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The classification of high-throughput sequencing data of protein-encoding genes is not as
well established as for 16S rRNA. The objective of this work was to develop a simple and
accurate method of classifying large datasets of pmoA sequences, a common marker
for methanotrophic bacteria. A taxonomic system for pmoA was developed based on
a phylogenetic analysis of available sequences. The taxonomy incorporates the known
diversity of pmoA present in public databases, including both sequences from cultivated
and uncultivated organisms. Representative sequences from closely related genes, such
as those encoding the bacterial ammonia monooxygenase, were also included in the
pmoA taxonomy. In total, 53 low-level taxa (genus-level) are included. Using previously
published datasets of high-throughput pmoA amplicon sequence data, we tested two
approaches for classifying pmoA: a naive Bayesian classifier and BLAST. Classification of
pPmMoOA sequences based on BLAST analyses was performed using the lowest common
ancestor (LCA) algorithm in MEGAN, a software program commonly used for the analysis
of metagenomic data. Both the naive Bayesian and BLAST methods were able to
classify pmoA sequences and provided similar classifications; however, the naive Bayesian
classifier was prone to misclassifying contaminant sequences present in the datasets.
Another advantage of the BLAST/LCA method was that it provided a userinterpretable
output and enabled novelty detection at various levels, from highly divergent pmoA

sequences to genus-level novelty.
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1. INTRODUCTION

High-throughput sequencing (HTS) technologies have aided our
ability to investigate the diversity of microorganisms in envi-
ronmental samples either by shotgun metagenomic or amplicon
sequencing approaches. Many bioinformatic tools necessary to
process and interpret the large volume of data obtained by HTS
have been developed. For example, there are several choices of
pipelines available to analyze 16S rRNA amplicon sequencing data
such as RDP (Cole et al., 2005), mothur (Schloss et al., 2009) and
QIIME (Caporaso et al., 2010). Similar strategies targeting genes
encoding enzymes responsible for important biogeochemical or
bioremediation processes are becoming more common, but the
methods for analyzing the data are not as well established as for
16S rRNA.

The analysis of HTS amplicon data can be performed
using taxonomy-dependent or independent approaches. The
taxonomy-independent approach includes methods to com-
pare sequence alignments and analyze operational taxonomic
units (OTUs) based on sequence dissimilarity (Schloss and
Handelsman, 2004; Cai and Sun, 2011). This approach is valu-
able for estimating ecological parameters, such as richness and
diversity; however, the information on its own does not indicate

how the sequences are related to those of cultivated organisms
or those from other studies. Taxonomy-based methods classify
sequences according to their relatedness to those of pure cultures
and uncultivated organisms. This approach is necessary to incor-
porate knowledge of the physiological characteristics of different
taxa, to identify novel sequence types and to compare results
between published studies. Common methods for classification
include naive Bayesian classifiers (Wang et al., 2007), k-nearest
neighbor (Cole et al., 2005) and BLAST (Altschul et al., 1990).

In general, the analysis of OTUs and phylogenetic trees cal-
culated from individual datasets of protein-encoding genes can
be performed with the same tools designed for the analysis of
16S rRNA sequences. In contrast, classifiers must be tailor made
for each gene by establishing a taxonomy with representative
sequences and choosing an appropriate classification algorithm.
The objective of this study was to establish a robust and eas-
ily applied approach to classifying HTS amplicon sequences of
pmoA, a key gene of methane-oxidizing bacteria. The method
should also allow for novelty detection and be easily performed by
a microbial ecologist with only fundamental knowledge of bioin-
formatics. We test a naive Bayesian classifier and BLAST com-
bined with the lowest common ancestor approach of MEGAN
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using previously published pmoA pyrosequencing data (Liike and
Frenzel, 2011; Deng et al., 2013). Previous studies have also com-
pared both approaches for the classification of SSU rRNA (Lanzén
etal., 2012) and fungal LSU rRNA sequences (Porter and Golding,
2012).

2. pmoA TAXONOMY

An accurate taxonomic system for the gene sequences is a nec-
essary prerequisite for classification. Since the classification of
unknown sequences obtained by HTS can only be as accurate
as the taxonomy, the analysis of database sequences and assign-
ment of taxa is the critical step in the development of a classifier.
In general, pmoA has been shown to be a good phylogenetic
marker for methanotrophs (Degelmann et al., 2010), with some
exceptions of divergent additional copies of the gene in some
organisms (Dunfield et al., 2002; Stoecker et al., 2006; Baani and
Liesack, 2008). Here we describe the taxonomy of pmoA genes
(Table 1); earlier versions were described previously (Liike and
Frenzel, 2011; Deng et al., 2013).

2.1. OVERALL TAXONOMIC SYSTEM

The pmoA gene encodes the B-subunit of the particulate
methane monooxygenase (pMMO), which belongs to the
class of copper-containing membrane-bound monooxygenase
(CuMMO) enzymes. In addition to the pMMO, this group
includes the bacterial ammonia monooxygenase (Holmes et al.,
1995), the thaumarchaeal ammonia monooxygenase (Pester et al.,
2011), alkane monooxygenases and various uncharacterized
enzymes encoded by genes detected in environmental surveys
(Coleman et al., 2012). For our classifier we compiled a database
of pmoA and related gene sequences obtained primarily from
public databases. We focused on building a taxonomic structure
for pmoA, but also included sequences of related genes that are
often co-amplified with common pmoA primers, such as the bac-
terial amoA. Related sequences that are not co-amplified, such as
the thaumarchaeal amoA, were not included.

Currently, our curated database includes 6628 reference
sequences corresponding to 53 low-level taxa (Table1). The
assignment to taxa was determined by the phylogenetic analysis
of the pmoA and related gene fragments using both the nucleotide
and inferred protein sequences. Sequences were imported into
ARB (Ludwig et al., 2004) and alignments of either 408 nucleotide
or 136 amino acid residues were used to generate neighbor-
joining (NJ) and maximum-likelihood (ML) trees. For ML trees,
sequences were exported and uploaded to the RAXML web-server
(Stamatakis et al., 2005). Tree topologies were compared and
taxa were assigned according to groups of sequences that con-
sistently clustered together in the analyses (Liike and Frenzel,
2011). At the highest level, the sequences were categorized as
MOB_like or AOB_like, depending on apparent relatedness to
sequences from methane-oxidizing and ammonia-oxidizing bac-
teria respectively. The classifier currently contains 53 low-level
taxa within the MOB_like group (Table 1). Taxa comprising culti-
vated methanotrophs were referred to as the respective genera or
species (e.g., Mbacter, for Methylobacter-like pmoA). Taxa lack-
ing isolates were named according to representative clones or to
the environment in which they were predominantly or initially

found (e.g., Aquifer_cluster or upland soil cluster—USC) (Liike
and Frenzel, 2011).

2.2. TYPE|AND Il pmoA SEQUENCES

The MOB_like sequences were assigned to either Type I, Type II
or pXMO_like. The Type I sequences were further divided into
Type Ia, b, or c. Type la are pmoA sequences affiliated to the classic
Type I methanotrophs (i.e., not Type X). Type Ib (also referred to
elsewhere as Type X) are those of Methylococcus and closely related
genera. Type Ic are all other Type I-related sequences with a more
ambiguous affiliation. Type II sequences were divided into Type
Ila and b. Type IIa was used for the primary pmoA sequences of
the Methylocystaceae. Type IIb was used to group all other Type II-
related (i.e., Alphaproteobacteria) sequences, including those from
the Beijerinckiaceae (Theisen et al., 2005; Dunfield et al., 2010;
Vorobev et al., 2011) and the alternate pMMO?2 identified in some
Methylocystis species (Dunfield et al., 2002; Baani and Liesack,
2008).

2.3. pXMO: DIVERGENT pmoA SEQUENCES

We use pXMO as the third category of pmoA-related sequences.
The original description of pXMO was for the unusual pMMO-
like enzyme identified in some Type I methanotrophs (Tavormina
etal., 2011). Here we use pXMO_like to encompass all the diver-
gent sequence types for which the substrate or biological function
has not been clearly identified by biochemical or genetic tests.
For example, we include the three verrucomicrobial pmoA-like
sequences in this category until it is determined which, if not
all, catalyze the oxidation of methane. The original pxmA genes
identified in Methylomonas spp. (Tavormina et al., 2011) are clas-
sified in the M84_P105 low-level taxon. We have also included the
pmoA sequences from the nitrite-dependent anaerobic methane
oxidizers belonging to the NC10 phylum (Ettwig et al., 2009,
2010) into the pXMO_like category; it should be noted that these
NC10 pmoA sequences are typically retrieved only after using
specific primers and a special PCR program designed for their
amplification (Luesken et al., 2011) and therefore are unlikely to
be obtained in HTS pmoA surveys using the traditional pmoA
primer sets.

2.4. BACTERIAL AMMONIA MONOOXYGENASE

Bacterial ammonia monooxygenase (amoA) genes were included
since they are commonly co-amplified with pmoA genes in envi-
ronmental PCR surveys. The amoA sequences of betaproteobac-
terial ammonia oxidizers were designated AOB_like, without
making further lower-level distinctions. In contrast, the anoA
sequences of Nitrosococcus were classified as “Ncoccus” within the
MOB_like group since they are more closely related to pmoA than
to other amoA genes.

3. SOFTWARE AND ASSOCIATED FILES

Mothur version 1.29.2 (Schloss et al., 2009) and MEGAN ver-
sion 4.70.4 (Huson et al., 2011) were both downloaded from the
author’s webpages. Standalone BLAST 2.2.26+4 (Camacho et al,,
2009) was obtained from NCBI. These software programs can be
installed on various platforms, but all analyses in this study were
performed on a quad-core Apple MacBook Pro with a 2.2 GHz
Intel Core i7 processor and 16 Gb of memory.
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Table 1 | Description of the pmoA database.

Classification = MMO group designation Cultivated representative Database size  Sequence Typical habitats
level (sequences) representative or origin
0 Cu-containing membrane
Monooxygenase (CuUMMO) 6628

0.1 MOB_like
0.1.1 Typel
0.1.1.1 Typela
0.1.1.11 Mbacter Methylobacter tundripaludum SV96 552 AJ414658 Arctic wetland
0.1.1.1.2 Mmicrobium_jap Methylomicrobium japanense 28 AB253367 Marine mud
0.1.1.1.3 Mmicrobium_pel Methylomicrobium pelagicum IR1 25 U31652 Upland soils
0.1.1.1.4 Mmonas Methylomonas methanica 396 U31653 Lake sediments
0.1.1.1.5 Msarcina Methylosarcina quisquilarum 517 AF177326 Landfill soil
0.1.1.1.6 Msoma Methylosoma difficile LC2 4 DQ119047 Lake sediment
0.1.1.1.7 Mbacter_or_Mmonas 2 AY236078 Movile cave
0.1.1.1.8 Deep_sea_1 46 AM283467 Marine deep sea
0.1.1.1.9 Deep_sea_3 191 FJ858316 Marine deep sea
0.1.1.1.10 LP20 51 AB064377 Aquifer
0.1.1.1.1 Landfill_cluster_2 4 EU275117 Landfill soil
0.1.1.1.12 Lake_cluster_1 72 EF623667 Freshwater lakes
0.1.1.1.13 RPC_2 148 FN600101 Rice field soil
0.1.1.1.14 PS_80 8 AF211872 Marine
0.1.1.1.15 Aquifer_cluster 53 AM410175 Aquifer
0.1.1.2 Typelb
0.1.1.2.1 Mcaldum Methylocaldum tepidum 98 u89304 Agricultural soil
0.1.1.2.2 Mcoccus Methylococcus capsulatus Bath 244 40804 Aquatic

environments
0.1.1.2.3 Mthermus Methylothermus thermalis 36 AJ829010 Hot spring
0.1.1.24 JRC_4 Methylogaea oryzae 27 EU359002 Rice field soil
0.1.1.2.5 Deep_sea_4 26 GUB84280 Marine deep sea
0.1.1.2.6 Deep_sea_b 155 EU417471 Marine deep sea
0.1.1.2.7 FWs 100 AF211878 Freshwater lakes
0.1.1.2.8 JRC_3 29 AB222881 Rice field soil
0.1.1.2.9 Lake_cluster_2 74 AF211879 Freshwater lakes
0.1.1.2.10 LWs 83 DQ067069 Freshwater lakes
0.1.1.2.1 0SsC 18 AJ317928 Organic soil
0.1.1.2.12 RPC_1 67 FN599957 Rice field soil
0.1.1.2.13 RPCs 166 RJ845814 Rice field soil
0.1.1.3 Typelc
0.1.1.3.1 Ncoccus Nitrosococcus oceani 83 U96611 Marine
0.1.1.3.2 USCg 185 AJ579667 Upland soils
0.1.1.3.3 JR2 68 AY654695 Upland soils
0.1.1.34 JR3 65 AY654702 Upland soils
0.1.2 Typell
0.1.2.1 Typella
0.1.2.1.1 Msinus Methylosinus trichosporium 33/1 70 AJ459007 Various
0.1.2.1.2 Mecystis Methylocystis sp. strain SC2 1085 AJ431386 Various
0.1.2.1.3 Msinus_Mcystis Methylosinus trichosporium str. KS21 79 AJ431388 Various
0.1.2.2 Typellb
0.1.2.2.1 Mcapsa Methylocapsa acidiphila B2 27 AJ278727 Sphagnum bog
0.1.2.2.2 MO3 23 AF283229 Landfill soil
0.1.2.2.3 pmoA2 Methylocystis sp. strain SC2 45 AJ431387 Various
0.1.2.2.4 USCa 888 AF148521 Upland soils
0.1.2 pXMO_like
0.1.2.1 TUSC_like

(Continued)
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Table 1| Continued

Classification = MMO group designation Cultivated representative Database size  Sequence Typical habitats
level (sequences) representative or origin
0.1.2.11 Verr_1 Methylacidiphilum infernorum 3 EU223859 Geothermal soil
0.1.2.1.2 Verr_2 Methylacidiphilum infernorum 3 EU223862 Geothermal soil
0.1.2.1.3 Verr_3 Methylacidiphilum infernorum 3 EU223855 Geothermal soil
0.1.2.1.4 TUSC 101 AJ868282 Various
0.1.2.1.5 NC10 Cand. Methylomirabilis oxyfera 33 JX262154 Freshwater
sediment
0.1.2.2 RA21_like
0.1.2.2.1 RA21 157 AF148522 Rice field soil
0.1.2.2.2 M84_P22 9 AJ299963 Rice field soil
0.1.2.2.3 gp23 1 AF264137 Upland soils
0.1.2.2.4 Alkane_1 Methylococcaceae ET-SHO 2 AB453961 Marine
0.1.2.25 Alkane_2 Methylococcaceae ET-HIRO 2 AB453962 Marine
0.1.2.2.6 MR1 7 AF200729 Upland soils
0.1.2.3 M84_P105_like
0.1.2.3.1 M84_P105 Methylomonas methanica 34 EU722433 Various
0.1.2.4 Crenothrix_like
0.1.2.41 Crenothrix Crenothrix polyspora (enrichment) 69 DQ295904 Freshwater
0.1.2.4.2 Crenothrix_rel 160 AJ868245 Various
0.2 AOB_like Nitrosospira multiformis 206 AF042171 Various

3.1. NAIVE BAYESIAN CLASSIFIER

The training set for the naive Bayesian classifier consists of two
files: the database sequences in “fasta” format, and a taxonomy
file indicating the taxonomy of each sequence. The taxonomy
file was formatted to be compatible with mothur; both files are
available in the supplement. The training set files were gener-
ated by exporting sequence information from ARB (Ludwig et al.,
2004) and formatting the entries using standard spreadsheet and
text-editing programs.

3.2. BLAST AND MEGAN

The BLAST database was generated from the taxonomy using
the makeblastdb program included with BLAST 2.2.26+ package.
The input was a fasta file with the sequence name header includ-
ing the sequence accession number and the taxon in square brack-
ets; as for the naive Bayesian classifier, these files were made using
common spreadsheet and text-editing software. makeblastdb out-
puts three files (.nsq,.nin, and.nhr); all files are provided in the
supplementary material.

A Newick format tree corresponding to the pmoA taxonomy
was written for MEGAN; the tree file (pmoa.megan.2013.tre)
and a corresponding map file (pmoa.megan.2013.map) are pro-
vided in the supplement. The pmoA taxonomy is loaded into
MEGAN by the option “use alternative taxonomy” and selecting
the pmoa.megan.2013.tre file.

4. pmoA AMPLIFICATION AND SEQUENCING

Two primer sets are typically used to amplify pmoA sequences
from environmental samples (McDonald et al., 2008). The
A189f/A682r primer pair offers broad specificity covering
many CuMMO monooxygenases (Holmes et al., 1995). The
A189f/mb661r combination was designed to be more specific

for pmoA (Costello and Lidstrom, 1999) and does not gener-
ally amplify amoA or pxmA-like sequences. For NGS amplicon
sequencing, adaptors and barcodes are incorporated into the
primers, or ligated onto the PCR products, in a manner compat-
ible with the sequencing platform (Binladen et al., 2007; Berry
etal., 2011).

Two previously described HTS pmoA amplicon datasets were
used in this study to test the classification methods (Liike
and Frenzel, 2011; Deng et al,, 2013). Both studies used the
A189f/A682r and A189f/mb661r primer sets. The Liike and
Frenzel (2011) study focused on rice field soil samples from Italy
and China and the sequences were analyzed in the original study
by constructing phylogenetic trees and calculating OTUs from
sequence alignments. The Deng et al. (2013) study focused on
peatland samples from both submerged (hollow) and elevated
(hummock) sites in the Qinghai-Tibetan plateau, and were ana-
lyzed in the original study by sequence similarity and an earlier
implementation of the naive Bayesian classifier. The basic steps
for classifying pmoA sequence data are summarized in Figure 1
and a detailed protocol is included in the supplement.

5. RAW SEQUENCE PROCESSING

Raw sequence data must first undergo basic processing. In this
study we use mothur, but other software can be used for this pur-
pose, such as QIIME (Caporaso et al., 2010), RDP (Cole et al.,
2009) and Funframe (Weisman et al., 2013); each of these have
unique features that might be beneficial for a particular dataset or
objective. The basic necessary steps are the sorting of sequences
according to barcodes, trimming and quality filtering. For data
analyzed here we use a minimum sequence length of 300 bp
and remove sequences with ambiguities or stretches of more
than eight homopolymers. Chimeric sequences were identified in
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Preprocess sequence data
(Section 5)

- Sort according to barcodes, reduce
sequencing error, trim barcodes & primers,
remove chimeras & short sequences

Classify using the naive Bayesian
classification method (Section 6.1)

- Performed with mothur and is a rapid
alternative to generating BLAST alignments

Classify using BLAST alignments

(Section 6.2)

- Align sequences against a curated pmoA
database and import into MEGAN to determine
diversity within and between samples. Also:

O

Identify highly divergent CuUMMO
sequences (Section 7.1.1)

- |dentified as sequences that cannot be
aligned to the database by MEGABLAST,
but produce TBLASTX alignments with
scores > 50 bits

O

Identify moderately divergent
CuMMO sequences (Section 7.1.2)

- Adjust the cutoff in MEGAN to identify
sequences with MEGABLAST scores
between 50 and 150 bits

O

Identify new pmoA clades
(Section 7.1.3)

- |dentified as sequences assigned
to intermediate nodes using an LCA
cutoff of 5% in MEGAN

L

Identify divergence within pmoA taxa
(Section 7.1.4)
- Examine the alignments to identify

sequences with conserved mismatches against
the closest relatives in the database

\ J

FIGURE 1 | Overview of the basic procedure for classifying pmoA
sequences obtained by high-throughput sequencing. The manuscript
section where a procedure is described is indicated and detailed
instructions are available in the supplementary materials.

mothur using the uchime method (Edgar et al., 2011). Chimeras
were detected de novo by using the “self” option in mothur,
meaning that the pmoA pyrosequencing dataset was used as a ref-
erence. As an example, in the HYa-1 dataset (Deng et al., 2013),
1058 chimeras were identified in 7658 sequences. These sequences
were removed using the remove.seqs command in mothur (see
supplementary methods).

NGS sequence technologies have relatively large error rates
compared with Sanger sequencing and there are various
approaches available to denoise pyrosequencing data (Reeder
and Knight, 2010; Quince et al., 2011; Rosen et al., 2012). If
not removed, these errors generate false OTUs (Schloss et al.,
2011). Another problem is that they often cause frameshift
errors in protein-coding genes, making it difficult to infer
amino acid sequences. There are methods available to specif-
ically correct frameshift errors in functional gene pyrose-
quencing datasets, such as the FrameBot tool (http://fungene.
cme.msu.edu/FunGenePipeline/) and HMM-FRAME (Weisman
et al., 2013). Correcting the frameshift errors in pyrosequencing
datasets is particularly important for calculating OTUs or phy-
logenetic distances based on amino acid sequences. In general
we did not find denoising necessary for classifying our pmoA
sequences obtained by pyrosequencing and therefore do not dis-
cuss the methods here; however, a study on fungal LSU rRNA
amplicon sequencing reported that the BLAST/LCA method was
less sensitive to sequence error than the naive Bayesian classifica-
tion approach (Porter and Golding, 2012).

6. CLASSIFICATION OF pmoA SEQUENCES

6.1. NAIVE BAYESIAN CLASSIFIER

A naive Bayesian classifier is the basis of the RDP classifier for
16S rRNA sequence data (Wang et al., 2007). In this study we
have adopted the 16S rRNA classifier implemented in mothur, but
replaced the 16S rRNA taxonomy with that of pmoA. The process
in mothur is invoked with classify.seqs command with the option
of the “wang” method. Other variables include the kmer (word)
size and the cutoff value for bootstrap confidence estimates. In
general we found that the default kmer size of 8 performed well
and used a cutoff value of 80%.

6.2. BLAST/LCA

Different versions of BLAST were tested. Nucleotide BLAST
types include MEGABLAST, BLASTN and discontiguous (DC)-
MEGABLAST, in decreasing order of sensitivity for obtain-
ing matches and alignments against distantly related sequences
(McGinnis and Madden, 2004). In most cases the results of the
different methods were nearly identical, except in some cases
that DC-MEGABLAST would produce hits (alignments) with dis-
tantly related novel pmoA sequences that were not aligned by the
other two methods. We found that the additional computation
time required for DC-MEGABLAST was not compensated by the
added sensitivity since this could be easily recovered by a reanaly-
sis of the sequences that did not produce hits with MEGABLAST,
as described in section 7.1.1. Protein BLAST approaches were
also tested and classification results were similar to nucleotide
BLAST, but with greater sensitivity for matching distantly related
novel sequence types to the database. The protein BLAST searches
were more vulnerable to the effect of frameshift errors in the
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query sequences because they cause breaks in the alignment that
strongly affect the bit score of a match. In contrast, the insertion
of gap during nucleotide BLAST adds a small penalty to the bit
score and does not terminate the alignment. Therefore, in general
we use MEGABLAST, which is the default algorithm for the blastn
program.

BLAST has been shown to be relatively poor at identifying the
most similar sequence in a dataset (Koski and Golding, 2001; Cole
et al., 2005). We did not observe, nor do we foresee, this to be a
problem for the classification since it is only necessary to identify
the most similar taxon, which are all highly distinct (>5% nucleic
acid identity) from one another.

6.2.1. BLAST interpretation by lowest common ancestor in MEGAN
MEGAN was developed for the classification of metagenomic
sequence data by reading the output of BLAST queries (Huson
etal., 2011; Mitra et al., 2010). It has been adapted for other pur-
poses, for example it can read the log file of a sina alignment
of 16S rRNA (Pruesse et al., 2012) and thereby used to analyze
16S rRNA sequence data (Mitra et al., 2011). Here we show that
it could be adapted for the analysis of the pmoA BLAST queries
against our taxonomy database, as has been demonstrated previ-
ously for SSU rRNA (Lanzén et al., 2012) and fungal LSU rRNA
(Porter and Golding, 2012). A simple modification is possible in
MEGAN to change the default NCBI taxonomy to a custom tax-
onomy, in this case pmoA. MEGAN parses the BLAST output file
and collects only the top hits from each taxon and the associated
alignment. In addition to summarizing the results, this has the
added benefit of reducing the file size compared with the original
BLAST output.

MEGAN uses a lowest common ancestor (LCA) algorithm
(Huson et al., 2007) based on BLAST bit scores to classify the
sequences. A sequence is classified at a particular level only when
the bit score to the taxon is higher by a given margin than to those
of any another taxon. The margin of difference can be adjusted in
the LCA parameters of MEGAN with the option of “top percent.”
The greater the margin, the greater is the minimum distance
between the assigned taxon and any other taxon. The BLAST/LCA
method provides several valuable benefits for the classification in
comparison to simply classifying based on top hit, for example in
novelty detection as discussed below.

6.3. COMPARISON OF THE NAiVE BAYESIAN AND BLAST/LCA
CLASSIFICATIONS

We found good agreement in the classification of the rice paddy
soil datasets using the naive Bayesian and BLAST/LCA approaches
(Figure 2). Subsamples from each classification were analyzed in
ARB by NJ and in general confirmed the assignments (results
not shown). Some minor differences between the methods were
also observed. For example, seven sequences in the China (old)
A189f-A682r dataset were classified as gp23 whereas these seven
sequences did not produce significant hits using BLAST/LCA. A
close inspection indicated that the seven sequences were either
highly divergent pmoA or non-specific PCR products related to an
alpha-glucan branching protein or a peptidase. An analysis of the
Rigangiao samples also showed a tendency for the naive Bayesian
classifier to assign contaminant sequences to gp23 (not shown).
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FIGURE 2 | Comparison of classifications of paddy soil pmoA sequence
data (Like and Frenzel, 2011) using the naive Bayesian and
BLAST/LCA methods. The datasets were generated from three different
soils (young Chinese, old Chinese, and Italian) and with two different PCR
primer combinations (A189f/A682r, A189f/mb661r) as indicated. The
number of sequences assigned to each taxon is plotted. Only pmoA taxa
detected in at least one dataset are shown.

This is likely a result of gp23 only being represented by a sin-
gle sequence in the database and being relatively divergent from
other pmoA taxa (Liike and Frenzel, 2011). This erroneous classi-
fication of non-target sequences as gp23 using the naive Bayesian
classifier could be reduced by increasing the kmer size to 10,
but at a cost of decreased sensitivity in classifying bona fide
pmoA sequences. In spite of this, both the naive Bayesian and
BLAST/LCA methods identified genuine gp23 sequences present
in the China (young) A189f-A682r dataset (Figure 2). Previous
studies also reported higher accuracies of classifications obtained
by BLAST/LCA for 16S rRNA sequences (Lanzén et al., 2012),
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fungal LSU rRNA sequences (Porter and Golding, 2012) and
rRNA internal transcribed spacer sequences (Porter and Golding,
2011). However, one clear advantage of the naive Bayesian classi-
fier was speed; on our system it could classify thousands of pmoA
sequences per second compared to approximately 200 sequences
per min for the MEGABLAST query.

7. NOVELTY DETECTION

Novel sequences can be identified by the naive Bayesian classifier
if they cannot be classified. For example, a novel taxon within the
Type Ib’s should be returned as “unclassified Type Ib.” It is possi-
ble to adjust this further by specifying a percent cutoff value for
a bootstrapped analysis. In general, we found this method to be
unreliable as even contaminant sequences were classified as gp23
with >80% bootstrap values, as discussed above.

7.1. NOVELTY DETECTION USING BLAST/LCA IN MEGAN

The BLAST/LCA procedure offers approaches for novelty detec-
tion at various levels, which are described individually in the
following sections.

7.1.1. Identification of highly divergent CuMMO sequences
Deeply-branching novel sequences did not produce hits to the
database, which is the first indication that it is potentially a novel
sequence clade. This occurs in BLAST queries when the sequence
does not contain a match of the minimum word size, which is
28 nucleotides in MEGABLAST. For example, this was the case
in the Riganqiao dataset with the novel clade that was termed
HY-3 (Deng et al., 2013). In contrast to MEGABLAST, these
sequences could be identified as pmoA by a translated BLAST
query (TBLASTX). The difference is that protein sequences are
more conserved than nucleotide sequences and BLASTX uses a
word size of 3 amino acids compared with a minimum word
size of 7 nucleotides for BLASTN. Therefore, the first step in
novelty detection is to select the sequences that do not produce
MEGABLAST hits and to query them against the database using
TBLASTX; in our experience, highly divergent novel clusters
will produce significant hits (>50 bits) with TBLASTX, whereas
unrelated contaminant sequences will not.

7.1.2. Identification of moderately divergent CuMMO sequences
Moderately divergent novel sequence clades can be identified by
a relatively low MEGABLAST bit score. The bit score cutoffs can
be adjusted in MEGAN and here we used a threshold of 150 bits
to identify new clades. An example of a novel sequence that could
be identified in this manner was the I141NRXW sequence from
the paddy soil (Litke and Frenzel, 2011), which had a top score
of 89.8 bits. In comparison, the sequence with the next lowest bit
score in that dataset had a value of 374, and maximum bit scores
approached 900.

7.1.3. Lowest common ancestor classification of sequences

The next level of novelty can be identified using the lowest
common ancestor (LCA) algorithm in MEGAN. For the HYa-
1 dataset, assignments to higher nodes could be seen at the
Type II (15 sequences), Type Ib (9 sequences) and Type Ila (151
sequences) taxonomic levels using a margin of 5% for the LCA
calculation (Figure 3A). In contrast, classifications to the other

lowest-level taxa were stable even using an LCA margin greater
than 25%. The inability to classify sequences to the lowest levels
indicates that the sequence may represent a new taxon branch-
ing from the LCA node. For example, the sequences assigned
to the Type II node had similar bit scores to both Methylocystis
and pmoA2 clades and a NJ analysis of the sequences also sug-
gested that it was new lineage (termed HY-4) at the root of the
Type II’s (Figure 4). The assignments at the node of the Type Ila
branch were the result of an inability to distinguish between the
Methylocystis and Methylosinus-Methylocystis taxa, which might
indicate intermediate sequence types or the existence of a bush-
like continuum in this region of the tree (Liike and Frenzel,
2011).

In addition to biological diversity, there could also be techni-
cal errors that impede classification, such as sequencing noise or
chimerism. Furthermore, falsely assigned sequences in the taxon-
omy file would also result in sequences failing to be classified at
the lowest level. Both of these situations can generally be detected
by visually analyzing the BLAST alignments, as described in the
following section.

7.1.4. Lowest-level diversity: examination of hits and alignments
The final level of novelty can be detected by examining the hits
and alignments against the database. BLAST alignments of indi-
vidual reads (Figure 3B) or summary alignments for groups of
sequences (Figure 3C) can be examined in MEGAN. Examining
individual reads gives an impression of how closely related a
sequence is to members of the assigned taxon compared to the
next-nearest taxon. In the example shown (Figure 3B), the top
hit had 97% identity to a JRC_3 (702 bits) and the next best hit of
only 89% identity (272 bits) to RPC_1. In this example, it is evi-
dent that the sequence is genuinely JRC_3. In contrast, the hits to
Methylocapsa had maximum identities of only 95% (not shown),
suggesting that these might represent a closely related novel clus-
ter. An analysis by NJ of these sequences indicated that indeed
they formed a new branch close to Methylocapsa (termed HY-2)
(Figure 4).

The second option is to invoke the alignment of the hits to a
taxon. Here it is possible to see evidence of novelty within a group
of sequences classified to a particular taxon. For example, in some
cases numerous conserved mismatches against the top database
reference can suggest that the sequences belong to a divergent
clade mostly related to the assigned taxon. For example, about
40 conserved mismatches were present within the assignment to
USCa in the HYa-1 dataset (Figure 3C). A closer analysis by NJ of
these sequences indicated they were a novel lineage most closely
related to USCa (termed HY-1) (Figure 4).

8. DATA COMPARISONS AND DOWNSTREAM ANALYSIS

MEGAN has several built-in functions that offer possibilities to
visualize and analyze the results. Comparisons between sam-
ples can be easily made using various visualization options.
Trends in the data can be observed and demonstrated, such
as the relative coverage of the two primer sets and the ele-
vated abundance of RPCs in hollow soils (Figure 5). MEGAN
can also calculate matrices of pairwise distances using six eco-
logical measures: Euclidian, Goodall, Chi-Square, Kulczynski,
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FIGURE 4 | Analysis of selected Type Il pmoA sequences from the
HYa-1 sample (Deng et al., 2013). The sequences chosen for
analysis are colorcoded in the partial MEGAN tree (A). The USCa and
Methylocapsa-assigned sequences were selected since the alignments
showed conserved mismatches to the reference database (as shown
for USCa sequences in Figure 3C). The sequences were imported

into an ARB pmoA database, quality filtered by removing sequences
with frameshifts, translated to amino acid sequences and added to
the PmoA tree by parsimony and then reanalyzed by neighborjoining.
The positions of the sequences analyzed in ARB are shown (B). The
new clades were named HY-1, HY-2 (Deng et al., 2013) and HY-4 (this
study).
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FIGURE 5 | MEGAN comparison view of pmoA classifications from the
Rigangiao pmoA pyrosequencing datasets (Deng et al., 2013). The pmoA
datasets were obtained from triplicate samples from hummock (HYa) and
hollow (HYb) sites. PCRs were performed with two primer combinations
(A189f/A682r or A189f/mb661r), as indicated. The option to subsample

datasets (3309 sequences) was chosen for the comparison. Assignments to
internal nodes are not shown. MEGAN only shows taxa detected in at least
one sample. The height of the bars was scaled to the number of reads
assigned in each dataset and colorcoded as indicated in the legend. The
labeling at the top of the columns was added.
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Bray-Curtis, and Hellinger (Mitra et al., 2010). Data can also be
easily exported into statistical software programs. Of course, the
classification of sequence data to taxa is only one step in the anal-
ysis of HTS amplicon data of protein-coding genes and should be
complemented by classification-independent analyses.

9. CONCLUSIONS

Although the naive Bayesian and BLAST/LCA methods provided
similar classifications of the high-throughput pmoA sequence
data examined in this study, the BLAST/LCA approach had
several advantages, such as being less sensitive to false classifica-
tion of contaminant sequences and offering several options for
novelty detection at various levels of sequence divergence. The
BLAST/LCA method has another advantage that a researcher can
visually interpret the calculations, in the form of alignments,
therefore enabling the results to be verified and judged.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fmicb.
2014.00034/abstract

REFERENCES

Altschul, S. E, Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990).
Basic local alignment search tool. J. Mol. Biol. 215, 403—410. doi: 10.1006/jmbi.
1990.9999

Baani, M., and Liesack, W. (2008). Two isozymes of particulate methane monooxy-
genase with different methane oxidation kinetics are found in Methylocystis sp
strain SC2. Proc. Natl. Acad. Sci. U.S.A. 105, 10203-10208. doi: 10.1073/pnas.
0702643105

Berry, D., Ben Mahfoudh, K., Wagner, M., and Loy, A. (2011). Barcoded primers
used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ.
Microbiol. 77, 7846-7849. doi: 10.1128/AEM.05220-11

Binladen, J., Gilbert, M. T. P, Bollback, J. P, Panitz, E.,, Bendixen, C., Nielsen, R.,
et al. (2007). The use of coded PCR primers enables high-throughput sequenc-
ing of multiple homolog amplification products by 454 parallel sequencing.
PLoS ONE 2:e197. doi: 10.1371/journal.pone.0000197

Cai, Y., and Sun, Y. (2011). ESPRIT-Tree: hierarchical clustering analysis of millions
of 16S rRNA pyrosequences in quasilinear computational time. Nucleic Acids
Res. 2011, 1-10. doi: 10.1093/nar/gkr349

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K.,
etal. (2009). BLAST+: architecture and applications. Bioinformatics 10, 421. doi:
10.1186/1471-2105-10-421

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, E. D., Costello,
E. K, et al. (2010). QIIME allows analysis of high-throughput community
sequencing data. Nat. Methods 7, 335-336. doi: 10.1038/nmeth.f.303

Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M.,
et al. (2005). The Ribosomal Database Project (RDP-II): sequences and tools
for high-throughput rRNA analysis. Nucleic Acids Res. 33, D294-D296. doi:
10.1093/nar/gki038

Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009).
The Ribosomal Database Project: improved alignments and new tools for rRNA
analysis. Nucleic Acids Res. 37, D141-D145. doi: 10.1093/nar/gkn879

Coleman, N. V,, Le, N. B,, Ly, M. A,, Ogawa, H. E., McCarl, V., Wilson, N. L., et al.
(2012). Hydrocarbon monooxygenase in Mycobacterium: recombinant expres-
sion of a member of the ammonia monooxygenase superfamily. ISME J. 6,
171-182. doi: 10.1038/ismej.2011.98

Costello, A. M., and Lidstrom, M. E. (1999). Molecular characterization of func-
tional and phylogenetic genes from natural populations of methanotrophs in
lake sediments. Appl. Environ. Microbiol. 65, 5066-5074.

Degelmann, D. M., Borken, W,, Drake, H. L., and Kolb, S. (2010). Different atmo-
spheric methane-oxidizing communities in European beech and Norway spruce
soils. Appl. Environ. Microbiol. 76, 3228-3235. doi: 10.1128/AEM.02730-09

Deng, Y., Cui, X., Liike, C., and Dumont, M. G. (2013). Aerobic methanotroph
diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau. Environ.
Microbiol. Rep. 5, 566—-574. doi: 10.1111/1758-2229.12046

Dunfield, P. E, Belova, S. E., Vorob’ev, A. V,, Cornish, S. L., and Dedysh,
S. N. (2010). Methylocapsa aurea sp. nov., a facultative methanotroph pos-
sessing a particulate methane monooxygenase, and emended description of
the genus Methylocapsa. Int. J. Syst. Evol. Microbiol. 60, 2659-2664. doi:
10.1099/1j5.0.020149-0

Dunfield, P. E, Yimga, M. T., Dedysh, S. N., Berger, U., Liesack, W., and Heyer,
J. (2002). Isolation of a Methylocystis strain containing a novel pmoA-like
gene. FEMS Microbiol. Ecol. 41, 17-26. doi: 10.1111/j.1574-6941.2002.tb00
962.x

Edgar, R. C,, Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics
27, 2194-2200. doi: 10.1093/bioinformatics/btr381

Ettwig, K. E, Butler, M. K, Le Paslier, D., Pelletier, E., Mangenot, S.,
Kuypers, M. M. M., et al. (2010). Nitrite-driven anaerobic methane oxi-
dation by oxygenic bacteria. Nature 464, 543-548. doi: 10.1038/nature
08883

Ettwig, K. E, van Alen, T., van de Pas-Schoonen, K. T, Jetten, M. S. M., and Strous,
M. (2009). Enrichment and molecular detection of denitrifying methanotrophic
bacteria of the NC10 phylum. Appl. Environ. Microbiol. 75, 3656-3662. doi:
10.1128/aem.00067-09

Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C. (1995). Evidence that
particulate methane monooxygenase and ammonia monooxygenase may be
evolutionarily related. FEMS Microbiol. Lett. 132, 203-208. doi: 10.1111/j.1574-
6968.1995.tb07834.x

Huson, D. H., Auch, A. E, Qi, J., and Schuster, S. C. (2007). MEGAN analysis of
metagenomic data. Genome Res. 17, 377-386. doi: 10.1101/gr.5969107

Huson, D. H., Mitra, S., Ruscheweyh, H. J., Weber, N., and Schuster, S. C. (2011).
Integrative analysis of environmental sequences using MEGAN4. Genome Res.
21, 1552-1560. doi: 10.1101/gr.120618.111

Koski, L. B., and Golding, G. B. (2001). The closest BLAST hit is often not the
nearest neighbor. J. Mol. Evol. 52, 540-542. doi: 10.1007/s002390010184

Lanzén, A., Jorgensen, S. L., Huson, D. H., Gorfer, M., Grindhaug, S. H., Jonassen,
L, et al. (2012). CREST - Classification resources for environmental sequence
tags. PLoS ONE 77:e49334. doi: 10.1371/journal.pone.0049334

Ludwig, W.,, Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al.
(2004). ARB: a software environment for sequence data. Nucleic Acids Res. 32,
1363-1371. doi: 10.1093/nar/gkh293

Luesken, F. A., Zhu, B., van Alen, T. A,, Butler, M. K., Rodriguez Diaz, M., Song
B., etal. (2011). pmoA primers for detection of anaerobic methanotrophs. Appl.
Environ. Microb. 77, 3877-3880. doi: 10.1128/AEM.02960-10

Liike, C., and Frenzel, P. (2011). Potential of pmoA amplicon pyrosequencing for
methanotroph diversity studies. Appl. Environ. Microb. 77, 6305-6309. doi:
10.1128/Aem.05355-11

McDonald, I. R., Bodrossy, L., Chen, Y., and Murrell, J. C. (2008). Molecular ecol-
ogy techniques for the study of aerobic methanotrophs. Appl. Environ. Microb.
74, 1305-1315. doi: 10.1128/Aem.02233-07

McGinnis, S., and Madden, T. L. (2004). BLAST: at the core of a powerful and
diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20-W25. doi:
10.1093/nar/gkh435

Mitra, S., Gilbert, J. A., Field, D., and Huson, D. H. (2010). Comparison of multiple
metagenomes using phylogenetic networks based on ecological indices. ISME J.
4, 1236-1242. doi: 10.1038/isme;j.2010.51

Mitra, S., Stark, M., and Huson, D. H. (2011). Analysis of 16S rRNA environmen-
tal sequences using MEGAN. BMC Genomics 12. doi: 10.1186/1471-2164-12-
$3-s17

Pester, M., Schleper, C., and Wagner, M. (2011). The Thaumarchaeota: an emerging
view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14, 300-306.
doi: 10.1016/j.mib.2011.04.007

Porter, T. M., and Golding, G. B. (2011). Are similarity- or phylogeny-based
methods more appropriate for classifying internal transcribed spacer (ITS)
metagenomic amplicons? New Phytol. 192, 775-782. doi: 10.1111/j.1469-
8137.2011.03838.x

Porter, T. M., and Golding, G. B. (2012). Factors that affect large subunit ribo-
somal DNA amplicon sequencing studies of fungal communities: classification
method, primer choice, and error. PLoS ONE 7:€35749. doi: 10.1371/jour-
nal.pone.0035749

Frontiers in Microbiology | Terrestrial Microbiology

February 2014 | Volume 5 | Article 34 | 10


http://www.frontiersin.org/journal/10.3389/fmicb.2014.00034/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00034/abstract
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive

Dumont et al.

BLAST/LCA pmoA classification

Pruesse, E., Peplies, J., and Glockner, F. O. (2012). SINA: accurate high-throughput
multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28,
1823-1829. doi: 10.1093/bioinformatics/bts252

Quince, C., Lanzen, A., Davenport, R. J., and Turnbaugh, P. J. (2011).
Removing noise from pyrosequenced amplicons. BMC Bioinform. 12:38. doi:
10.1186/1471-2105-12-38

Reeder, J., and Knight, R. (2010). Rapidly denoising pyrosequencing amplicon
reads by exploiting rank-abundance distributions. Nat. Methods 7:668—669. doi:
10.1038/nmeth0910-668b

Rosen, M. J., Callahan, B. J., Fisher, D. S., and Holmes, S. P. (2012). Denoising
PCR-amplified metagenome data. BMC Bioinform. 13:283. doi: 10.1186/1471-
2105-13-283

Schloss, P. D., and Handelsman, J. (2004). Status of the microbial census. Microbiol.
Mol. Biol. Rev. 68, 686—691. doi: 10.1128/mmbr.68.4.686-691.2004

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister,
E. B., et al. (2009). Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial com-
munities. Appl. Environ. Microbiol. 75, 7537-7541. doi: 10.1128/aem.01541-09

Schloss, P. D., Gevers D., and Westcott S. L. (2011). Reducing the effects of PCR
amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE
6:¢27310. doi: 10.1371/journal.pone.0027310

Stamatakis, A., Ludwig, T., and Meier, H. (2005). RAXML-III: a fast program for
maximum likelihood-based inference of large phylogenetic trees. Bioinformatics
21, 456-463. doi: 10.1093/bioinformatics/btil91

Stoecker, K., Bendinger, B., Schoning, B., Nielsen, P. H., Nielsen, J. L., Baranyi,
C., et al. (2006). Cohn’s Crenothrix is a filamentous methane oxidizer with an
unusual methane monooxygenase. Proc. Natl. Acad. Sci. U.S.A. 103, 2363-2367.
doi: 10.1073/pnas.0506361103

Tavormina, P. L., Orphan, V. J., Kalyuzhnaya, M. G., Jetten, M. S. M., and Klotz, M.
G. (2011). A novel family of functional operons encoding methane/ammonia
monooxygenase-related proteins in gammaproteobacterial methanotrophs.
Environ. Microbiol. Rep. 3, 91-100. doi: 10.1111/j.1758-2229.2010.00192.x

Theisen, A. R., Ali, M. H., Radajewski, S., Dumont, M. G., Dunfield, P. E,
McDonald, I. R, et al. (2005). Regulation of methane oxidation in the faculta-
tive methanotroph Methylocella silvestris BL2. Mol. Microbiol. 58, 682—692. doi:
10.1111/j.1365-2958.2005.04861.x

Vorobey, A. V., Baani, M., Doronina, N. V., Brady, A. L., Liesack, W., Dunfield, P. E,
et al. (2011). Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately
methanotrophic bacterium that possesses only a soluble methane monooxyge-
nase. Int. ]. Syst. Evol. Microbiol. 61, 2456—2463. doi: 10.1099/ijs.0.028118-0

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian clas-
sifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Appl. Environ. Microbiol. 73, 5261-5267. doi: 10.1128/aem.00062-07

Weisman, D., Yasuda, M., and Bowen, J. L. (2013). FunFrame: functional gene
ecological analysis pipeline. Bioinformatics 29, 1212—1214. doi: 10.1093/bioin-
formatics/btt123

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 August 2013; paper pending published: 12 October 2013; accepted: 19
January 2014; published online: 18 February 2014.

Citation: Dumont MG, Liike C, Deng Y and Frenzel P (2014) Classification of pmoA
amplicon pyrosequences using BLAST and the lowest common ancestor method in
MEGAN. Front. Microbiol. 5:34. doi: 10.3389/fmicb.2014.00034

This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers
in Microbiology.

Copyright © 2014 Dumont, Liike, Deng and Frenzel. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org

February 2014 | Volume 5 | Article 34 | 11


http://dx.doi.org/10.3389/fmicb.2014.00034
http://dx.doi.org/10.3389/fmicb.2014.00034
http://dx.doi.org/10.3389/fmicb.2014.00034
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive

	Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN
	Introduction
	pmoA Taxonomy
	Overall Taxonomic System
	Type I and II pmoA Sequences
	pXMO: Divergent pmoA Sequences
	Bacterial Ammonia Monooxygenase

	Software and Associated Files
	Naïve Bayesian Classifier
	Blast and Megan

	pmoA Amplification and Sequencing
	Raw Sequence Processing
	Classification of pmoA Sequences
	Naïve Bayesian Classifier
	BLAST/LCA
	BLAST interpretation by lowest common ancestor in MEGAN

	Comparison of the Naïve Bayesian and BLAST/LCA Classifications

	Novelty Detection
	Novelty Detection using BLAST/LCA in MEGAN
	Identification of highly divergent CuMMO sequences
	Identification of moderately divergent CuMMO sequences
	Lowest common ancestor classification of sequences
	Lowest-level diversity: examination of hits and alignments


	Data Comparisons and Downstream Analysis
	Conclusions
	Supplementary Material
	References


