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Tailed viruses are the most common isolates infecting prokaryotic hosts residing in
hypersaline environments. Archaeal tailed viruses represent only a small portion of all
characterized tailed viruses of prokaryotes. But even this small dataset revealed that
archaeal tailed viruses have many similarities to their counterparts infecting bacteria, the
bacteriophages. Shared functional homologs and similar genome organizations suggested
that all microbial tailed viruses have common virion architectural and assembly principles.
Recent structural studies have provided evidence justifying this thereby grouping archaeal
and bacterial tailed viruses into a single lineage. Currently there are 17 haloarchaeal tailed
viruses with entirely sequenced genomes. Nine viruses have at least one close relative
among the 17 viruses and, according to the similarities, can be divided into three groups.
Two other viruses share some homologs and therefore are distantly related, whereas the
rest of the viruses are rather divergent (or singletons). Comparative genomics analysis of
these viruses offers a glimpse into the genetic diversity and structure of haloarchaeal tailed
virus communities.
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Viruses infecting haloarchaea come in a variety of virion mor-
photypes: spindle-shaped, pleomorphic, icosahedral and head-
and-tail (or tailed) (Roine and Oksanen, 2011; Atanasova et al.,
2012; Pietilä et al., 2013a). Yet, tailed viruses comprise the major-
ity of the studied viruses infecting haloarchaea (Table 1). Despite
the many early studies on φH genome and its rearrangements
(Reiter et al., 1988) as well as detailed studies on φCh1 virus
(Witte et al., 1997; Baranyi et al., 2000; Klein et al., 2002; Rössler
et al., 2004) we have had relatively little in-depth information
about the haloarchaeal tailed virus genomes until recently (Klein
et al., 2012; Pietilä et al., 2013b,c; Senčilo et al., 2013). The situa-
tion changed partly due to the recent technological advancements
that have made for instance the sequencing of viral genomes
much cheaper and faster than before. This caused an exponen-
tial increase in the number of sequencing projects focusing on
separate virus genomes or on metaviromes from hypersaline
environments (Santos et al., 2010; Boujelben et al., 2012; Garcia-
Heredia et al., 2012; Pietilä et al., 2013b,c; Senčilo et al., 2013).
While metaviromes revealed the richness and diversity of the
viral communities present in hypersaline environments, whole-
genome sequencing of isolated viruses provided more complete
genomic information embedded in a clear biological context. The
aim of this review is to summarize the findings on the 13 new
complete haloarchaeal tailed virus genomes that were published
in three separate papers (Pietilä et al., 2013b,c; Senčilo et al., 2013)
and to combine these data with the previous knowledge of the
complete genomes of haloarchaeal tailed viruses.

CLASSIFICATION OF PROKARYOTIC TAILED VIRUSES
Tailed euryarchaeal (including haloarchaeal) viruses have been
shown to have many properties in common with their bacterial

counterparts, the bacteriophages, starting from the morphology
and the genome structure to gene regulation and some protein
homologs (Torsvik and Dundas, 1974; Stolt and Zillig, 1994;
Porter et al., 2007). Tailed bacteriophages are classified into order
Caudovirales, which is further divided into three families accord-
ing to the tail morphology: Myoviridae characterized by long
contractile tails, Siphoviridae (long, non-contractile, but flex-
ible tails) and Podoviridae (short non-contractile tails) (King
et al., 2012). Some of the haloarchaeal tailed viruses have also
been classified according to the criteria of the International
Committee on Taxonomy of Viruses (ICTV) (King et al., 2012).
The genus “PhiH-like viruses” belongs to the family Myoviridae
and contains the species Halobacterium phage φH and a candi-
date Halobacterium phage Hs1 (King et al., 2012). Also HF2 has
been added as a putative member of the Myoviridae family (King
et al., 2012).

Before the times of having the means to generate massive
amounts of sequence data, viral classification mainly based on
virion morphology, the genome type (circular or linear ss/dsDNA
or RNA) and host range, seemed rather straightforward. The cur-
rent ease of genome sequencing revealed the Pandora’s box of the
prokaryotic virus genomes. First of all, at the nucleotide sequence
level the genomes are often very different from each other with
no sequence similarity at all. In addition, mosaicism, the inher-
ent feature of the prokaryotic viral genomes (Hendrix et al., 1999;
Juhala et al., 2000; Lawrence et al., 2002; Krupovič et al., 2011),
raises serious questions about the criteria to be used in classi-
fication. It has been proposed that in the absence of nucleotide
or amino acid sequence similarity, the higher order classification
of viruses should be based on the virion morphology and the
major capsid protein fold (MCP) (Bamford et al., 2002, 2005;
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či

lo
et

al
.,

20
13

H
ST

V-
2

E
ila

t,
Is

ra
el

H
rr.

so
do

m
en

se
Li

ne
ar

ds
D

N
A

,D
TR

(3
40

bp
)

68
,1

87
10

3
1

A
ta

na
so

va
et

al
.,

20
12

;
P

ie
til

ä
et

al
.,

20
13

b

ϕ
C

H
1

S
po

nt
an

eo
us

re
le

as
e

fr
om

N
ab

m
ag

ad
ii

N
ab

.m
ag

ad
ii

(L
13

)
ci

rc
.p

er
m

.d
sD

N
A

58
,4

98
(+

80
-7

00
nt

R
N

A
)

98
−

W
itt

e
et

al
.,

19
97

;K
le

in
et

al
.,

20
02

H
G

TV
-1

S
am

ut
S

ak
ho

n,
Th

ai
la

nd
H

gn
.s

p.
S

S
5-

1
ci

rc
.p

er
m

.d
sD

N
A

14
3,

85
5

28
1

36
A

ta
na

so
va

et
al

.,
20

12
;

S
en

či
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či
lo

et
al

.,
20

13

H
V

TV
-1

S
am

ut
S

ak
ho

n,
Th

ai
la

nd
H

ar
.v

al
lis

m
or

tis
Li

ne
ar

ds
D

N
A

,D
TR

(5
85

bp
)

10
1,

73
4

17
3

1
A

ta
na

so
va

et
al

.,
20

12
;

P
ie

til
ä

et
al

.,
20

13
b

H
C

TV
-2

S
am

ut
S

ak
ho

n,
Th

ai
la

nd
H

ar
.c

al
ifo

rn
ia

e
ci

rc
.p

er
m

.d
sD

N
A

54
,2

91
86

-
A

ta
na

so
va

et
al

.,
20

12
;

S
en

či
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či

lo
et

al
.,

20
13

B
J1

La
ke

B
ag

ae
jin

no
r,

C
hi

na
H

rr.
sp

.B
J1

B
11

Li
ne

ar
ds

D
N

A
*

42
,2

71
70

1
Pa

ga
lin

g
et

al
.,

20
07

H
H

TV
-1

M
ar

gh
er

ita
di

S
av

oi
a,

It
al

y
H

ar
.h

is
pa

ni
ca

ci
rc

.p
er

m
.d

sD
N

A
49

,1
07

74
-

Ku
kk

ar
o

an
d

B
am

fo
rd

,
20

09
;S

en
či
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Abrescia et al., 2012). Viruses having the same MCP fold could
then be grouped into lineages, and tailed bacteriophages were
suggested to belong to the so called Hong Kong 97 (HK97)-like
lineage together with the herpesviruses (Bamford, 2003; Bamford
et al., 2005; Abrescia et al., 2012). Recent structural studies on
haloarchaeal podovirus HSTV-1 suggested that it also has the
HK97 MCP fold thereby justifying the placement of archaeal
tailed viruses into HK97-like lineage (Pietilä et al., 2013c).

CHARACTERISTICS OF HALOARCHAEAL TAILED VIRUS
GENOMES
At the moment there are 43 haloarchaeal tailed viruses reported
(Kukkaro and Bamford, 2009; Atanasova et al., 2012; Sabet, 2012)
and 17 completely sequenced genomes comprise approximately
1.2 Mb of sequence information (Klein et al., 2002; Tang et al.,
2002, 2004; Pagaling et al., 2007; Pietilä et al., 2013b,c; Senčilo
et al., 2013). Also approximately 58 kb of the φH genome has been
sequenced (Porter et al., 2007). In addition to that, several provi-
ral regions found in haloarchaeal genomes extend our knowl-
edge of the gene pool of haloarchaeal tailed viruses (Krupovič
et al., 2010; Senčilo et al., 2013). Complete genomes of haloar-
chaeal tailed viruses range from approximately 32 to 144 kb in
size (Table 1). Similarly to tailed bacteriophages, the genomes of
haloarchaeal tailed viruses are either circularly permuted or non-
permuted dsDNA molecules with direct terminal repeats (Klein
et al., 2002; Tang et al., 2002, 2004; Pagaling et al., 2007; Pietilä
et al., 2013b,c; Senčilo et al., 2013). The genomes have rather high
GC percentage (above 50% on average), which is also character-
istic of haloarchaea (Klein et al., 2002; Tang et al., 2002, 2004;

Oren, 2006; Pagaling et al., 2007; Pietilä et al., 2013b,c; Senčilo
et al., 2013). Similar GC percentages suggest that the viruses are
well-adapted to the codon usage of their hosts.

Annotation of the haloarchaeal tailed virus genomes is very
often based on the similarity to bacteriophage genes (Klein et al.,
2002; Tang et al., 2002, 2004; Pagaling et al., 2007; Krupovič
et al., 2011; Pietilä et al., 2013b,c; Senčilo et al., 2013). Indeed,
haloarchaeal tailed viruses share many similarities with bacte-
riophages both in terms of genome content and organization
(Krupovič et al., 2011). In general, however, putative function can
be assigned to no more than 20% of the new haloarchaeal tailed
virus genes (Pagaling et al., 2007; Pietilä et al., 2013b,c; Senčilo
et al., 2013). Large terminase subunit is among the most con-
served proteins of prokaryotic tailed viruses and it was annotated
in all haloarchaeal tailed virus genomes described to date (Klein
et al., 2002; Tang et al., 2002, 2004; Pagaling et al., 2007; Pietilä
et al., 2013b,c; Senčilo et al., 2013).

While the genomes of some haloarchaeal tailed viruses are
collinear and highly similar at the nucleotide level, other viruses
share up to several distant protein homologs at most (Figure 1).
None of the completely sequenced genomes displayed close sim-
ilarity to the putative proviral regions identified in the haloar-
chaeal genomes (Krupovič et al., 2010; Senčilo et al., 2013).
Among the 17 haloarchaeal tailed viruses, three groups of closely
related viruses can be delineated based on the nucleotide sequence
alignments (Figure 1A). Here we name these groups according
to the first described representative: HF2-like, HRTV-7-like and
HCTV-1-like groups (Nuttall and Dyall-Smith, 1993; Atanasova
et al., 2012; Senčilo et al., 2013).

FIGURE 1 | Genomic comparisons of the haloarchaeal tailed viruses with

completely sequenced genomes. (A) Dotplot alignment of the genomes.
Reverse complements of HF1 and HF2 genome sequences were used for
the analyses in order to conform to the structure of the other haloarchaeal
tailed virus genomes. The image was generated using the Gepard software
(Krumsiek et al., 2007). (B) Circular visualization of the homologous proteins
shared between the selected virus representatives from each of the
delineated groups and singletons. The outermost track represents the

genome maps with the coordinates (kbp). The myoviral genomes are marked
in blue, siphoviral in pink and podoviral in violet. The following track displays
the annotated ORFs (marked in green and red on the positive and the
negative strands, respectively). Gray lines link pairs of genes coding for the
putative homologs. Here proteins are defined as homologous if they share
over 30% amino acid identity when aligned with EMBOSS Needle tool
(Needleman and Wunsch, 1970). The image was generated using Circos
software (Krzywinski et al., 2009).
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HF2-LIKE VIRUSES
The biggest group is HF2-like myovirus group, which, besides
HF2, includes HF1, HRTV-5, and HRTV-8 viruses (Figure 1A)
(Nuttall and Dyall-Smith, 1993; Atanasova et al., 2012; Senčilo
et al., 2013). HF2-like viruses originate from spatially and tempo-
rally different environmental samplings (Nuttall and Dyall-Smith,
1993; Atanasova et al., 2012). Nevertheless, viruses share extensive
similarity at the nucleotide level and subsequently most of their
encoded proteins are homologous (Tang et al., 2002, 2004; Senčilo
et al., 2013). Highly similar genomic regions are interrupted by
non-homologous regions suggestive of the mosaic nature of HF2-
like virus genomes (Tang et al., 2002, 2004; Senčilo et al., 2013).
The clearest example is provided by HF1 and HF2 virus genomes,
which are almost identical over 48 kb followed by a more diverged
28 kb region (Tang et al., 2004). The divergent region, among
other putative proteins, codes for the tail fiber protein, which may
be responsible for different host specificities of these two viruses
(Tang et al., 2004). Majority of the non-conserved proteins in
HF2-like viruses have no predicted function with an exception
of putative restriction endonuclease and methylase (HF2p074
gene in HF2) found in all viruses except for HRTV-8, and HNH
endonuclease found only in HRTV-8 (gene 43) (Tang et al., 2002,
2004; Senčilo et al., 2013).

HRTV-7-LIKE VIRUSES
HF2-like viruses share some similarities with HRTV-7-like
myoviruses, HRTV-7 and HSTV-2 (Figures 1A,B) (Pietilä et al.,
2013b; Senčilo et al., 2013). Homologous genome regions are
mostly located in the gene cluster coding for structural and
assembly proteins (Pietilä et al., 2013b; Senčilo et al., 2013). Cryo-
electron microscopy studies on HSTV-2 virus revealed that its
capsid has a T = 7 symmetry (Pietilä et al., 2013b). However,
known viruses having capsids with this T-number, such as P22,
package smaller genomes than that of HSTV-2 (Parent et al., 2010;
Pietilä et al., 2013b). Therefore it was suggested that HSTV-2
capsids accommodate minor proteins, which increase the capsid
volume (Pietilä et al., 2013b). Since all HRTV-7-like and HF2-like
viruses have homologous MCPs as well as hypothetical proteins
suggested to act as minor capsid proteins, it is likely that the capsid
structures of all these viruses are similar (Pietilä et al., 2013b).

HCTV-1-LIKE AND OTHER RELATED SIPHOVIRUSES
HCTV-1, HCTV-5, and HVTV-1 viruses encompass the HCTV-
1-like virus group and are the only closely related haloarchaeal
siphoviruses described to date (Figure 1A) (Pietilä et al., 2013b;
Senčilo et al., 2013). HVTV-1 and HCTV-5 show similarity
throughout their genomes, whereas HCTV-1 has a diverged
genome region coding for tail structural and assembly proteins
(Pietilä et al., 2013b; Senčilo et al., 2013). Another notable dif-
ference is rather high abundance of homing endonuclease genes
in HVTV-1 and HCTV-5 genomes compared to HCTV-1 (Pietilä
et al., 2013b; Senčilo et al., 2013). Structural studies available only
for HVTV-1 virus showed that its capsomers are arranged in a
T = 13 lattice (Pietilä et al., 2013b).

Siphoviruses HCTV-2 and HHTV-2 also show some similarity
to each other at the nucleotide sequence level and share a num-
ber of protein homologs (Figures 1A,B) (Senčilo et al., 2013).

As is the case for HF2-like and HRTV-7-like groups of viruses,
similarities among HCTV-2 and HHTV-2 are mostly concen-
trated within the cluster of head and tail structural and assembly
proteins (Figure 1B) (Senčilo et al., 2013).

SINGLETONS
Siphovirus HHTV-1 is the most divergent among the completely
sequenced haloarchaeal tailed viruses (Senčilo et al., 2013). The
only homolog it shares with other haloarchaeal tailed viruses is
a putative PCNA, which is similar to HSTV-1 podoviral PCNA
(Figure 1B). Other two siphoviruses having no close relatives
among and the entirely sequenced haloarchaeal tailed viruses are
HRTV-4 and BJ1 (Pagaling et al., 2007; Senčilo et al., 2013).
However, even in these four diverged siphoviruses some of the
structural and assembly proteins as well as putative proteins
involved in nucleic acid metabolism were annotated based on
the similarities to their counterparts in bacteriophages (Pagaling
et al., 2007; Senčilo et al., 2013). The genome of the siphovirus
HRTV-4 (Senčilo et al., 2013) shows close relatedness to an envi-
ronmental clone eHP-10 (Garcia-Heredia et al., 2012). The two
sequences align along approximately half of the length with close
to 80% nucleotide sequence identity.

Although φCh1 is rather distinct from other fully sequenced
haloarchaeal tailed viruses, it is one of the best characterized
haloarchaeal viruses to date (Witte et al., 1997; Klein et al., 2002,
2012). φCh1 is a temperate virus infecting Natrialba (Nab.) maga-
dii cells (Witte et al., 1997). The most unusual feature of the φCh1
virus is that its particles along with the genomic dsDNA contain
80–700 nt RNA molecules of host origin (Witte et al., 1997). A
12 kb region of φCh1 genome is highly similar to the ϕH virus
L-fragment (Gropp et al., 1992; Klein et al., 2002). This fragment
of ϕH virus was shown to be capable of autonomous replication
in a plasmid state (pϕHL) (Gropp et al., 1992). It contains genes
coding for proteins involved in replication, plasmid stabilization
and gene expression regulation (Gropp et al., 1992).

The φCh1 genome region and pϕHL align along almost the
whole length with an exception of 1.7 kb fragment, which is in
the inverse orientations in the two (Klein et al., 2002). Direct
repeats flanking the fragment suggested that the rearrangement
was a result of recombination between these repeats (Klein et al.,
2002). φCh1 genome contains a number of inverted repeats, one
pair of which is involved in a phase variation system (Rössler et al.,
2004; Klein et al., 2012). This system results in the production
of two different variants of φCh1 tail fiber protein (Klein et al.,
2012).

HGTV-1 myovirus currently holds the record for having the
largest genome among all described archaeal viruses (Senčilo
et al., 2013). The genome of this virus has at least two distinc-
tive features. First, it encodes unusually high number of tRNAs
(36 in total) for all universal amino acids (Senčilo et al., 2013).
Second, majority of ORFs located in HGTV-1 left-hand side of
the genome are preceded by a conserved DNA motif, containing
TATA box-like region and an inverted repeat (Senčilo et al., 2013).
Similarity of these structures to promoter stem loops (PesLSs)
of T4-type bacteriophages led to the suggestion that as in T4-
like bacteriophages, these DNA motifs in HGTV-1 are responsible
for transcription regulation and genome shuffling (Arbiol et al.,

Frontiers in Microbiology | Extreme Microbiology March 2014 | Volume 5 | Article 84 | 4

http://www.frontiersin.org/Extreme_Microbiology
http://www.frontiersin.org/Extreme_Microbiology
http://www.frontiersin.org/Extreme_Microbiology/archive
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2010; Senčilo et al., 2013). Therefore, the mechanism of gener-
ating genetic diversity may also be shared among bacterial and
archaeal tailed viruses in addition to the already pronounced
similarity of structural and assembly proteins (Senčilo et al.,
2013).

To date, HSTV-1 is the only reported archaeal podovirus
(Pietilä et al., 2013c). It is also the only archaeal tailed virus
for which the MCP fold was determined (Pietilä et al., 2013c).
Despite its podoviral morphotype, HSTV-1 shares a handful of
homologs with haloarchaeal myo- and siphoviruses (Figure 1B).
These include the MCM DNA helicase, terminase large subunit,
PCNA as well as several hypothetical proteins (Figure 1B).

CONCLUSION
The growing number of complete genomes of haloarchaeal tailed
viruses allowed us to determine groups of related viruses with
more than two members. As new sequences are added, the groups
are increasing in size and number. In addition to that, new
singletons appear. A similar trend was also noticed for the grow-
ing database of complete mycobacteriophage genomes (Hatfull,
2012). The 17 completely sequenced haloarchaeal tailed viruses
can be currently divided into 3 groups of closely related viruses,
a pair of more distantly related siphoviruses and 6 singletons.
Comparative genomics analysis of these genomes further corrob-
orated several observations made earlier. First, different levels of
relatedness can be observed among the haloarchaeal tailed virus
genomes. In general this relatedness correlates neither with the
place nor with the time of sampling for the virus isolation. For
example very closely related viruses such as HF2-like viruses,
were isolated from geographically distant sources in the span of
almost 20 years (Nuttall and Dyall-Smith, 1993; Atanasova et al.,
2012). Second, virion structure and assembly proteins are gener-
ally more conserved among the viruses, as is apparent from the
examples of HF2-like and HRTV-7-like groups of viruses as well
as HCTV-2 and HHTV-2 viruses (Pietilä et al., 2013b; Senčilo
et al., 2013). Finally, the analysis of the extended data set did not
yield more information on some single divergent viruses such
as HHTV-1. This case examplifies the gaps in our knowledge
and highlights the fact that more sequences are needed for the
deeper understanding of genetic diversity and structure of the
viral communities as well as evolutionary processes shaping them.
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