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INTRODUCTION
The last one-and-a half decades have made
it amply clear that the human microbiota
have a very significant role to play in
health and disease. The human body can
(or should) be better viewed as a complex
ecosystem inhabited by micro-organisms
that outnumber human cells 10 to 1 (Ley
et al., 2006). However, most research in
this field has been focused on the prokary-
otic (specifically, bacterial) component of
the microbiota. Sampling, in turn, is car-
ried out mostly from sites that are read-
ily accessible (Human Microbiome Project
Consortium, 2012). Such sampling might
not be genuinely representative of the situ-
ation in vivo, even for the bacteria under
study. The human alimentary tract is a
complex entity that exhibits extensive vari-
ation in biological characteristics such as
tissue/cell types and secretions, as well
as parameters such as temperature, pH,
oxygen levels and osmolarity along its
entire length. A proteomic study sampling
mucosal lavages at multiple colonic sites
indicated significant differences in protein
profiles between the proximal and distal
colon, which was supportive of the concept
of their functional and developmental dis-
tinctness (Li et al., 2011). The colonization
of the human infant by microbes, initially
during the process of birth, exhibits an
ecological succession of microbial species
over time, and plays a prominent role in
the maturation of the immune system as
well (reviewed in Costello et al., 2012).

The fungal members of the microbiota
are not very numerous compared to bacte-
ria. Large-scale metagenomic sequencing
of fecal samples of 124 individuals found
that only about 0.1% of genes detected
were of eukaryotic origin (Qin et al.,
2010). The most commonly encountered
genera constituting the fungal microbiota

or “mycobiome” (Huffnagle and Noverr,
2013) are Candida, Saccharomyces and
Cladosporium (Hoffmann et al., 2013).
The bacterial microbiota and a func-
tional immune system are thought to
keep the numbers of opportunistic fun-
gal pathogens, such as Candida spp., under
check in the absence of any perturba-
tions. However, information from studies
of polymicrobial diseases points to subtler
adjustments, dependent on environmen-
tal conditions and cross-kingdom signals
that eventually influence (positively and
negatively) modes and rates of growth
(reviewed in Peleg et al., 2010). The sens-
ing of, and responses to, biotic and abiotic
stimuli by fungi (as in other organisms)
involves multiple signaling pathways that
can interact to either augment or attenuate
one another, as will be discussed below.

OSMOREGULATION AND STRESS
RESPONSES IN SACCHAROMYCES
CEREVISIAE
S. cerevisiae, a well-studied fungus,
employs two strategies for responding
to stress, both involving extensive signal-
ing by MAP kinases (MAPK, alternatively
termed SAPK-stress activated protein
kinase). The first is stress-specific, e.g.,
involved in the response to pheromone,
spore wall formation and adapting to
hyperosmotic conditions etc. (Gustin
et al., 1998). The HOG (high osmoral-
ity glycerol) pathway that is activated in
response to hyperosmotic conditions leads
to the accumulation of compatible solutes
(glycerol being the most important) and
also results in the closure of the aquaglyc-
eroporin Fps1p, enabling retention of
glycerol. The HOG pathway functions
through two signaling branches. The SLN1
branch involves the two-component mem-
brane sensor protein Sln1p complexed

with Ypd1p and Ssk1p that, under
hyperosmotic conditions, is unable to
inactivate downstream MAPKKKs (func-
tionally redundant Ssk2p and Ssk22p)
by phosphorylation. This results in the
dephosphorylation of these kinases that
phosphorylate the MAPKK Pbs2p which,
in turn, phsophorylates the MAPK Hog1p.
Phosphorylated Hog1p moves into the
nucleus and interacts with transcription
factors such as Hot1p, Msn1p, Msn2p
etc. activating the transcription of, among
other genes, including those encoding
phosphatases (e.g., Ptp2p, Ptp3p) that
dephosphosphorylate Hog1p, causing
feedback inhibition, limiting the dura-
tion of Hog1p activity. The SHO1 branch
involves two functionally redundant
mucin-like transmembrane osmosen-
sors, Msb2p and Hkr1p, that recruit the
Pbs2p MAPKK directly to the cytoplas-
mic face of the cell membrane as part of a
macromolecular complex. Notably, SHO1
branch proteins are shared with other sig-
naling pathways, and it is activated when
hyperosmolarity occurs as a result of other
cellular responses (reviewed in Hohmann,
2002; Hohmann et al., 2007).

The second strategy for coping with
stress is the environmental stress response
(ESR) that enables adaptation to the long-
term effects of various stresses, in con-
trast to the more specific and short-term
response of other MAPK pathways. The
ESR was first described as an increased
expression of ∼300 genes and repression
of ∼600 genes in response to diverse envi-
ronmental conditions to which S. cere-
visiae was subjected (Gasch et al., 2000;
Causton et al., 2001). In both these stud-
ies, various stress conditions were tested
including temperature, hyper- and hypo-
osmotic shock, oxidative (H2O2) stress
etc. Induced genes included those involved
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in a wide variety of processes, including
carbohydrate metabolism, detoxification
of reactive oxygen species, cellular redox
reactions, cell wall modification, protein
folding and degradation, DNA damage
repair, fatty acid metabolism, metabo-
lite transport, vacuolar and mitochondrial
functions, autophagy, and intracellular
signaling (Gasch et al., 2000). Genes
encoding cytoplasmic ribosomal proteins,
tRNA synthases, proteins required for pro-
cessing rRNAs, and a subset of translation
initiation factors were repressed (Causton
et al., 2001).

The ESR provides a “cross-protective
effect” wherein S. cerevisiae subjected to
mild heat stress as the primary stress
becomes adapted to higher levels of heat
as well as oxidative (H2O2) stresses (Berry
et al., 2011). This is especially relevant
as stresses under natural conditions don’t
occur singly or sequentially, but simulta-
neously. It may seem at first sight that
the mild dosage of primary/initial stress
is irrelevant, as the ultimate adaptation to
the secondary stress(es) is achieved any-
way. However, Berry et al. (2011) demon-
strated that distinct subsets of genes were
activated due to primary and secondary
stresses. Earlier work indicated that the
cross-protective effect is not universal, but
specific to the primary/secondary stress
combination (Berry and Gasch, 2008). The
major transcription factors mediating the
ESR are Msn2p and Msn4p (Berry et al.,

2011). Msn2p and Msn4p (see below)
play specific roles depending on the stress
combination and are even regulated in a
condition-specific manner. Besides, there
are other transcription factors activated
during the ESR and subsequent “acquired
stress resistance,” like Hsf1p (heat stress),
Yap1p (oxidative stress), and Hot1p &
Sko1p (hyperosmotic stress), that can also
activate Msn2p/4p target genes (Berry and
Gasch, 2008).

Adding to the mechanistic complex-
ity of stress responses is recent evidence
that Hog1p induces transcription of a
long non-coding RNA whose presence
is required for chromosome remodeling
around the CDC28 gene encoding a cyclin-
dependent kinase and its subsequent
induction. This is accompanied by cell
cycle delay, and increased Cdc28p levels
ensure faster recovery following the stress
application (Nadal-Ribelles et al., 2014).
Osmoadapated S. cerevisiae exhibit HOG
activation upon shmooing in response to
pheromone (Baltanás et al., 2013). Hog1p
also imposes checkpoints on the mating
pathway if pheromone is sensed during
a period of hyperosmotic stress. It phos-
phorylates the protein kinase Rck2p that
inhibits translation of Fus3p (the MAPK
of mating pathway) by phosphorylating
EF2 (elongation factor 2). Ste50p, a shared
component of both the HOG and mating
pathways is phosphorylated (and inhib-
ited) by Hog1p (Nagiec and Dohlman,

2012). Thus, the osmoregulation response
is not elicited solely by hyperosmolarity
per se, but is also influenced by the spatio-
temporal modulation of cell-cycle events
involving stimuli impinging on other sig-
naling pathways.

THE STRESS RESPONSES AND ADAPTIVE
POTENTIAL OF CANDIDA SPP.
Candida spp. are dimorphic yeasts that
occur practically throughout the alimen-
tary tract, and C. albicans and C. glabrata
well-known opportunistic pathogens. C.
albicans can grow as a planktonic unicel-
lular organism (yeast) or as a filamen-
tous organism (hypha). The yeast form
is suitable for dissemination, while the
hyphal form is more adapted to coloniza-
tion and biofilm formation. Candida albi-
cans also exhibits parasexuality, in which
mating-competent (so-called “opaque”)
diploid strains mate to form tetraploids,
whose progeny later undergo chromo-
some losses to regenerate the diploid state
(Hull et al., 2000; Magee and Magee,
2000). More recent work has demon-
strated the existence of a viable and
stable haploid form generated by chro-
mosome losses implying that C. albicans
may not be an “obligate diploid” as orig-
inally thought (Hickman et al., 2013).
This increases the overall repertoire of
genetic diversity in the Candida popula-
tion, that could confer an adaptive advan-
tage on the organism. Incidentally, these

Table 1 | Proteins involved in osmoadaptation/stress responses as well as other phenotypes in pathogenic fungi.

Gene/Protein Function summary References

Hog1p Enhances virulence of Ca Alonso-Monge et al., 1999;
Zhang et al., 2009

Msn2p ESR-related transcription factor required for full virulence in entomopathogenic fungi Liu et al., 2013

Ste11p Shared MAPKKK in mating response and hyperosmotic stress response, implicated in Cg virulence Calcagno et al., 2005

Hog1p In Cn, it antagonizes the effect of Mpk1p (a MAPK) and calcineurin, which promote cell wall integrity
Overactivation of the HOG pathway by fludioxonil (antifungal) results in fludioxinol hypersensitivity
Inhibition of Hog1p in Cn is associated with increased ergosterol in the cell membrane, promoting
sensitivity to ergosterol-binding antifungals

Kojima et al., 2006;

Young-Sun Bahn et al.,
2012

Cta1p Catalase gene of Cg regulated by multiple stress-related transcription factors like Msn2p, Msn4p, Skn7p,
Yap1p

Cuéllar-Cruz et al., 2008

Ste12p Transcription factor induced by pheromone and nitrogen starvation in Sc, promotes virulence in Cg Calcagno et al., 2003

Slt2p The cell wall integrity pathway MAPK in Cg; downstream target Rlm1p (a transcription factor) is involved in
micafungin tolerance

Miyazaki et al., 2010

Chk1p Two component signal transduction protein in Ca; ortholog of oxidative stress sensors (Mak2p and Mak3p)
in S. pombe. Involved in quorum sensing (farnesol response)

Kruppa et al., 2004

Mln1p Msn2p-like protein enabling long-term resistance to weak acid in Ca Ramsdale et al., 2008

Sc, Saccharomyces cerevisiae; Ca, Candida albicans; Cg, Candida glabrata; Cn, Cryptococcus neoformans.
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polymorphic transitions caution us that
reliance on metagenomic and quantitative
approaches to study the gut microbiota
may not be adequately reflective of sig-
nificant, populations and sub-populations
that arise transiently by random and/or
adaptive mechanisms.

Orthologs of the various MAPK path-
way genes and also of the factors involved
in the ESR have been discovered in
Candida spp. C. albicans is thought to
have diverged from S. cerevisiae more
than 200 million years ago (Kurtzman
and Piškur, 2006) The C. albicans ESR
(CaESR) is not as extensive in genetic
terms as in S. cerevisiae. Only a small
number of genes are involved in CaESR
(∼24 upregulated genes and ∼37 down-
regulated genes) (Enjalbert et al., 2006;
Gasch, 2007). This suggests the absence
of a core environmental response/general
stress response in C. albicans (Enjalbert
et al., 2003). Later studies confirmed
that CaMsn4p only weakly complements
the inability of an msn2�msn4� double
mutant in S. cerevisiae to activate a STRE-
lacZ reporter (STRE-Stress response
element) while CaMln1p (Candida albi-
cans Msn2p/Msn4p-like protein) does not
complement the defect at all (Nicholls
et al., 2004). The transcription factors
finally activated in the CaESR have not
been conclusively identified. Therefore a
complete picture of activation and reg-
ulation of ESR in C. albicans is as yet
unavailable. However, the number of genes
activated/repressed during the CaESR
were more in response to oxidative stress
(5mM H2O2) than in response to osmotic
stress (0.3 M NaCl) and heavy metal stress
(0.5 mM CdSO4) (Enjalbert et al., 2006).
Other studies have reported that compo-
nents of stress signaling pathways may be
important in virulence, drug tolerance,
or quorum sensing, among other phe-
notypes. Interestingly, Msn2p homologs
in entomopathogenic fungi Beauveria
bassiana and Metarhizium robertsii aug-
ment virulence (Zhang et al., 2009; Liu
et al., 2013). Table 1 lists some com-
ponents of stress signaling known to
influence other phenotypes in pathogenic
fungi.

CONCLUSIONS
In contrast to bacteria, a beneficial role for
fungi in microbiota-human interactions

has not emerged, though their role as
opportunistic pathogens (cf. ecologically
invasive species) has been extensively
studied. The major fungal probiotic in
use today, Saccharomyces cerevisiae var.
boulardii (Sb), that is not indigenous to
the human gut, provides some exam-
ples of potential benefits of fungal pro-
teins for the host (Czerucka et al., 1994;
Dahan et al., 2003), and can help in the
maintenance and/or restoration of host-
microbiota homeostasis.

The strategies employed by the mem-
bers of the mycobiome to adapt to chang-
ing conditions along the length of the gut
and host immune responses may depend
significantly on adapting to continuously
changing environmental parameters that
could also serve as indicators for spatial
location, microbiota composition and the
physiological state of the host. Signaling
pathways that respond to different stimuli
are not watertight modules, but can inter-
act in unforeseen ways to produce an inte-
grated behavioral response (Baltanás et al.,
2013). Thus, components of the osmoreg-
ulatory pathway may also participate in
the process of mounting a coordinated
response to environmental stiumuli.
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