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Parasites are ecologically significant in various ecosystems through their role in shaping
food web structure, facilitating energy transfer, and controlling disease. Here in this review,
we mainly focus on parasitic chytrids, the dominant parasites in aquatic ecosystems, and
explain their roles in aquatic food webs, particularly as prey for zooplankton. Chytrids have
a free-living zoosporic stage, during which they actively search for new hosts. Zoospores
are excellent food for zooplankton in terms of size, shape, and nutritional quality. In the
field, densities of chytrids can be high, ranging from 101 to 109 spores L−1. When large
inedible phytoplankton species are infected by chytrids, nutrients within host cells are
transferred to zooplankton via the zoospores of parasitic chytrids. This new pathway, the
“mycoloop,” may play an important role in shaping aquatic ecosystems, by altering sinking
fluxes or determining system stability. The grazing of zoospores by zooplankton may
also suppress outbreaks of parasitic chytrids. A food web model demonstrated that the
contribution of the mycoloop to zooplankton production increased with nutrient availability
and was also dependent on the stability of the system. Further studies with advanced
molecular tools are likely to discover greater chytrid diversity and evidence of additional
mycoloops in lakes and oceans.
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ECOLOGICAL SIGNIFICANCE OF PARASITES
Parasites are important components of ecological communities
(Thomas et al., 2005; Hatcher and Dunn, 2011). They have
the potential to regulate host populations, mediate interspecific
competition between hosts and other species, maintain genetic
polymorphism and biodiversity, and affect community structure.
Nevertheless, the effects of parasites and diseases on food webs
and ecosystem dynamics have been neglected until recently (Polis
and Strong, 1996; Marcogliese and Cone, 1997). New research
suggests that parasites have the potential to alter food-web topol-
ogy, stability, interaction strength and energy flow (Lafferty, 2006;
Kuris et al., 2008; Lafferty et al., 2008).

Parasites commonly function as prey within ecosystems
(Johnson et al., 2010; Thieltges et al., 2013). There are two main
ways in which parasites become prey. Predators can either con-
sume the infected hosts of parasites (concomitant predation)
or their free-swimming life stage (Johnson et al., 2010). Many
aquatic parasites including viruses, chytrids, trematodes, and
nematodes, have a free-swimming stage that may be subject to
predation (Gonzalez and Suttle, 1993; Kagami et al., 2004; Kuris
et al., 2008; Johnson et al., 2010). The Chytridiomycota (chytrids)
are one of the dominant groups of parasites in aquatic ecosys-
tems. The free-living zoosporic stage of chytrids actively searches
for and infects host cells, extracting nutrients and developing
into mature sporangia that release new zoospores (Canter, 1967;
Figure 1). There are more than 700 species of chytrids known
to infect phytoplankton, zooplankton, fungi, plants, and inverte-
brate animals (Sparrow, 1960; Gleason et al., 2008). Here in this
review, we mainly focus on parasitic chytrids that infect phyto-
plankton, and explain their roles in aquatic food webs as prey

for zooplankton through the “mycoloop” pathway (Kagami et al.,
2007a).

CHYTRIDS ZOOSPORES AS PREY FOR ZOOPLANKTON: FOOD
QUALITY AND QUANTITY, AND THE MYCOLOOP
Predation of parasites can be beneficial to predators if they can
gain energy and nutrition from parasites. Chytrid zoospores
are a good food source for zooplankton in terms of size and
shape (Kagami et al., 2004). In addition, zoospores are rich in
polyunsaturated fatty acids (PUFAs) and cholesterol, which are
essential for the growth of crustaceans (Kagami et al., 2007b).
Zooplankton, such as cladocerans (Daphnia) and copepods, are
able to grow by acquiring important supplementary nutrients
from a diet of zoospores (Kagami et al., 2007b, 2011). Thus,
chytrids may improve zooplankton production and enhance
trophic transfer.

Many recent studies suggest that parasite biomass is not neg-
ligible, and may in fact be often significantly high (Kuris et al.,
2008). The abundance of chytrids in aquatic systems has been
found to be much higher than traditionally thought. Because
morphological identification of chytrid zoospores is difficult,
attempts have been made to use the fluorescent stains to count
the density of chytrid zoospores in lakes (Kudoh, 1990). Recently,
molecular techniques, such as CARD-FISH (Jobard et al., 2010)
and Real-Time qPCR (Lefèvre et al., 2010) have been applied to
estimate zoospore abundance in field samples and have detected
zoospore concentrations of 101–106 spores L−1 (Table 1).

Compared to quantifying the abundance of zoospores, sporan-
gia are much easier to count because they are attached to host
phytoplankton cells. Using prevalence of infection and host cell
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FIGURE 1 | Diagram of “mycoloop.” Parasitic chytrids can transfer material
from large inedible phytoplankton to zooplankton. Chytrids zoospores are
excellent food for zooplankton in terms of size (2–5 μm in diameter), shape,
nutritional quality (rich in PUFAs and cholesterols). Large colonies of host

phytoplankton may also be fragmented by chytrid infections and become edible
to zooplankton. On the other hand, infected host colonies may remain inedible
to Daphnia, or even become less edible due to the aggregate formation of cells.
Those aggregations may sink faster, and affect material cycling in lakes.

density data from the literature, we determined the density of
sporangia to be 101–108 spores L−1 in field surveys (Table 1).
The result indicated that direct counts of zoospores in the field
may underestimate the real densities. By using the zoospore
per sporangia conversion factors determined by previous stud-
ies (13–28 zoospores per sporangium, Sen, 1988; 4–25 zoospores
per sporangium, Bruning, 1991), or the zoospore per sporangium
biovolume conversion (0.166 per μm3 empty sporangium vol-
ume, Bruning, 1991), we can roughly estimate that zoospore
abundance could actually reach more than 109 zoospores L−1in
the field. It should be noted that lowest abundance of zoospore
can be 10 spores L−1, or even zero. This indicates that the
potential importance of mycoloop may vary with seasons and
lakes.

Molecular studies have also revealed that chytrid zoospore
may often be miscounted as small heterotrophic nano-flagellates
(HNF), due to similar forms and sizes (Sime-Ngando et al.,
2011). A significant portion of small eukaryotes (0.6–5 μm)
was recently found to be chytrid zoospores in freshwater lakes
(11–23%, Lefèvre et al., 2007; 30% Lepère et al., 2008). In addi-
tion, CARD-FISH identified 5–60% of unknown flagellates as
chytrids zoospores (Jobard et al., 2010). In aquatic ecosystems,
most small heterotrophic eukaryotes (<5 μm) are considered to
play a role in microbial food webs by acting as predators of bacte-
ria and bacterium-sized phytoplankton (Sherr and Sherr, 1983).
In contrast, chytrids consume phytoplankton directly as para-
sites, and they do not eat bacteria. These findings require that we
should revise our understanding of microbial food webs.

Zoospores may become particularly important to Daphnia
when large inedible phytoplankton species, such as the diatom
Asterionella, dominate the phytoplankton community. Large phy-
toplankton species are quite resistant to grazing by zooplankton
such as Daphnia (Knisely and Geller, 1986; Kagami et al., 2002).

However, if large inedible phytoplankton species are infected
by chytrids, then nutrients within host cells are consumed by
chytrids and can be grazed by Daphnia. This new pathway has
been dubbed the “mycoloop” since nutrients from large inedible
algae are transferred to zooplankton via the zoospores of parasitic
chytrids (Kagami et al., 2007a).

Trophic transfer efficiency from host algae to chytrids is an
essential parameter to examine the importance of mycoloop
in the field. The transfer efficiencies of carbon, nitrogen, and
phosphorus (CNP) from host Asterionella populations to free-
swimming zoospores were estimated to be 6–9% in the laboratory
experiment, when the prevalence of infection was about 60%
(Kagami et al., 2007b). Those efficiencies were population based,
and may become even higher if the prevalence of infection may
exceed 90%. While, a single zoospore can use the host tissues
quite efficiently because chytrid can directly consume host nutri-
ents by entering through a germ tube (Van Donk and Ringelberg,
1983). CNP concentrations in a single zoospore (10.7 pg C, 0.6
pg N, 2.4 pg P per zoospore, Kagami et al., 2007b) are com-
parable to 20% of those in single host cell, indicating just five
zoospores may be enough to exploit all algal tissues. 20% must
be overestimated, if we consider the range of zoospores per spo-
rangia (4–25 zoospores per sporangium, Bruning, 1991). We
need to measure the CNP concentrations of zoospores and host
cells, and number of zoospores per sporangium accurately with
different species and conditions. From these estimates, we can
examine how important chytrid zoospores may be as a food
source for zooplankton in the field, in comparison to other possi-
ble food sources. In addition, such estimates are also crucial for
modeling approaches, to predict the roles of chytrids in alter-
ing the network structure and stability (Niquil et al., 2011),
and in determining the zooplankton production (Miki et al.,
2011).
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Table 1 | Density of zoospores or sporangia of chytrids in lakes.

Zoospores (103 L−1) Sporangia (103 L−1) Methods Chytrid Host Lakes (Trophic References

status)

min max min max

1 360 Count with Nile Red and
DAPI

Rhizophydium,
Zygorhizidium

Asterionella
Formosa

Lake Suwa,
Japan (E)

Kudoh, 1990

89 ± 11 156 ± 51 CARD-FISH (<25 um) Chytridiales
(Rhizophidium,
Chytridium*)

Melosira,
Anabaena

Lake Aydat,
France (E)

Jobard
et al., 2010

52 ± 11 573 ± 68 CARD-FISH (<25 um) Chytridiales
(Rhizophidium,
Chytridium*)

Various speciesa Lake Pavin,
France (OM)

Jobard
et al., 2010

0.04 5 qPCR Rhizophidiales
(parasitic and
saprotrophic)

Unknown Lake Pavin,
France (OM)

Lefèvre
et al., 2010

0.019 0.454 qPCR Badrachochytrium
dendrobatidis

Amphibians Lakes and
ponds, USA

Kirshtein
et al., 2007

1085 Direct count (Utermöhl) Zygorhizidium.
planktonicum

Asterionella
Formosa

Lake
Maarsseveen,
The Netherlands
(OM)

Van Donk
and
Ringelberg,
1983

510 Direct count (Utermöhl) Zygorhizidium
affluens

Asterionella
Formosa

Crose Mere, UK Reynolds,
1973

1 562 Count with CFW Zygorhizidium*,
Chytridium*

Aulacoseira
granulata, A.
ambigua

Lake Inba, Japan
(E)

Kagami
et al., 2012

0.524 368 Count with CFW Rhizophidium,
Chytridium,
Zygorizihidium

Various speciesb Lake Pavin,
France (OM)

Rasconi
et al., 2012

31500 Count with CFW Rhizophidium,
Chytridium,
Zygorizihidium

Various speciesc Lake Aydat,
France (E)

Rasconi
et al., 2012

1 120 Host density × % Rhizophydium,
Zygorhizidium

Asterionella
Formosa

Lake Suwa,
Japan (E)

Kudoh and
Takahashi,
1990

0.4 65 Host density × % Rhizophydium* Staurastrum
dorsidentiferum

Lake Biwa,
Japan (M)

Kagami and
Urabe, 2002

40 Host density × % Rhizidium
microcystidis

Microcystis
aeruginosa

Shearwater, UK
(E)

Sen, 1988

5 1486 Host density × % Rhizophidium
planktonicum

Asterionella
Formosa

Lake District, UK
(OM)

Canter and
Lund, 1953

6 110 Host density × % Rhizophidium
flagilariae,
Chytridium
versatile

Fragilaria
crotonensis

Lake District, UK
(OM)

Canter and
Lund, 1953

0.04 1 Host density × % Rhizophydium
couchii

Staurastrum
spp.

Lake District, UK
(OM)

Canter and
Lund, 1969

1500 Host density × % Zygorhizidium sp. Stephanodiscus
parvus

Lake Schohsee,
Germany (M)

Holfeld,
1998

170 Host density × % Unknown
monocentric
chytrid

Chrysamoeba
radians

660 Host density × % Rhizophydium
planktonicum, R.
tetragenum,
Zygorhizidium
planktonicum

Asterionella
formosa

(Continued)
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Table 1 | Continued

Zoospores (103 L−1) Sporangia (103 L−1) Methods Chytrid Host Lakes (Trophic References

status)

min max min max

40 Host density × % Zygorhizidium sp. Fragilaria
crotonensis

9 Host density × % Zygorhizidium.
planktonicum

Synedra acus

30 Host density × % Haparopera
piriformis

Ankyra judayi

10 Host density × % Zygorhizidium
parallelosede

Elakatothrix
genevensis

Minimum densities during the presence of chytrids were shown if available. The density of sporangia was estimated from the prevalence of infection and host cell

density data from the literature (shown as “Host density × %”).

CFW, calcofluor white; OM, oligo-mesotrophic; M, mesotrophic; E, eutrophic.
*Uncertain identification based on morphology or phylogeny.
aAsterionella, Fragilaria, Synedra, Staurastrum, Oocystis.
bAsterionella, Synedra, Staurastrum, Cyclotella, Fragilaria, Ankira, Melosira, Starodesmus, Chodatella, Ankystrodesms, Cylindrospermum, Oocystis.
cAsterionella, Synedra, Staurastrum, Cyclotella, Fragilaria, Ankira, Melosira, Oscillatoria, Microcystis, Fragilaria, Gomphosphaeria, Anabaena.

The “mycoloop” may occasionally play an important role in
shaping aquatic systems, by altering the material flow (Figure 1).
Traditionally, large inedible phytoplankton species are believed
to be lost by sinking from the euphotic zone (Malone, 1981).
However, if large phytoplankton are parasitized, then nutrients
within host cells are instead consumed by chytrids, and can, in
turn, be grazed by Daphnia through the mycoloop (Kagami et al.,
2007a). In addition, large inedible colonies of phytoplankton may
be fragmented into smaller pieces due to chytrid infections, mak-
ing them more edible to zooplankton (Figure 1, Sime-Ngando,
2012). The trophic transfer efficiency from large phytoplankton
to Daphnia would not change largely even if the heavily infected
colonies are fragmented and grazed (i.e., after most of the host
cells are consumed by chytrid). It would change, however, if the
lightly infected host colonies are fragmented and grazed (i.e.,
before most of the host cells are consumed by chytrid) (Sime-
Ngando, 2012). In this way, nutrients in host phytoplankton cells
are partly incorporated into the food web in the euphotic zone,
instead of sinking.

On the other hand, some of the infected host colonies may
remain inedible for Daphnia, or even become less edible due to
the aggregation of cells (Kagami et al., 2005, Figure 1) and may
sink faster than single colonies. In addition, frustules of previ-
ously infected cells may sink faster than living cells (Kagami et al.,
2006). In this way, sinking of frustules and aggregates of host cells
may actually be facilitated by chytrid infections.

PREDATION ON CHYTRIDS MAY SUPPRESS OUTBREAKS OF
CHYTRIDS
Predation on the free-living stages of parasites may result in
reduced disease risk for hosts (Packer et al., 2003). Indeed,
the presence of Daphnia can decrease chytrid infection inten-
sity on phytoplankton (Kagami et al., 2004). Recent studies
also revealed that Daphnia grazing on free-swimming zoospores
of Batrachochytrium dendrobatidis can decrease the disease

chytridiomycosis of amphibians (Hamilton et al., 2012; Searle
et al., 2013).

PHYTOPLANKTON—CHYTRID—ZOOPLANKTON
INTERACTIONS
Although a short-term experiment demonstrated that the direct
trophic link from chytrid fungus to zooplankton (F-Z link)
increased zooplankton growth (Kagami et al., 2007b), the effects
of the F-Z link on food web dynamics is not easily predictable.

Considering that chytrid infections are common in large ined-
ible phytoplankton species (Sommer, 1987; Kagami et al., 2007a),
fungal parasitism may indirectly increase the abundance of small
edible phytoplankton by altering resource competition. This may
in turn enhance zooplankton production through grazing path-
ways via an “indirect mutualism” (Levine, 1976; Vandermeer,
1980). If the F-Z link then decreases the abundance of fungal
zoospores (or fungal parasitism), it weakens the indirect mutual-
ism between fungi and zooplankton, and will then decrease mate-
rial transfer from small phytoplankton to zooplankton (indirect
effect).

Therefore, the F-Z link may enhance zooplankton production
through the mycoloop (direct effects), while it may also decrease
zooplankton production by weakening indirect mutualism (indi-
rect effect). By using a simple food web model, we successfully
evaluated the effects of parasitic chytrids (fungal parasitism) and
the F-Z link (both direct and indirect effects) on food web dynam-
ics (Miki et al., 2011). In summary, presence of the F-Z link caused
unexpected indirect effects in the food web, and was an important
determinant for the stability of the system (see the following sec-
tion for more detail). The model indicated that the high growth
efficiency and high nutritional quality of fungi were crucial for
the F-Z link to increase zooplankton production. The model also
indicated that the contribution of the mycoloop (material trans-
fer via the F-Z link) to zooplankton production increased with
nutrient availability and depended on the system stability. This
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implies that neglecting the dynamical aspect of the system will
lead to inaccurate estimates of material and energy fluxes. In the
following section, we will review the theoretical approaches in
detail to evaluate the roles of parasitic fungi in aquatic food webs.

MULTIFACETED IMPACTS OF FUNGUS-ZOOPLANKTON
INTERACTIONS ON FOOD WEB DYNAMICS: LESSONS FROM
DYNAMICAL MODELS
There are two modeling approaches for describing the struc-
ture, dynamics, and fluxes of material and energy in food webs
and ecosystems: steady state models and dynamical models. The
steady state model (or linear model) is a powerful tool in ecosys-
tem sciences to quantitatively estimate material fluxes with lim-
ited observations (Vezina, 1989). For example, it has been used to
estimate the impacts on carbon fluxes in aquatic ecosystems, of
the microbial loop (e.g., Anderson and Ducklow, 2001; Anderson
and Tang, 2010), bacteriophage (Fuhrman, 1999; Motegi et al.,
2009), and the food web structure (Niquil et al., 2006). Recent
studies also quantified the impact of chytrid fungi in lake car-
bon fluxes using this modeling approach with inverse estimates
of fluxes (Grami et al., 2011; Niquil et al., 2011). On the other
hand, the dynamical model, which often requires a larger num-
ber of parameters and more specific mathematical formulations
for inter-compartment interactions (e.g., trophic and competi-
tive interactions), can provide information about both the steady
state structure and non-steady state dynamics of the food web.
Here, we would like to highlight the three major impacts of the
F-Z link on the food web; (1) effect on food web structure and
zooplankton production, (2) influence on system stability, and
(3) contribution to material fluxes (mycoloop), elucidated by
dynamical food web models (Miki et al., 2011; Gerla et al., 2013).
Since conclusions are often different between steady state mod-
els and dynamic models, we will compare these two modeling
approaches.

1. Effects of the F-Z link on food web structure and zooplankton
production: The dynamical model can predict the unexpected
consequences of nonlinear effects of adding or removing a spe-
cific trophic linkage or a specific player in the structure of
the food web (Pimm, 1991). In our case, we added/removed
two trophic linkages; fungal parasitism and the F-Z link (Miki
et al., 2011) for a detailed comparison among three scenarios:
the system without parasitic fungi, the system with fungal par-
asitism but without the F-Z link, and the system with both fun-
gal parasitism and the F-Z link. The dynamical model predicts
that the F-Z link indirectly lowers the abundance of small phy-
toplankton, altering the food web structure (Miki et al., 2011).
This prediction agrees with the predicted decline in picophyto-
plankton production in Lake Pavin steady state model (Grami
et al., 2011). Similarly, both models predict the positive impact
of fungal parasitism and F-Z link on zooplankton production
and biomass. This implies robust positive impacts of fungi on
trophic transfer to higher trophic levels. Some scenarios in the
dynamical model have not been explored in the framework
of the steady state model. The dynamical model predicted
that the F-Z link can unexpectedly reduce the production and
biomass of zooplankton compared to a system with fungal

parasitism but without an active F-Z link (Miki et al., 2011).
This is unexpected considering the apparent (direct) benefit
of the F-Z link to zooplankton. This occurs through an indi-
rect effect; the F-Z link increases the host population (large
inedible phytoplankton) via a top-down cascade, which in
turn decreases the population of non-host, small edible phyto-
plankton through intensified resource competition (Figure 2).
In particular, when the growth efficiency of parasitic fungi
on host tissues and the nutrient quality of zoospores for zoo-
plankton are not large enough (i.e., the metabolic loss through
these trophic interactions is large) or productivity (nutrient
availability) in the system is low, then indirect negative effects
are greater than positive direct benefits and the F-Z link then
causes a reduction in the zooplankton biomass and produc-
tion (compare A vs. B in Figure 2). In order to better quantify
the role of fungal parasitism and the F-Z link separately, three
scenarios (the system without fungi, the system with fungal
parasitism but without trophic transfer from fungi to zoo-
plankton, and the system with both fungal parasitism and F-Z
link) should be compared even with the steady state model
approach.

2. Influence of the F-Z link on system stability: Although theoret-
ical metrics for steady-state ecosystem structure can predict
the complexity of the network and imply the stability of the
system (Morris et al., 2005; Ulanowicz et al., 2009; Grami
et al., 2011; Niquil et al., 2011), consequences of nonlinear-
ity in trophic interactions on system stability can be evaluated
more directly in a dynamical model. When the trophic inter-
action between host phytoplankton and parasitic fungi is
parameterized by a prey–predator type model with non-linear
functional response (e.g., Holling type II functional response)
(Miki et al., 2011) or more explicitly parameterized by a host-
parasite type model with SIV formulation (susceptible host,
infected host, and free-living vector; Gerla et al., 2013), food
web dynamics are predicted to be less stable than a model
with a simple Lotka-Volterra type prey–predator functional
response (Miki et al., 2011). In addition, although the network
analysis implied a stabilization of the system by fungi (Grami
et al., 2011; Niquil et al., 2011), the dynamical model clearly
demonstrated that the presence of the F-Z link (Figure S1,
Miki et al., 2011) or the presence of a host–fungus interaction
itself (Figure 3, Gerla et al., 2013) can destabilize the system,
especially in eutrophic conditions. The dependency of fun-
gal zoospore production rate on host physiology and activity
(e.g., nutrient uptake rate) is also proposed as the destabilizing
factor (Gerla et al., 2013).

3. Contribution of the mycoloop to material fluxes: the above con-
sideration on system stability implies that it may be risky to
assume that the roles of parasitic fungi in material fluxes esti-
mated by steady state model equates to their role under non-
steady state conditions. A non-steady state dynamic of the food
web may be caused internally by nonlinear trophic interactions
(as mentioned above) or externally forced by environmental
fluctuations. A steady-state model is able to provide a snapshot
estimate of fluxes in an ecosystem even under non-steady-
state conditions if the instantaneous mass accumulation rate
in each ecosystem component is not too large (quasi-steady
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FIGURE 2 | Indirect effects of the F-Z link and their feedback on

zooplankton. The net effects of the fungus–zooplankton link on
zooplankton biomass production depends on three conditions: the growth
efficiency of fungi on the host, the growth efficiency of zooplankton
consuming fungi, and the nutrient supply in the system. N , inorganic
nutrient; L, large phytoplankton; S, small phytoplankton; F , chytrid fungi;
and Z , zooplankton. (A) When these growth efficiencies are high, in

other words, when the metabolic loss of fungi or metabolic loss of
zooplankton is low, or the system productivity is high, the F-Z link
increases zooplankton biomass production, compared to the system with
fungal parasitism only. (B) When metabolic losses are high or the
system productivity is low, the F-Z link decreases zooplankton biomass
production compared to the system with fungal parasitism only. More
quantitative results are shown in Miki et al. (2011).

state assumption). However, the steady state assumption tends
to significantly overestimate (a factor of 2–10) the annual aver-
aged contribution of the F-Z link under seasonal fluctuations
(Miki et al., 2011; Figure 3). More specifically, the predicted
relative contribution of fungi to zooplankton production from
the dynamical model under a stable environment is 38.6%
when the growth efficiency of fungi on host phytoplankton is
assumed to be 75% and the total phosphorus is 100 μgPL−1

(Figure 3). This prediction is comparable to the estimate of
the contribution of fungal zoospores in the total diet of micro-
zooplankton in ologimesotrophic Lake Pavin (38%) (Grami
et al., 2011). However, an introduction of seasonality into the
dynamical model lowers the contribution of fungi to 19.9%.
Such an overestimate is a general feature in nonlinear systems.
When the trophic flux (F) is proportional to the abundance of
resources (R) and consumers (C): F = aRC where a is the con-

sumption coefficient, then the average flux
(

F(t)
)

is not equiv-

alent to the product of the averages R(t) and C(t). Instead, we

have F(t) = a
[

R(t) · C(t) + Cov (R(t),C(t))
]

, implying that

neglecting the impacts of asynchronous population dynamics
of resources and consumers (Cov(R,C) < 0) is the source of
the overestimation with a steady-state assumption.

Combination of steady state models and dynamical models are a
promising approach to greatly improve our understanding of the
roles of parasitic fungi.

FUTURE PERSPECTIVES
MOLECULAR TOOLS
Recent advances in molecular methods enable us to investigate the
species composition of microorganisms. Indeed, several meth-
ods, such as PCR-DGGE, clone libraries, FISH, and qPCR have
been applied to describe the species composition and biomass of
certain species of parasitic chytrids (Jobard et al., 2010; Lefèvre
et al., 2010; Kagami et al., 2012; Marano et al., 2012, Maier
et al., under revision). In addition, next generation sequencing
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FIGURE 3 | Comparison of the contribution of the mycoloop pathway

to zooplankton production under constant and seasonal

environments. The relative percent contribution of the mycoloop pathway
(large phytoplankton → parasitic fungi → zooplankton) to total zooplankton
biomass production under constant and seasonal environmental conditions
was calculated as the ratio of the F-Z link nutrient flux to zooplankton
compared to the total nutrient flux to zooplankton (nutrient flux from the F-Z
link plus nutrient flux from small phytoplankton) (see also Figure 2). The
ratios of the contribution of the mycoloop under constant environmental
conditions compared to that under seasonal environmental conditions was
calculated for concentrations of total phosphorus (TP) = 25.0, 50.0, 100,
150 μgP L−1 to be 10.3, 2.30, 1.94, 1.78. TP in the model ecosystem was
calculated by the average phosphorus supply I0 divided by the turnover rate
of the system (0.05/day). The daily fluctuation in the phosphorus supply I(t)
is given by I(t) = I0

[
1.0 + 0.5 sin (2πt/365)

]
for the seasonal environment;

the maximum deviation from average is ±50%. Modified from Miki et al.
(2011).

will be beneficial for the analysis of fungal community structures.
However, since the DNA database of aquatic fungi is scarce, espe-
cially for the parasitic fungi (chytrids), it is difficult to determine
species composition and function (e.g., parasitic or saprotrophic)
by analyzing environmental DNA alone. In addition, choosing
the right primer sets are essentially important when examining
the species composition by molecular tools (Wurzbacher et al.,
2010, Ishii et al., in review). Therefore, prior to applying advanced
molecular tools, we first need to build a robust database, especially
for the parasitic chytrids. Culturing, single cell PCR methods, and
whole genome sequencing will aid in having a better understand-
ing of the community structure and function of parasitic fungi
wide-ranging ecosystems.

OTHER POSSIBLE MYCOLOOPS
In addition to parasitic chytrids, saprotrophic chytrids may also
play important roles in aquatic food webs. For instance, pollen
deposition into lakes may not be utilized directly by zooplank-
ton, but can be decomposed/consumed by saprotrophic chytrids
(Masclaux et al., 2011, 2013). Grazing of zoospores released from
pollen may then function as another “mycoloop” (Figure 4).

Recently discovered fungi, the Cryptomycota, exhibit a simi-
lar life cycle to chytrids including a free-swimming stage, and are
also known to infect phytoplankton (Jones et al., 2011). In marine
environments, some Chytridiomycota or zoosporic fungal-like
protists such as Labyrinthulomycota are also known to infect
marine phytoplankton (Raghukumar, 2002; Gleason et al., 2011),
and may play important roles in marine food web dynamics
(Raghukumar, 2002). These results indicate the existence of

Pollen

Phytoplankton

Inedible 
organic materials

Mycoloop

Parasi�c chytrid

Saprotrophic chytrid

Chytrid on Pine pollen

Zooplankton

FIGURE 4 | Other possible mycoloops in freshwater and marine

environments. Saprotrophic chytrids may play important roles in aquatic
food webs, by decomposing inedible organic material such as pollens.
Zoospores released from pollen may be consumed by zooplankton,

functioning as another “mycoloop.” In addition to chytrids, other zoosporic
fungi or fungal-like protists, such as Cryptomycota and Labyrinthulomycota,
can infect phytoplankton or consume large inedible organic material, which
may be grazed by zooplankton in freshwater and marine environments.
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other possible mycoloops in freshwater and marine ecosystems
via the route of free-swimming zoospores of newly discovered
Chytridiomycota, Cryptomycota, or Labyrinthulomycota.
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