
non-spherical magnetotactic bacteria. It is noteworthy that, as a
consequence of the strong stiffness associated with inertial effects,
the twelve ordinary differential equations derived by Cui et al.
(2012) are highly complicated and numerical integration of the
system is quite slow.

Rod-shaped magnetotactic bacteria displayed in Figure 1A are
found in Lake Miyun near Beijing, China. This type of mag-
netotactic bacteria, belonging to the Nitrospirae phylum, can
synthesize hundreds of bullet-shaped magnetosomes in a single
cell (Lin et al., 2011). It is recognized that the shape of this par-
ticular class of magnetotactic bacteria can be reasonably modeled
by a strongly elongated prolate spheroid defined as

x2

a2
(
1 − E2

) + y2

a2
(
1 − E2

) + z2

a2
= 1 (3)

with its eccentricity E satisfying 0 < (1 − E) � 1, where a is the
semi-major axis with 2a representing the length of a rod-shaped
bacterium. As depicted in Figure 1B, the shape of the rod-
shaped bacterium in Figure 1A can be approximately described
by Equation (3) with E = 0.96.

The primary objective of this paper is to study, via both the-
oretical and experimental methods, the swimming motion of
rod-shaped magnetotactic bacteria found in Lake Miyun (Lin
et al., 2011). In comparison to the two previous studies—the
spherical model by Nogueira and Lins de Barros (1995) and the
inertial model by Cui et al. (2012)—there are three new elements
in the present study. First, our non-spherical model accounts
for, to leading-order approximation, the rod-shaped effect of
swimming magnetotactic bacteria by taking the large eccentric-
ity limit 0 < (1 − E) � 1 in Equation (3). As a consequence
of rod-shaped geometry, the size of viscous torque, as we will
show, is strongly dependent on the direction of rotation vec-
tor �. Second, by taking the time-dependent magnetic moment
of magnetotactic bacteria, we attempt to model the dynamics
of magnetotactic bacteria at the earlier stage of their growing

phase when their magnetite formation is associated with a slow,
diffusion-like process (Schüler and Baeuerlein, 1996). Third, we
derive, by completely neglecting inertial effects, a new system of
the twelve coupled equations that govern both the motion and
orientation of rod-shaped magnetotactic bacteria in the labora-
tory frame of reference and that are much simpler than those of
the inertial model derived by Cui et al. (2012).

It should be noticed that the analytical mathematical solutions
for the motion of a viscous fluid due to a strongly prolate spheroid
translating or rotating in an arbitrary direction are required to
describe the swimming motion of rod-shaped magnetotactic bac-
teria. This is closely associated with a classical fluid dynamical
problem which was first discussed by Jeffery (1922) and, then,
comprehensively reviewed by Happel and Brenner (1965) in a
research monograph. While the flow due to a strongly prolate
spheroid translating or rotating in the direction parallel to its sym-
metry axis is relatively simply and has been used in various models
(see, for example, Han et al., 2009), there exists no mathematical
solutions that can be practically employed to study the dynam-
ics of swimming motion of rod-shaped magnetotactic bacteria.
This is because the existing solutions (Jeffery, 1922; Happel and
Brenner, 1965) are based on the incomplete elliptic-type integrals
that have to be evaluated numerically. We therefore need a set
of the new analytical solutions that describe the fluid motion of
a prolate spheroid translating or rotating in an arbitrary direc-
tion and that can be practically useful in modeling the swimming
motion of rod-shaped magnetotactic bacteria.

In what follows we shall begin in section 2 by discussing the
Stokes flow and the related viscous drag/torque for rod-shaped
magnetotactic bacteria. This is followed by presenting our theo-
retical model and by deriving the twelve governing equations in
section 3. Discussion of the results will be presented in section
4 and the paper closes in section 5 with a summary and some
remarks.

2. STOKES FLOW, DRAG, AND TORQUE
2.1. STOKES FLOW FOR SWIMMING ROD-SHAPED BACTERIA
Stokes flow is referred to a class of fluid motion in that the speed
of flow is extremely slow and the effect of viscosity is very strong

FIGURE 1 | (A) A microscope image (Bar = 1μ m) of a rod-shaped
magnetotactic bacterium found in Lake Miyun near Beijing, China. (B) An
elongated prolate spheroid with eccentricity E = 0.96 that provides an

approximation of the rod-shaped bacterium for which its swimming
motion is powered by the rapid rotation of helical flagellar filaments at a
fixed point P.
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such that inertial forces are much smaller comparing to viscous
forces (Batchelor, 1967). In the language of fluid dynamics, the
problem of swimming microorganisms is marked by a very small
Reynolds number Re (Pureel, 1977), a dimensionless number
defined as

Re = Uaρ

μ
,

where U is the typical velocity of the fluid motion, ρ is the liquid
density, a denotes the typical length scale and μ is the dynamic
viscosity of the liquid. Since the swimming speed U is very low
and its characteristic dimension a is extremely small, the Stokes
approximation, which neglects the inertial term in the Navier–
Stokes equation by taking the limit Re → 0, is usually adopted for
describing the motion of microorganisms (Koiller et al., 1996). It
follows that the fluid motion generated by swimming rod-shaped
magnetotactic bacteria is governed by the Stokes equation and the
equation of continuity,

{
μ∇2u = ∇p,

∇ · u = 0,
(4)

where u is the velocity of the flow and p is its pressure. For under-
standing the dynamics of swimming magnetotactic bacteria, it is
necessary to have mathematical solutions of the Stokes flow cre-
ated by both the translation and rotation of a rod-shaped body in
an infinite expanse of viscous and incompressible fluid. In other
words, we require the analytical solution to (Equation 4) sub-
ject to the condition that the fluid velocity u coincides with the
bounding surface of a swimming magnetotactic bacterium at each
of its points and u → 0 far away from the swimming bacterium.

It is important to notice that, while the mathematical problem
of the spherical Stokes flow is classical, simple, two-dimensional
and well-known (Batchelor, 1967), the Stokes flow associated
with a rod-shaped swimming body is complicated, fully three-
dimensional and not widely known. Various authors have con-
sidered the Stokes flow in non-spherical geometry. For example,
Payne and Pell (1960) considered the Stokes problem in which
the configuration of various obstacles has an axis of symmetry
and the uniform flow at distant points is parallel to the symmetry
axis. Kong et al. (2012) derived the first exact solution of Stokes
flow for an arbitrarily rotating or translating oblate spheroid of
arbitrary eccentricity using the Papkovich–Neuber formulation.
In the following, we shall present the modified solution that is
in a suitable form for our mathematical analysis of swimming
rod-shaped bacteria in a viscous fluid.

2.2. DRAG ON TRANSLATING ROD-SHAPED BACTERIA AT ARBITRARY
ANGLES

In order to describe the swimming motion of a rod-shaped
bacterium, we require the mathematical solution of a three-
dimensional Stokes flow driven by translating an elongated pro-
late spheroid with its eccentricity 0 < (1 − E) � 1 at an arbitrary
angle of attack γ, the angle between the direction of the translat-
ing velocity v and the symmetry axis z of a rod-shaped bacterium,
which is sketched in Figure 2. Note that cartesian coordinates
(x, y, z) are attached to the bacterium’s body. Our swimming

FIGURE 2 | Translation of a rod-shaped bacterium at an arbitrary angle

of attack γ with the velocity v, where cartesian coordinates (x, y, z) are

attached to the bacterium’s body. Rotation of a rod-shaped a rod-shaped
bacterium with an arbitrary angle α and the angular velocity � under the
influence of an externally imposed, time-dependent magnetic field B.

model needs an analytical formula that expresses the viscous drag
force DB on the translating rod-shaped bacterium as a function
of E and γ.

Upon adopting the Papkovich–Neuber formulation
(Papkovich, 1932; Neuber, 1934), the flow velocity u satisfying
(Equation 4) can be written in the form

{
u = ∇(r · Ψ + χ) − 2Ψ,

p = 2μ(∇ · Ψ),
(5)

where r is the position vector, Ψ, a vector harmonic function,
satisfies ∇2Ψ = 0 and χ, a scalar harmonic function, is a solu-
tion to ∇2χ = 0. Both Ψ and χ can be obtained by using the
expansion of prolate spheroidal harmonics (Kong et al., 2012).
The main mathematical complication and difficulty in apply-
ing the Papkovich–Neuber formulation to the present problem
stem from both non-spherical geometry/coordinates and three-
dimensionality that make the analysis lengthy and cumbersome.

We first introduce oblate spheroidal coordinates defined by
three sets of orthogonal level surfaces: the radial coordinate ξ ∈
[ξ0,∞) characterizes oblate spheroidal surfaces

z2

c2ξ2
+ x2 + y2

c2
(
ξ2 − 1

) = 1,
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the angular coordinate η ∈ [−1, 1] determines hyperboloids

z2

c2η2
− x2 + y2

c2
(
1 − η2

) = 1,

and, finally, the third coordinate is azimuthal angle φ which is the
same as that in spherical polar coordinates. Here c is the common
focal length for all the spheroids and hyperboloids, the bounding
surface of an oblate spheroidal body (or a rod-shaped bacterium)
is described by

ξ = ξ0 = 1/E .

The domain of Stokes flow in the exterior of the prolate
spheroid (or the rod-shaped bacterium) is then defined by
{ξ0 ≤ ξ < ∞, −1 ≤ η ≤ 1, 0 ≤ ϕ ≤ 2π} while the transforma-
tion between prolate spheroidal coordinates (ξ,η,ϕ) and the
corresponding cartesian coordinates (x, y, z) is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = c
√(

ξ2 − 1
) (

1 − η2
)

cos ϕ,

y = c
√(

ξ2 − 1
) (

1 − η2
)

sin ϕ,

z = cξη.

(6)

In this paper, we shall use (ξ̂, η̂, φ̂) to denote unit vectors in oblate
spheroidal coordinates and (x̂, ŷ, ẑ) as unit vectors in cartesian
coordinates (x, y, z) depicted in Figure 2.

Suppose that a rod-shaped bacterium moves with the velocity
v at the speed |v| written in the form

v = |v|
[(

sin γ cos φ̃
)

x̂ +
(

sin γ sin φ̃
)

ŷ + (cos γ) ẑ
]
,

where the angles γ and φ̃ specify the direction of v. It can
be shown, after some length mathematical analysis, that the
three-dimensional solution ut and the corresponding pressure pt

describing a Stokes flow driven by translating the bacterium with
its velocity v at arbitrary angles γ and φ̃ are

ξ̂ · ut

|v| =
√

ξ2 − 1

ξ2 − η2
η cos γ

×
⎡
⎢⎣ ξ̂ + 2ξ

ξ2−1(
ξ2

0 + 1
)
ξ̂0 − 2ξ0

+
ξ̂ − 2ξ

ξ2−1

ξ2
0+1

ξ2
0

ξ̂0 − 2
ξ0

⎤
⎥⎦

+
√

1 − η2√
ξ2 − η2

⎡
⎢⎣ − ξ

2 ξ̂ − 1

ξ2
0−3
4 ξ̂0 − ξ0

2

+
ξ
2 ξ̂ − ξ2−2

ξ2−1

ξ2
0−3

2
(
ξ2

0−1
) ξ̂0 − ξ0

ξ2
0−1

⎤
⎥⎦

× cos(ϕ − φ̃) sin γ, (7)

η̂ · ut

|v| =
√

1 − η2√
ξ2 − η2

cos γ

×
⎡
⎢⎣ ξ

2 ξ̂

ξ2
0+1
2 ξ̂0 − ξ0

+
ξ
2 ξ̂ − 1

ξ2
0+1

2ξ2
0

ξ̂0 − 1
ξ0

⎤
⎥⎦

+ 1√
ξ2 − η2

⎡
⎢⎢⎣

√
ξ2−1
2 ξ̂

ξ2
0−3
4 ξ̂0 − ξ0

2

−

√
ξ2−1
2 ξ̂ − ξ√

ξ2−1

ξ2
0−3

2
(
ξ2

0−1
) ξ̂0 − ξ0

ξ2
0−1

⎤
⎥⎥⎦

×η cos(ϕ − φ̃) sin γ, (8)

φ̂ · ut

|v| =
⎡
⎢⎣ 1

2 ξ̂

ξ2
0−3
4 ξ̂0 − ξ0

2

−
1
2 ξ̂ − ξ

ξ2−1

ξ2
0−3

2
(
ξ2

0−1
) ξ̂0 − ξ0

ξ2
0−1

⎤
⎥⎦

× sin(ϕ − φ̃) sin γ, (9)

pt

μ|v| = −2

c

[ ξ

ξ2 − η2

√
1 − η2

ξ2 − 1

sin γ cos(ϕ − φ̃)

ξ2
0−3
4 ξ̂0 − ξ0

2

+ η

ξ2 − η2

cos γ

− ξ2
0+1
2 ξ̂0 + ξ0

]
, (10)

where

ξ̂0 = ln

[
(ξ0 + 1)

(ξ0 − 1)

]
; ξ̂ = ln

[
(ξ + 1)

(ξ − 1)

]
.

Here prolate spheroidal coordinates (ξ,η,ϕ) are employed for
the convenience of computing the drag force that involves sur-
face integration over the bounding surface of the bacterium.
Analytical expressions (Equations 7–10) represent a solution sat-
isfying both (Equation 4) and the non-slip boundary condition.
It is evident that, apart from the special case with the attack angle
γ = 0, this Stokes flow is fully three-dimensional.

With the availability of the three-dimensional solution
(Equations 7–10), we are able to derive the drag force DB on
a swimming rod-shaped bacterium using cartesian coordinates
(x, y, z) attached to the bacterium’s body as sketched in Figure 2.
The drag force DB on a translating bacterium with the angle of
attack γ can be expressed as

DB =
∫

S
f t dS,

where
∫

S denotes the surface integration over the bounding
surface S of the bacterium, f t in tensor notation is

f t
i =

(
−ptδij + 2μσt

ij

)
nj, (11)

with δij being the Dirac delta function, nj being unit normal at the
bounding surface S and

σt
ij = 1

2

(
∂ut

i

∂xj
+

∂ut
j

∂xi

)
.

The tensor σt
ij can be readily obtained from the expressions

(7–9) by performing derivatives in prolate spheroidal coor-
dinates. Evaluating pt and σt

ij at the bounding surface ξ =
ξ0 of the bacterium, integrating over its bounding surface
S, we obtain an analytical formula for the drag force DB
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on a translating bacterium:

DB

2πμc
= −

⎡
⎣8 + 4

(
ξ2

0 − 1
) (−2 + ξ0ξ̂0

)
2ξ0 − (

ξ2
0 − 3

)
ξ̂0

+8ξ2
0 − 4ξ0

(
ξ2

0 − 1
)
ξ̂0

2ξ0 − (
ξ2

0 − 3
)
ξ̂0

] [
(x̂ · v)x̂ + (ŷ · v)ŷ

]

−
⎡
⎢⎣4ξ2

0

(
ξ2

0 − 1
) (

2 − ξ2
0−1
ξ0

ξ̂0

)
2ξ0 − 2ξ3

0 + (
ξ4

0 − 1
)
ξ̂0

+
4
(
ξ2

0 − 1
) (

2 − ξ0ξ̂0

)
ξ0 − (

ξ2
0 + 1

)
ξ̂0

⎤
⎦ (ẑ · v)ẑ, (12)

which is valid for an arbitrary angle γ. Expression (12) will be
used for constructing a set of the equations describing swim-
ming rod-shaped bacteria. The dependence of the scaled drag
force is tabulated in Table 1 as a function of γ for E = 0.96 (or
ξ0 = 1.0416667). Note that we have |DB|/(6πμa|v|) → 1 in the
spherical limit E → 0 and that the size of the drag force is, as
expected, significantly reduced as a result of the rod shaped body.
Figure 3 shows how the drag force varies dramatically with the
size of eccentricity E for γ = 45◦, indicating that the dynamics of
swimming rod-shaped bacteria would be quite different from that
of spherical-shaped bacteria.

2.3. TORQUE ON A ROTATING ROD-SHAPED BACTERIA AT ARBITRARY
ANGLES

We also need the mathematical solution of a three-dimensional
Stokes flow driven by rotating bacterium with the angular velocity
� at an arbitrary angle α as sketched in Figure 2. Suppose that a
bacterium is rotating with the angular velocity � in the form

� = |�| [(sin α cos β) x̂ + (sin α sin β) ŷ + (cos α) ẑ
]
,

Table 1 | The scaled drag force and the scaled viscous torque as a

function of γ and α for E = 0.96.

γ or α |DB|/(6πμa|v|) |TB|/ (
8πμa3|�|)

0◦ 0.424447 0.057270

10◦ 0.428270 0.063091

20◦ 0.439094 0.077447

30◦ 0.455178 0.095336

40◦ 0.474163 0.113493

50◦ 0.493565 0.130060

60◦ 0.511126 0.143900

70◦ 0.525008 0.154267

80◦ 0.533874 0.160673

90◦ 0.536918 0.162839

In the spherical limit E → 0 we obtain that |DB|/(6πμa|v|) → 1 and

|TB|/(8πμa3|�|) → 1.

FIGURE 3 | The scaled drag force and the scaled viscous torque as a

function of eccentricity E for α = 45◦ and γ = 45◦.

where the angles α and β specify the direction of � in the carte-
sian coordinates (x, y, z). A three-dimensional velocity ur and the
corresponding pressure pr describing the Stokes flow driven by
a rotating rod-shaped bacterium with the angular velocity � at
arbitrary rotating angles α and β are

ξ̂ · ur

c|�| = −η

√
1 − η2

ξ2 − η2

⎡
⎢⎣ ξ2

0ξ̂(
ξ2

0 + 1
)
ξ̂0 − 2ξ0

−
2ξ

ξ2−1
+ ξ̂(

ξ2
0+1

)
ξ2

0−1
ξ̂0 − 2ξ0

ξ2
0−1

⎤
⎥⎦ sin α sin (ϕ − β), (13)

η̂ · ur

c|�| =
√

ξ2 − 1√
ξ2 − η2

⎡
⎢⎣ 2ξξ̂ − 4(

ξ2
0+1

)
ξ2

0
ξ̂0 − 2

ξ0

−
ξξ̂ − 2ξ2

ξ2−1(
ξ2

0+1
)

ξ2
0−1

ξ̂0 − 2ξ0

ξ2
0−1

⎤
⎥⎦ sin α sin (ϕ − β), (14)

φ̂ · ur

c|�| = η

⎡
⎢⎣ ξξ̂ − 2ξ2

ξ2−1

ξ2
0+1

ξ2
0−1

ξ̂0 − 2ξ0

ξ2
0−1

− 2ξξ̂ − 4
ξ2

0+1

ξ2
0

ξ̂0 − 2
ξ0

⎤
⎥⎦

× sin α cos (ϕ − β)

+
ξ̂ − 2ξ

ξ2−1

ξ̂0 − 2ξ0

ξ2
0−1

√(
ξ2 − 1

) (
1 − η2

)
cos α, (15)

pr

μ|�| = −8η

ξ2 − η2

√
1 − η2

ξ2 − 1

[
sin α sin (ϕ − β)(
ξ2

0 + 1
)
ξ̂0 − 2ξ0

]
. (16)

www.frontiersin.org January 2014 | Volume 5 | Article 8 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Microbiology/archive


Kong et al. Swimming motion of rod-shaped magnetotactic bacteria

Evidently, apart from the special case with α = 0, the Stokes flow
described by Equations (13–16) is fully three-dimensional.

The viscous torque TB acting on the rotating bacterium can be
expressible as

TB =
∫

S
rS × f r dS,

where rS denotes the position vector for the bounding surface S
of the bacterium and the viscous force f r on the surface S is given
by

f r
i =

[
−prδij + μ

(
∂ur

i

∂xj
+

∂ur
j

∂xi

)]
nj, (17)

with the velocity ur
i and pr given by Equations (13–16) evaluated

at the outer surface ξ = ξ0 of the bacterium. After a lengthy anal-
ysis analogous to that for the drag DB, the torque TB in cartesian
coordinates (x, y, z) is found to be

TB

8πμc3
= −1

−2ξ0 + (
ξ2

0 + 1
)
ξ̂0

[
(x̂ · �)x̂ + (ŷ · �)ŷ

]

×
[

2ξ0
(
ξ2

0 − 1
)

tanh−1 1

ξ0

+ −4 + 8ξ2
0 − 3ξ0

(
ξ2

0 − 1
)
ξ̂0

3

]

+ 4

3

[ (
ξ2

0 − 1
)

−2ξ0 + (
ξ2

0 − 1
)
ξ̂0

]
(ẑ · �)ẑ, (18)

which is valid for arbitrary rotating vector �. Here, for example,

x̂ · � = |�| (sin α cos β) .

The dependence of the scaled torque is tabulated in Table 1
as a function of α for E = 0.96. It can be seen that we have
|TB|/(8πμa3|�|) → 1 in the spherical limit E → 0 and that the
size of the scaled torque is sensitively dependent on the rotating
angle α, ranging from 0.057 at α = 0 to 0.163 at α = 90◦. Figure 3
shows how the the viscous torque varies dramatically with the size
of eccentricity E for α = 45◦, indicating again that the dynamics
of swimming rod-shaped bacteria would be quite different from
that of spherical-shaped bacteria.

3. MODEL AND GOVERNING EQUATIONS
For deriving the equations governing the swimming motion of
rod-shaped magnetotactic bacteria, we shall make the following
six assumptions: (1) the geometry of a rod-shaped magnetotac-
tic bacterium can be described by an elongated prolate spheroid
(Equation 3) with 0 < (1 − E) � 1; (2) the body of rod-shaped
magnetotactic bacteria is non-deformable and, hence, the equa-
tion of rigid-body dynamics becomes applicable; (3) interaction
between different magnetotactic bacteria during their swimming
motion (Ishikawa et al., 2007), as clearly suggested by our labo-
ratory experiments, is weak and, hence, can be negligible; (4) the
translation and rotation of magnetotactic bacteria are powered by
the rapid rotation of helical flagellar filaments at a fixed point P, as

FIGURE 4 | Two cartesian coordinates, (X, Y, Z ) and (x, y, z), used in our

theoretical analysis, are related by the three Euler angles (θ, ψ, φ) and

the position vector R. Cartesian coordinates (X , Y , Z ) represent a
reference of frame fixed in the laboratory while (x, y, z) denote a reference
of frame fixed in the body of the bacterium.

sketched in Figure 1B, which, as used and explained by Nogueira
and Lins de Barros (1995), may be modeled a driving force FB in
the body frame:

FB = F12
[
cos(ω0t)x̂ + sin(ω0t)ŷ

]+ F3ẑ, (19)

where ω0 is the frequency of flagellum rotation while F12, F3, and
ω0 may be regarded as parameters of the problem; (5) the inertial
effects of swimming rod-shaped magnetotactic bacteria are small
and, thus, negligible; and finally, (6) the initial phase of growing
magnetic moment in a magnetotactic bacterium can be described
by the equation

m(t) = m0

[
1 − e−(t−t0)/τ0

]
, (20)

where m is parallel to the symmetry axis of the magnetotactic bac-
terium, m0 denotes the magnetic moment in the limit t → ∞
and τ0 represents a parameter controlling the grow rate of the
magnetic moment.

On the basis of the above six assumptions, we are able to derive
the twelve coupled equations that govern the swimming motion
of a rod-shaped magnetotactic bacterium with a time-dependent
magnetic moment m in a viscous fluid. Two cartesian coordinates
(x, y, z) and (X, Y, Z), which are sketched in Figure 4, are needed
to describe the swimming motion. Cartesian coordinates (x, y, z)
represent a reference of frame fixed in the bacterium’s body with
z at its symmetry axis (Figure 2); this reference will be referred
to as the body frame. The position of the bacterium’s center o in
Figure 4 is described by the position vector

R = XX̂ + YŶ + ZẐ

in cartesian coordinates (X, Y, Z) with the corresponding unit
vectors (X̂, Ŷ, Ẑ) fixed in a laboratory; this reference will be
referred to as the laboratory frame.
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A rod-shaped magnetotactic bacterium swims under the com-
bined action of a propel force FB, a viscous drag DB, a viscous
torque TB and an externally imposed rotating magnetic field B.
In this paper, subscript B denotes the quantity measured in the
body frame of reference (x, y, z) while subscript L for the quantity
described in the laboratory frame (X, Y, Z). The relative posi-
tion between two cartesian coordinates, (x, y, z) and (X, Y, Z),
is determined by six variables: the position vector R = (X, Y, Z)

together with three Euler angles (θ,φ,ψ) illustrated in Figure 4.
Additionally, we also introduce the three vectors: a translation
vector vL of a magnetotactic bacterium in the laboratory frame,
a translation vector v of a magnetotactic bacterium in the body
frame and a rotation vector � in the body frame. There exist
12 degrees of freedom that determine the swimming motion of
a rod-shaped magnetotactic bacterium: (1) the three position
coordinates R = (X, Y, Z) in the laboratory frame; (2) the three
components of its velocity vector vL = (vL · X̂, vL · Ŷ, vL · Ẑ) in
the laboratory frame; (3) the three components of the angular
velocity � = (x̂ · �, ŷ · �, ẑ · �) in the body frame and, finally,
(iv) the three Euler angles (θ,φ,ψ).

The first set of the governing equations is derived from
Newton’s second law stating that the rate of change of the momen-
tum must be equal to the sum of all external forces acting
on it,

M
dvL

dt
= FL + DL,

where FL and DL are the propel and viscous forces in the labo-
ratory frame. Upon neglecting inertial effects because the mass
M of a rod-shaped magnetotactic bacterium (which is about
9.5 × 10−16 Kg) is extremely small, we may rewrite the above
equation as

0 = FB + DB. (21)

Note that, by neglecting inertial effects, the forces in the body
frame (FB, DB) are the same as those in the laboratory frame
(FL, DL). Equation (21) can be solved exactly, after making use
of Equations (12, 19), to give the three velocity components in
the body frame of reference

v · x̂ = F12 cos ω0t

2πμc

⎡
⎣8 + 4

(
ξ2

0 − 1
) (−2 + ξ0ξ̂0

)
2ξ0 − (

ξ2
0 − 3

)
ξ̂0

+ 8ξ2
0 − 4ξ0

(
ξ2

0 − 1
)
ξ̂0

2ξ0 − (
ξ2

0 − 3
)
ξ̂0

⎤
⎦

−1

, (22)

v · ŷ = F12 sin ω0t

2πμc

⎡
⎣8 + 4

(
ξ2

0 − 1
) (−2 + ξ0ξ̂0

)
2ξ0 − (

ξ2
0 − 3

)
ξ̂0

+ 8ξ2
0 − 4ξ0

(
ξ2

0 − 1
)
ξ̂0

2ξ0 − (
ξ2

0 − 3
)
ξ̂0

⎤
⎦

−1

, (23)

v · ẑ = F3 sin ω0t

2πμc

⎡
⎣4ξ2

0

(
ξ2

0 − 1
) (

2ξ0 − (
ξ2

0 − 1
)
ξ̂0

)
2ξ2

0

(
1 − ξ2

0

)+ ξ0
(
ξ4

0 − 1
)
ξ̂0

+
4
(
ξ2

0 − 1
) (

2 − ξ0ξ̂0

)
ξ0 − (

ξ2
0 + 1

)
ξ̂0

⎤
⎦

−1

. (24)

The velocity v in the body frame needs to be transformed to the
laboratory frame of reference, denoted as vL by using the three
Euler angles, which is expressible as

vL · X̂ = v · x̂ (cos φ cos ψ − sin φ cos θ sin ψ)

− v · ŷ (cos φ sin ψ + sin φ cos θ cos ψ)

+ v · ẑ (sin φ sin θ) , (25)

vL · Ŷ = v · x̂ (sin φ cos ψ + cos φ cos θ sin ψ)

− v · ŷ (sin φ sin ψ − cos φ cos θ cos ψ)

− v · ẑ (cos φ sin θ) , (26)

vL · Ẑ = v · x̂ (sin θ sin ψ) + v · ŷ (sin θ cos ψ)

+ v · ẑ cos θ. (27)

Note that the three Euler angles are a function of time: θ =
θ(t),ψ = ψ(t), and φ = φ(t). The second set of three equations
is derived by relating the position of the bacterium R in the
laboratory frame to its translation velocity vL,

(
X̂

dX

dt
+ Ŷ

dY

dt
+ Ẑ

dZ

dt

)
= vL.

After making use of Equations (22–24) and (25–27), we can derive
the following three equations for determining the position vector
R = (X, Y, Z) in the laboratory frame of reference:

dX

dt
= F12

2πμc

⎡
⎣8 + 4

(
ξ2

0 − 1
) (−2 + ξ0ξ̂0

)
2ξ0 − (

ξ2
0 − 3

)
ξ̂0

+ 8ξ2
0 − 4ξ0

(
ξ2

0 − 1
)
ξ̂0

2ξ0 − (
ξ2

0 − 3
)
ξ̂0

⎤
⎦

−1

× [cos φ cos(ω0t + ψ) − sin φ cos θ sin(ω0t + ψ)]

+ F3

2πμc

⎡
⎣4ξ2

0

(
ξ2

0 − 1
) (

2ξ0 − (
ξ2

0 − 1
)
ξ̂0

)
2ξ2

0

(
1 − ξ2

0

)+ ξ0
(
ξ4

0 − 1
)
ξ̂0

+
4
(
ξ2

0 − 1
) (

2 − ξ0ξ̂0

)
ξ0 − (

ξ2
0 + 1

)
ξ̂0

⎤
⎦

−1

sin φ sin θ, (28)

dY

dt
= F12

2πμc

⎡
⎣8 + 4

(
ξ2

0 − 1
) (−2 + ξ0ξ̂0

)
2ξ0 − (

ξ2
0 − 3

)
ξ̂0

+ 8ξ2
0 − 4ξ0

(
ξ2

0 − 1
)
ξ̂0

2ξ0 − (
ξ2

0 − 3
)
ξ̂0

⎤
⎦

−1
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× [sin φ cos(ω0t + ψ) + cos φ cos θ sin(ω0t + ψ)]

− F3

2πμc

⎡
⎣4ξ2

0

(
ξ2

0 − 1
) (

2ξ0 − (
ξ2

0 − 1
)
ξ̂0

)
2ξ2

0

(
1 − ξ2

0

)+ ξ0
(
ξ4

0 − 1
)
ξ̂0

+
4
(
ξ2

0 − 1
) (

2 − ξ0ξ̂0

)
ξ0 − (

ξ2
0 + 1

)
ξ̂0

⎤
⎦

−1

cos φ sin θ, (29)

dZ

dt
= F12

2πμc

⎡
⎣8 + 4

(
ξ2

0 − 1
) (−2 + ξ0ξ̂0

)
2ξ0 − (

ξ2
0 − 3

)
ξ̂0

+ 8ξ2
0 − 4ξ0

(
ξ2

0 − 1
)
ξ̂0

2ξ0 − (
ξ2

0 − 3
)
ξ̂0

⎤
⎦

−1

× sin θ sin(ω0t + ψ)

− F3

2πμc

⎡
⎣4ξ2

0

(
ξ2

0 − 1
) (

2ξ0 − (
ξ2

0 − 1
)
ξ̂0

)
2ξ2

0

(
1 − ξ2

0

)+ ξ0
(
ξ4

0 − 1
)
ξ̂0

+
4
(
ξ2

0 − 1
) (

2 − ξ0ξ̂0

)
ξ0 − (

ξ2
0 + 1

)
ξ̂0

⎤
⎦

−1

cos θ. (30)

The third set of the equations is derived from the rotational
dynamics of the angular momentum L which is

L = Ix�xx̂ + Iy�xŷ + Iz�z ẑ,

where (Ix, Iy, Iz) denote the three principle moments of inertia of
a rod-shaped bacterium. It is known that the rate of change of L
must be equal to the sum of all torques acting on the rod-shaped
bacterium:(

Ixx̂
d�x

dt
+ Iyŷ

d�y

dt
+ Iz ẑ

d�z

dt

)
+ � × L

= TF + Tc + TB + TM,

where TF represents the torque imposed by the driving force FB,

TF = −aẑ × FB = aF12
(

x̂ sin ω0t − ŷ cos ω0t
)
,

Tc = −Nc ẑ is related to the reaction couple of the flagellar rota-
tion (Nogueira and Lins de Barros, 1995), the viscous torque TB in
the body frame is given by Equation (18) and the time-dependent
magnetic torque in the laboratory frame is

(TM)lab = m(t) × B = (m0B0)
[

1 − e−(t−t0)/τ
]

ẑ ×
(

X̂ cos �0t + Ŷ cos �0t
)

,

where B0 is the amplitude of the externally imposed, rotating
magnetic field B and �0 denotes the frequency of the magnetic
field B. Since all the torques must be expressed in the same frame
of reference, we need to transform (TM)lab in the laboratory

frame to that in the body frame of reference using the three Euler
angles. In the body frame, the magnetic torque TM is

TM = (m0B0)
[

1 − e−(t−t0)/τ
]

{[
(sin ψ cos φ + sin φ cos θ cos ψ) cos �0t

+ (sin ψ sin φ − cos φ cos θ cos ψ) sin �0t
]

x̂

+
[
(cos ψ cos φ − sin φ cos θ sin ψ) cos �0t

+ (cos ψ sin φ + cos φ cos θ sin ψ) sin �0t
]

ŷ
}
. (31)

Furthermore, because of the extremely small moments of inertia
(Ix, Iy, Iz) in association with the small mass of the bacterium,
we shall neglect inertial effects by writing the angular momentum
equation as

0 = TF + Tc + TM + TB. (32)

This approximation dramatically simplifies the analysis and
allows us to solve the vector equation (32) for the three
components of � in the body frame of reference, which are

x̂ · � = −2ξ0 + (
ξ2

0 + 1
)
ξ̂0

8πμc3{
aF12 sin ω0t + m0B0

(
1 − e−(t−t0)/τ

)
×
[
(sin ψ cos φ + sin φ cos θ cos ψ) cos �0t

+ (sin ψ sin φ − cos φ cos θ cos ψ) sin �0t
]}

×
[

2ξ0
(
ξ2

0 − 1
)

tanh−1 1

ξ 0

+ 1

3

(
−4 + 8ξ2

0 − 3ξ0
(
ξ2

0 − 1
)
ξ̂0

)]−1

, (33)

ŷ · � = −2ξ0 + (
ξ2

0 + 1
)
ξ̂0

8πμc3{
− aF12 cos ω0t + m0B0

(
1 − e−(t−t0)/τ

)
×
[
(cos ψ cos φ − sin φ cos θ sin ψ) cos �0t

+ (cos ψ sin φ + cos φ cos θ sin ψ) sin �0t
]}

×
[

2ξ0
(
ξ2

0 − 1
)

tanh−1 1

ξ 0

+ 1

3

(
−4 + 8ξ2

0 − 3ξ0
(
ξ2

0 − 1
)
ξ̂0

)]−1

, (34)

ẑ · � =
3Nc

[
−2ξ0 + (

ξ2
0 − 1

)
ξ̂0

]
32πμc3

(
ξ2

0 − 1
) . (35)

While (X, Y, Z) in connection with (Equations 28–30) leads to
the position of the center o of a rod-shaped bacterium in the
laboratory frame, its orientation, which is related to the angular
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velocity �, is described by the three Euler angles governed by the
following three equations

dθ

dt
= x̂ · � cos(ψ) − ŷ · � sin(ψ), (36)

dφ

dt
= x̂ · � csc(θ) sin(ψ) + ŷ · � csc(θ) cos(ψ), (37)

dψ

dt
= −x̂ · � cot(θ) sin(ψ)

− ŷ · � cot(θ) cos(ψ) + ẑ · �, (38)

where x̂ · �, ŷ · �, and ẑ · � are given by Equations (33–35).
The swimming motion of a rod-shaped magnetotactic bac-

terium at any instant t, starting from an initial condition at t = t0,
can be modeled by mathematical solutions to the twelve coupled
equations: (25–27) provide the three components of its velocity
vL in the laboratory frame; (Equations 28–30) lead to its position
in the laboratory frame; (Equations 33–35) give its rotation vector
�; and (Equations 36–38) describe its orientation in the labora-
tory frame. Although the twelve coupled equations are non-linear
and coupled, they represent a mathematically tractable system
enabling us to understand the motion of a swimming rod-shaped
magnetotactic bacterium under the influence of an imposed mag-
netic field in laboratory experiments. In this study, we have solved
the twelve coupled equations using Runge–Kutta–Fehlberg 4(5)

method with an adaptive time step in which the accuracy is of the
order h4 while an error estimator is of the order h5.

4. RESULTS
The swimming motion of rod-shaped magnetotactic bacteria is
investigated through both theoretical and experimental methods.
Theoretically, for given a set of the model and physical parameters
together with an appropriate initial condition, the twelve govern-
ing equations are numerically solved to determine the trajectories
of swimming motion in the laboratory frame. Experimentally,
we record the swimming motion of rod-shaped magnetotactic
bacteria found in Lake Miyun, which is illustrated in Figure 1A,
using charge-coupled device camera under an imposed, time-
dependent magnetic field B in the laboratory frame (see Figure 2)
given by

B = B0

[
cos(�0t)X̂ + sin(�0t)Ŷ

]
, (39)

where B0 and �0 are changeable in our laboratory experiments.
A set of the model parameters, geometric or physical, must be

specified in order to solve the twelve coupled equations. Several
parameters may be regarded as being well known but some are
poorly determined. For example, the typical length 2a of rod-
shaped magnetotactic bacteria and its magnetic moment m0 can
be approximately measured or deduced in a reasonably accurate
way. Other parameters such as the amplitude F12, F3, and the
frequency ω0 have to be treated as the model parameters of a the-
oretical problem. The set of parameters used in calculating the
swimming motion of rod-shaped magnetotactic bacteria found
in Lake Miyun is listed in Table 2.

An important quantity is the angle �B (0 ≤ �B ≤ 180◦)
between the symmetry axis z (or the direction of the mag-
netic moment m which is aligned with the symmetry axis z,

Table 2 | The values of physical/model parameters for the rod-shaped

magnetotactic bacteria used in our calculation.

Parameter Value

The length of the bacterium 2a = 5 × 10−6 m

The mass of the bacterium M = 9.5 × 10−16 Kg

Eccentricity E = 0.96

Focal length c = aE = 2.4 × 10−6

Outer surface coordinate ξ0 = 1/E = 1.0417

Dynamical viscosity for water μ = 10−3 Pa S

Magnetic moment m0 = 10−14 A/m2

Frequency in Equation (19) ω0 = 51/s

Force amplitude in Equation (19) F12 = 1.1386 × 10−12 N

Force amplitude in Equation (19) F3 = 8.8849 × 10−12 N

Reaction couple Nc = 2.249 × 10−19 N m

see Figure 2) and the direction of the imposed magnetic field
B during the swimming motion of a rod-shape magnetotactic
bacterium. The size of the angle �B cannot be estimated in our
laboratory experiments but can be readily computed in theo-
retical experiments. In particular, we are interested in how the
angle �B varies during the growing phase of the bacterium’s
magnetic moment. Two different phases can be identified in our
theoretical model. During the initial growing phase, marked by
(t − t0)/τ0 < O(1) in Equation (20), when the magnetic moment
|m| is weak, the angle �B is hardly affected by the existence
the magnetic moment and, hence, the angle �B would change
widely and strongly depend on the initial angle used as the initial
condition. After its growing phase when the magnetic moment
|m| becomes saturated as (t − t0)/τ0 > O(1) in Equation (20),
the angle �B would approach a finite, non-zero average value.
Evidently, the angle �B would be small [i.e., the magnetic field
B would be nearly aligned with the symmetry axis z, as clearly
indicated by the torque equation (32)], if the magnetic moment
|m| is sufficiently large. It should be noted that, while we have
chosen a magnetic moment growth in our model, the resulting
dynamics would be the same as that of an increasing strength of
the magnetic field which is realizable in experimental studies.

Starting with the angle �B = 90◦ and using the set of the
parameters listed in Table 2 together with B0 = 14.00 × 10−4 T
and �0 = 2.5133/s in Equation (39), we perform two computa-
tions of solving the twelve coupled equations as an initial-value
problem. The first one takes a fast growth rate with τ0 = 1 s, the
result of which is depicted in Figure 5A. It can be seen that, after
changing rapidly and widely during the initial growing phase, the
angle �B approaches the values that are oscillating around 20◦.
In the second calculation with a slow growth rate with τ0 = 5 s,
which is shown in Figure 5B, it takes a longer time for the angle
�B to approach an equilibrium value. In general, the external
magnetic field B is usually not aligned with the magnetic moment
m and the average equilibrium of the angle �B is primarily
determined by the torque equation (32).

In contrast to the angle �B, direct comparison can be read-
ily made between the laboratory trajectories of the swimming
motion and the corresponding theoretical trajectories. In lab-
oratory experiments, we record the trajectories of a swimming
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FIGURE 5 | The angle �B of a swimming rod-shaped magnetotactic bacterium as a function of time starting from �B = 90◦ under the influence of a

rotating magnetic field (Equation 39) with B0 = 14.00 × 10−4 T and �0 = 2.5133/s: (A) for τ0 = 1 s and (B) for τ0 = 5 s.

FIGURE 6 | The swimming trajectories of a rod-shaped magnetotactic

bacterium under the influence of an externally imposed rotating

magnetic field (Equation 39) with B0 = 14.00 × 10−4 T and

�0 = 2.5133/s. The left panel is recorded in our laboratory experiment with
a charge-coupled device camera while the right panel shows a numerical
solution of the twelve coupled equations using the parameters listed in
Table 2.

rod-shaped magnetotactic bacterium found in Lake Miyun by
using a charge-coupled device camera. Two laboratory experi-
ments and their corresponding theoretical experiments are car-
ried out. In the first laboratory experiment, we impose a rotating
magnetic field given by Equation (39) with B0 = 14.0 × 10−4 T
with �0 = 2.5133/s whose trajectories of swimming motion are
depicted on the left panel of Figure 6. It is estimated that the aver-
age radius of the trajectories of circular path is about 20.0 × 10−6

m. Theoretically, we employ the set of the parameters listed in
Table 2, together with B0 = 14.00 × 10−4 T and �0 = 2.5133/s,
to solve the twelve coupled equations as a function of time with
a moderate value of τ0. The right panel of Figure 6 shows the
theoretical trajectories of swimming motion for a rod-shaped
magnetotactic bacterium after (t − t0)/τ0 
 1, which give rise
to the average radius of the circular path about 20.5 × 10−6

m. It is demonstrated that, for rod-shaped magnetotactic bac-
teria, the laboratory observations can be largely reproduced by

FIGURE 7 | The swimming trajectories of a rod-shaped magnetotactic

bacterium under the influence of a rotating magnetic field (Equation

39) with B0 = 4.00 × 10−4 T and �0 = 6.28/s. The left panel is recorded
in our laboratory experiment with a charge-coupled device camera while
the right panel shows a numerical solution of the twelve coupled equations
using the parameters listed in Table 2.

the solutions of our theoretical model using a set of appropriate
parameters.

Since powers of the flagellar motor for a rod-shaped magne-
totactic bacterium is fixed, we anticipate that the average radius
of circular path would decrease when the rotating frequency �0

of the externally imposed magnetic field increases. In the sec-
ond experiment, we also impose a rotating magnetic field given
by Equation (39) but with B0 = 4.0 × 10−4 T and an increased
frequency �0 = 6.28/s. The resulting trajectories of swimming
motion recorded in our laboratory experiment are depicted on
the left panel of Figure 7. It is estimated, from the labora-
tory observations, that the average radius of of circular path
decreases to about 5.2 × 10−6 m. The expected decrease is suc-
cessfully reproduced by the theoretical trajectories of swimming
motion, which is depicted on on the right panel of Figure 7.
Employing the same set of the parameters listed in Table 2
together with B0 = 4.00 × 10−4 T and �0 = 6.28/s, the theoreti-
cal estimate of the average radius from our computation is about
5.1 × 10−6 m.
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5. SUMMARY AND REMARKS
Through both theoretical and experimental methods, we have
investigated the swimming motion of rod-shaped magnetotactic
bacteria in a viscous liquid under the influence of an externally
imposed, rotating magnetic field. It is shown that a fully three-
dimensional Stokes flow, driven by the translation and rotation
of a swimming rod-shaped bacterium, exerts the complicated
viscous drag and torque on the swimming motion. Under the
major assumptions that (1) the body of the bacterium is non-
deformable, (2) inertial effects are negligible, and (3) interac-
tions between different bacteria are weak and negligible, we have
derived a new system of the twelve coupled equations governing
both the motion and orientation of a swimming rod-shape mag-
netotactic bacterium. Of the twelve coupled equations, (25–27)
provide the velocity vL in the laboratory frame, (Equations 28–30)
are for the position of the bacterium in the laboratory frame,
(Equations 33–35) give its rotation vector � and (Equations
36–38) describe the orientation of the bacterium in the laboratory
frame.

Using rod-shaped magnetotactic bacteria collected from Lake
Miyun near Beijing, China, we have demonstrated that the the-
oretical swimming patterns described by solutions of the twelve
coupled equations are largely similar to those observed in our lab-
oratory experiments under the influence of externally imposed
rotating magnetic fields. Despite a good agreement achieved
between the theory and the experiments, the weakest component
in our theoretical model is perhaps the assumption of non-
deformable character of the rod-shaped bacteria under strong
viscous and magnetic torques. However, modeling the swim-
ming motion of deformable rod-shaped magnetotactic bacteria
without fully understanding how/why rod-shaped magnetotactic
bacteria are deformable is, both mathematically and biologically,
highly challenging.
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