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Honey has a complex chemistry, and its broad-spectrum antimicrobial activity varies
with floral source, climate, and harvesting conditions. Methylglyoxal was identified as
the dominant antibacterial component of manuka honey. Although it has been known
that methylglyoxal has antibacterial activity against gram-positive bacteria, including
methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, there
is not much information describing its activity against gram-negative bacteria. In this
study, we report the effect of methylglyoxal against multidrug-resistant Pseudomonas
aeruginosa (MDRP) using 53 clinically isolated strains. We also assessed the effect of
deleting the five multidrug efflux systems in P aeruginosa, as well as the efflux systems in
Escherichia coli and Salmonella enterica serovar Typhimurium, on MICs of methylglyoxal.
Our results indicate that methylglyoxal inhibits the growth of MDRP at concentrations of
128-512 wg/ml (1.7-7.1 mM) and is not recognized by drug efflux systems.
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INTRODUCTION

Pseudomonas aeruginosa is endemic among critically ill patients,
and multidrug-resistant strains are increasingly being isolated in
intensive care units (Ortega et al., 2004). Because P. aeruginosa
is a virulent organism susceptible to a limited number of antibi-
otic agents, infections caused by this organism are difficult to
cure and often require combination therapy. Multidrug-resistant
P. aeruginosa (MDRP) has been defined as P. aeruginosa resistant
to imipenem, amikacin, and ciprofloxacin (Sekiguchi et al., 2007).
The increasing resistance of P. aeruginosa is a growing threat to the
clinical management of such infections (Ortega et al., 2004).

In bacteria, resistance to bactericidal agents is often asso-
ciated with multidrug efflux systems, which decrease cellular
drug accumulation (Nikaido, 1996). In gram-negative bacteria,
systems belonging to the resistance/nodulation/division (RND)
family are particularly effective in generating resistance because
they form a tripartite complex with the periplasmic proteins
of the membrane fusion protein family and an outer mem-
brane channel, ensuring that drugs are pumped out directly to
the external medium (Nikaido and Pages, 2012). P. aeruginosa
expresses several RND-type multidrug efflux systems, including
MexAB-OprM, MexCD-Opr], MexEF-OprN, and MexXY, which
are significant determinants of multidrug resistance in labora-
tory and clinical isolates (Poole, 2004; Piddock, 2006; Lister et al.,
2009). These systems are three-component systems comprising
antiporters of the RND family driven by proton motive force
(MexB, MexD, MexF, and MexY), outer membrane channels
(OprM, Opr], and OprN), and periplasmic membrane fusion
proteins (MexA, MexC, MexF, and MexX). These pumps func-
tion in a manner similar to AcrAB-TolC, which is the best-studied
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RND-type multidrug pump of Escherichia coli (Nakashima et al.,
2011; Nikaido, 2011). It is necessary to develop drugs that are not
recognized by the efflux pumps to prevent multidrug resistance
modulated by drug efflux systems.

Honey has several antibacterial features that are distinct from
classical antibiotics, including high osmolarity, low pH, and gen-
eration of hydrogen peroxide by the bee-derived enzyme glucose
oxidase (Allen et al., 1991). Antibacterial phenolic components
have been identified in honey (Weston et al, 1999), and an
antimicrobial peptide has been discovered in a Dutch medical-
grade honey produced from an undisclosed floral source culti-
vated in greenhouses (Kwakman et al., 2010). Manuka honey is
derived from nectar that has been collected by honey bees (Apis
mellifera) foraging on a shrub known as manuka (Leptospermum
scoparium) that is indigenous to New Zealand. Manuka honey is
broad in spectrum, able to inhibit a diverse range of bacterial and
yeast pathogens, and equally effective against multidrug-resistant
bacteria (Blair et al., 2009; Henriques et al., 2010; Kwakman
et al., 2011). It is used in modern wound-care formulations and
has been shown to eradicate methicillin-resistant Staphylococcus
aureus (MRSA) from wounds (Natarajan et al., 2001; Blaser
et al., 2007; Gethin and Cowman, 2008; Visavadia et al., 2008).
Clinically isolated strains of methicillin-susceptible and -resistant
staphylococci were shown to be equally susceptible to manuka
honey in vitro, with minimum inhibitory concentrations (MICs)
reported to be <3% (v/v) [equivalent to 41,000 mg/L or 4.1%
(w/v)] (Cooper et al., 1999, 2002b). Methylglyoxal was identified
as the dominant active antibacterial component of manuka honey
(Mavric et al., 2008; Adams et al., 2009b). Active manuka honey
contains high levels of the reactive dicarbonyl methylglyoxal
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(Mavric et al., 2008; Adams et al., 2009a), which is formed
nonenzymatically from nectar-derived dihydroxyacetone during
ripening. Methylglyoxal was also found to be produced from
dihydrocyacetone phosphate in E. coli, initiating a bypass of
the glycolytic pathway (Cooper and Anderson, 1970). It was
suggested that methylglyoxal inhibits protein synthesis by reacting
with guanine residues in RNA and its precursors. It also inhibits
DNA synthesis by reacting with guanine residues in DNA and its
precursors (Krymkiewicz et al., 1971).

It has been known that methylglyoxal has antibacterial
activity against gram-positive bacteria, including MRSA and
vancomycin-resistant Enterococcus. It was also reported that
methylglyoxal containing manuka honey is biocidal against
S. aureus strains at a concentration of 33-66% w/v (equiva-
lent methylglyoxal concentration, 260-530 pug/ml) (Jervis-Bardy
et al,, 2011). However, there is not much information describing
methylglyoxal activity against gram-negative bacteria. Although it
was previously reported that manuka honey is bactericidal against
P. aeruginosa (Roberts et al., 2012), the effect of methylglyoxal on
MDRP has been unknown. In this study, we report the antibacte-
rial effect of methylglyoxal on MDRP using 53 clinically isolated
strains. We also demonstrate that methylglyoxal is not recognized
by drug efflux systems in P. aeruginosa, Salmonella enterica, and
E. coli.

MATERIALS AND METHODS

BACTERIAL STRAINS AND GROWTH CONDITIONS

The bacterial strains used in this study are listed in Table 1. We
used P. aeruginosa PAO1 (Stover et al., 2000), S. enterica serovar
Typhimurium ATCC14028s (Fields et al,, 1986), and E. coli
MG1655 (Blattner et al., 1997) as wild-type strains. All clinically
isolated MDRP strains, which showed resistance to imipenem,
amikacin, and ciprofloxacin, were kindly provided by Biomedical
Laboratories, Inc. (Tokyo, Japan).

CONSTRUCTION OF GENE DELETION MUTANTS

P. aeruginosa PMX52 (Sekiya et al., 2003), a PAO1-derived strain
lacking the genes encoding the MexAB-OprM, MexCD-Opr],
MexEF-OprN, MexXY, and MexHI-OpmD drug efflux systems,
was kindly provided by Tomofusa Tsuchiya of Ritsumeikan
University, Japan. S. enterica serovar Typhimurium strains
NKS196 (AacrAB acrEF acrD mdtABC mdsABC emrAB mdfA
mditK macAB) and NKS233 (AtolC) were constructed as
described previously (Horiyama et al, 2011; Yamasaki et al,
2011).

To construct E. coli strains NKE1329 (AacrB acrD
mdtABC mdtEF acrEF) and NKE95 (AtolC), we performed
gene disruption wusing procedures described previously
(Datsenko and Wanner, 2000). The following oligonucleotide
primers were used for the construction of the mutants: acrB-P1
(AAAAAGGCCGCTTACGCGGCCTTAGTGATTACACGTTGTA
GTGTAGGCTGGAGCTGCTTC); acrB-P2 (GAACAGTCCAAG
TCTTAACTTAAACAGGAGCCGTTAAGACCATATGAATATCCT
CCTTAG); acrD-P1 (TGAAAAAGGCGACACATTGGCATGTCG
CCTTTTTTATTGCGTGTAGGCTGGAGCTGCTTC); acrD-P2
(AAGCCTACAACGATACGCAGAAACACGAGGTCCTCTTTTA
CATATGAATATCCTCCTTAG); mdtA-P1 (ATCATTCCGCGAA

ACGTTTCAGGAAGAGAAACTCTTAACGGTGTAGGCTGGAG

CTGCTTC); mdtC-P2 (GAGATACACCACCGGCGTGGTATACA
GCGTAAGGAGCTGGCATATGAATATCCTCCTTAG); mdtE-P1
(TTAAAGAACCGTTATTTCTCAAGAATTTTCAGGGACTAAAG
TGTAGGCTGGAGCTGCTTC); mdtF-P2 (AGGCTGAACCTTC
ATGTTCAACCTTACTCTCATTTACACGCATATGAATATCCTC

CTTAG); acrE-P1 (TTGGGTAAATAACGCGCTTTTGGTTTTTT
GAGGAATAGTAGTGTAGGCTGGAGCTGCTTC); acrF-P2 (AA
ATAATAAAGGCACCCGAAAGCGCCTTTATGTTTCTGATCAT

ATGAATATCCTCCTTAG); tolC-P1 (ACTGGTGCCGGGCTATC
AGGCGCATAACCATCAGCAATAGGTGTAGGCTGGAGCTGC

TTC); and t0lC-P2 (TTACAGTTTGATCGCGCTAAATACTGCTT
CACCACAAGGACATATGAATATCCTCCTTAG). The chloram-
phenicol resistance gene cat or the kanamycin resistance gene
aph, flanked by Flp recognition sites, was amplified by PCR using
the primers listed above. The resulting PCR products were used
to transform E. coli MG1655, which harbors plasmid pKD46,
expressing Red recombinase. The chromosomal structures of

Table 1 | Bacterial strains used in this study.

Strain Characteristics Source or references

MDRPT1, 2, MDRP strains, clinically Biomedical Laboratories,

4,5,78,9, isolated Inc.

10, 12, 13,

14, 19, 20,

21, 24, 25,

29, 30, 31,

32, 33, 38,

39, 41, 42,

44, 45, 486,

50, 57 60,

62, 63, 67,

71,72, 74,

75, 83, 86,

87 88, 92,

93, 94, 95,

96, 98, 100,

101, 103,

105, 106

PAO1 Pseudomonas aeruginosa Stover et al., 2000
wild-type

PMX52 AmexAB oprM mexCD oprJ Sekiya et al., 2003
mexEF oprN mexXY mexH|
opmD, PAO1 derivative

MG1655 Escherichia coli wild-type Blattner et al., 1997

NKE1329 AacrB acrD mdtABC mdtEF This study
acrEF, MG1655 derivative

NKE95 AtolC, MG1655 derivative This study

ATCC14028s  Salmonella enterica serovar Fields et al., 1986
Typhimurium wild-type

NKS196 AacrAB acrEF acrD mdtABC Horiyama et al., 2011
mdsABC emrAB mdfA mdtK
macAB, ATCC14028s
derivative

NKS233 AtolC, ATCC14028s Yamasaki et al., 2011
derivative

MDRR, multidrug-resistant Pseudomonas aeruginosa.
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the mutated loci were verified by PCR; cat and aph were further
eliminated using the plasmid pCP20, as described previously
(Datsenko and Wanner, 2000). To construct the NKE1329 strain,
the deletions were transferred to strains by P22 transduction, as
described previously Davis et al. (1980).

Table 2 | Susceptibility of MDRP strains to antimicrobial compounds.

MIC (n.g/ml)
Strain MGO IPM AMK CPFX
MDRP1, 31, 75, 100 512 128 1024 64
MDRP2 512 32 128 32
MDRP4 256 128 1024 64
MDRP5 256 128 128 32
MDRP7 512 512 512 64
MDRPS 512 256 512 64
MDRP9, 19, 86, 93 512 256 1024 64
MDRP10, 29 512 256 1024 1024
MDRP12 512 16 256 64
MDRP13 512 32 256 128
MDRP14 128 512 1024 2
MDRP20 512 256 1024 512
MDRP21 512 16 64 32
MDRP24, 88 512 128 512 64
MDRP25, 46 512 256 512 128
MDRP30 512 256 2048 64
MDRP31, 75, 100 512 128 1024 64
MDRP32 512 256 512 1024
MDRP33 512 64 128 16
MDRP38 512 32 128 16
MDRP39 512 32 256 32
MDRP41 256 128 512 64
MDRP42, 95 512 256 256 64
MDRP44 512 16 128 64
MDRP45 512 512 256 128
MDRP50 256 256 1024 512
MDRP57 512 256 2048 128
MDRP60, 98 512 32 128 64
MDRP62 512 16 256 256
MDRP63 512 64 128 512
MDRP67 512 32 512 64
MDRP71, 103 512 256 128 512
MDRP72 512 256 512 512
MDRP74 512 512 1024 64
MDRP83 512 512 256 16
MDRP87 512 128 512 128
MDRP92, 94 512 256 512 32
MDRP96 512 256 512 128
MDRP101 512 256 256 32
MDRP105 512 32 128 128
MDRP106 512 64 512 64

MGO, methylglyoxal; IPM, imipenem; AMK, amikacin; CPFX, ciprofloxacin; MIC,
minimum inhibitory concentration, MDRFP multidrug-resistant Pseudomonas
aeruginosa. MIC determinations were repeated at least three times.

DETERMINATION OF MICs OF ANTIMICROBIAL COMPOUNDS
Antibacterial activities were determined on Muller Hinton II
agar (Becton Dickinson & Co., Franklin Lakes, NJ, USA) plates
containing methylglyoxal (32-2048 pg/ml), imipenem (0.0625—
2048 pg/ml), amikacin (0.125-4096 pwg/ml), or ciprofloxacin
(0.0078-2048 pg/ml) (Sigma, St. Louis, MO, USA). Agar plates
were prepared using the two-fold agar dilution technique.
Bacteria were grown at 37°C overnight and then tested at a final
inoculum volume of 1 x 10° cfu/pl using a multipoint inocu-
lator (Sakuma Seisakusyo, Tokyo, Japan). The inoculated agar
plates were examined after incubation at 37°C for 16h. MIC
was the lowest concentration of a compound that inhibited cell
growth.

MEASUREMENT OF BACTERIAL GROWTH IN THE PRESENCE OF
METHYLGLYOXAL

E. coli (MG1655, NKE1329, and NKE95) and S. enterica
(ATCC14028s, NKS196, and NKS233) strains were grown in
Luria—Bertani broth (Becton Dickinson & Co., Franklin Lakes,
NJ, USA), and P. aeruginosa (PAO1 and PMX52) strains were
grown in Muller Hinton II (MHII) broth (Becton Dickinson
& Co., Franklin Lakes, NJ, USA). Bacterial cells were cul-
tured overnight at 37°C, and then 100wl of cell cultures
were diluted in 5ml of the same medium. The diluted bac-
terial cells were incubated at 37°C until ODggyy reached 0.5.
Then, the bacterial cells were diluted in the same medium to
an ODggp of 0.05. This diluted bacterial cells were incubated
in NUNC Edge 96-well plates (Thermo scientific, MA, USA)
with shaking at 37°C for 7h. Bacterial growth was monitored
using an Infinite M200 Pro plate reader (Tecan, Minnedorf,
Switzerland).

Table 3 | Susceptibility of drug efflux mutants to antimicrobial
compounds.

MIC (ng/ml)
Strain MGO IPM  AMK CPFX
PAO1 (R aeruginosa wild-type) 512 2 16 0.25
PMX52 (AmexAB oprM mexCD 512 2 2 0.016
oprd mexEF oprN mexXY mexH|
opmD)
MG1655 (E. coli wild-type) 256 0.25 1 0.031
NKE1329 (AacrB acrD mdtABC 256 0.5 1 <0.0078
mdtEF acrEF)
NKE95 (A tolC) 256 0.5 0.5 <0.0078
ATCC14028s (S. enterica 256 0.25 4 0.031
wild-type)
NKS196 (AacrAB acrEF acrD 256 0.5 2 <0.0078
mdtABC mdsABC emrAB mdfA
mdtK macAB)
NKS233 (AtolC) 256 0.5 2 <0.0078

MGO, methylglyoxal; IPM, imipenem; AMK, amikacin,; and CPFX, ciprofloxacin;
MIC, MDRFE  multidrug-resistant
Pseudomonas aeruginosa. MIC determinations were repeated at least

minimum  inhibitory  concentration;

three times.
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FIGURE 1 | Effects of methylglyoxal on the growth of E. coli, S. enterica, and P aeruginosa. Growth of E. coli (MG1655, NKE1329, and NKE95), S. enterica
(ATCC14028s, NKS196, and NKS233), and P aeruginosa (PAO1 and PMX52) strains were measured in liquid medium with or without methylglyoxal.

RESULTS

MICs OF IMIPENEM, AMIKACIN, OR CIPROFLOXACIN FOR CLINICALLY

ISOLATED

MDRP has been defined as P. aeruginosa resistant to imipenem
(MIC, >16 pg/ml), amikacin (>32ug/ml), and ciprofloxacin

AND DISCUSSION

MDRP

determined that all 53 clinical isolates were MDRP (Table 2).

The highest MIC of imipenem for strains MDRP7, 14, 45,

74, and 83 was 512pg/ml. The highest MIC of amikacin

for strains MDRP30 and 57 was 2048 ug/ml. The highest
MIC of ciprofloxacin for strains MDRP10, 29, and 32 was

(=4 ng/ml) (Sekiguchi et al., 2007). Using this criterion, we

1024 pg/ml
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SUSCEPTIBILITIES OF MDRP STRAINS TO METHYLGLYOXAL

To evaluate the antibacterial activity of methylglyoxal against
clinically isolated MDRP strains, we determined MICs using
the 53 confirmed MDRP strains. The MIC of methylglyoxal for
most of the MDRP strains was 512 ug/ml (Table 2), whereas
the susceptibilities of these strains to imipenem, amikacin, and
ciprofloxacin were different. The methylglyoxal concentration at
which MDRP14 was susceptible was 128 jLg/ml and that at which
MDRP4, 5, 41, and 50 were susceptible was 256 pLg/ml. We also
tested the methylglyoxal susceptibility of the drug-sensitive wild-
type strain P. aeruginosa PAO1. The MIC of methylglyoxal for
PAO1 was 512 pg/ml (Table 3), which was the same that for most
of the MDRP strains.

EFFECT OF DRUG EFFLUX SYSTEMS IN P. aeruginosa, E. coli, AND

S. enterica TO METHYLGLYOXAL

Multidrug efflux pumps in P. aeruginosa, such as MexAB-OprM,
MexCD-Opr], MexEF-OprN, and MexXY, have been shown to
be significant determinants of multidrug resistance in laboratory
and clinical isolates (Poole, 2004; Piddock, 2006; Lister et al.,
2009). The existence of an additional multidrug efflux system,
MexHI-OpmD, was also previously reported (Sekiya et al., 2003)
in this organism. Because multidrug efflux systems display the
ability to transport various structurally unrelated drugs, we inves-
tigated whether methylglyoxal is exported by these drug efflux
systems in P. aeruginosa. For this purpose, we measured MIC of
methylglyoxal for the wild-type P. aeruginosa strain PAO1 and
its efflux-deficient mutant strain PMX52 (AmexAB oprM mexCD
opr] mexEF oprN mexXY mexHI opmD). Although PMX52 was
more susceptible to amikacin and ciprofloxacin than PAO1, MIC
of methylglyoxal for these strains was the same. This suggests
that methylglyoxal is not recognized by drug efflux systems in
P. aeruginosa. To confirm whether same phenomenon could be
observed in other gram-negative bacteria, we determined MICs
of methylglyoxal for the efflux-deficient mutants of E. coli and
S. enterica serovar Typhimurium. There are five RND-type drug
efflux systems (AcrAB, AcrD, MdtABC, MdtEF, and AcrEF) in
E. coli, and all of them require the TolC outer membrane chan-
nel for their function (Nishino et al., 2003). To investigate the
defect of these drug efflux systems in E. coli, we measured MICs
of methylglyoxal for MG1655 (wild-type), NKE1329 (AacrB acrD
mdtABC mdtEF acrEF), and NKE95 (AtolC) strains. The sus-
ceptibility of NKE1329 and NKE95 to methylglyoxal was same
as that of the wild-type strain, although they were more sus-
ceptible to ciprofloxacin than the wild-type strain. S. enterica
serovar Typhimurium harbors at least nine drug efflux systems
belonging to RND, multidrug and toxic compound extrusion,
and ATP-binding cassette (ABC) superfamilies (Nishino et al.,
2006). Seven of them (AcrAB, AcrEE, AcrD, MdtABC, MdsAbC,
EmrAB, and MacAB) require TolC for their function (Horiyama
et al., 2010). For S. enterica, we used ATCC14028s (wild-type),
NKS196 (AacrAB acrEF acrD mdtABC mdsABC emrAB mdfA
mdtK macAB), and NKS233 (A#olC) strains. Although NKS196
and NKS233 were more sensitive to ciprofloxacin than the wild-
type strain ATCC14028s, MICs of methylglyoxal for ATCC14028s,
NKS196, and NKS233 were the same. In addition to MIC deter-
mination using agar plates, we tested the effect of methylglyoxal

on bacterial growth in liquid medium. The growth of E. coli
(MG1655, NKE1329, and NKE9) and Salmonella (ATCC14028s,
NKS196, and NKS233) strains was inhibited by methylglyoxal at
a concentration of 256 ig/ml, and the growth of P. aeruginosa
(PAO1 and PMX52) strains was inhibited at 512 pg/ml, which
is consistent with MICs determined (Figure 1). These data sug-
gest that methylglyoxal is not recognized by drug efflux systems
in E. coli or S. enterica.

In this study, we showed that methylglyoxal equally inhibits
drug-susceptible P. aeruginosa and MDRP at concentrations of
128-512 pg/ml (1.7-7.1 mM). Methylglyoxal is a key antimi-
crobial component of manuka honey, and manuka honey has
previously been suggested as a topical treatment option for burn
patients infected with P. aeruginosa (Cooper et al., 2002a). Jenkins
and Cooper reported that MICs of manuka honey for MRSA and
methicillin-resistant P. aeruginosa were 6-7% w/v (Jenkins and
Cooper, 2012). This corresponds to 50-100 pg/ml methylglyoxal
when manuka honey contains 7% of methylglyoxal. Cooper et al.
also reported that MIC for E. coli is 16% w/v (Cooper et al., 2010),
which corresponds to approximately 200 jLg/ml methylglyoxal.
It was previously reported that methylglyoxal is the dominant
antibacterial constituent of manuka honey and that MIC of
methylglyoxal for E. coli and S. aureus, determined using the agar
well diffusion assay, is 1.1 mM (79.3 pg/ml) (Mavric et al., 2008).
Our data showed that methylglyoxal itself inhibits the growth of
MDREP strains at high concentrations, suggesting that methylgly-
oxal activity might be enhanced when in honey solution. Further
research is required to demonstrate whether methylglyoxal and
manuka honey exert their antibacterial effects through a common
mechanism. We also showed that methylglyoxal is not recognized
by drug efflux systems in P. aeruginosa, E. coli, and S. enterica.
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