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Mycorrhizal associations are ubiquitous and form a substantial component of the microbial
biomass in forest ecosystems and fluxes of C to these belowground organisms account
for a substantial portion of carbon assimilated by forest vegetation. Climate change has
been predicted to alter belowground plant-allocated C which may cause compositional
shifts in soil microbial communities, and it has been hypothesized that this community
change will influence C mitigation in forest ecosystems. Some 10,000 species of
ectomycorrhizal fungi are currently recognized, some of which are host specific and
will only associate with a single tree species, for example, Suillus grevillei with larch.
Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly
the presence and extent of emanating hyphae, can affect the amount of plant C allocated
to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C
in forests, but also differences in the longevity of these diverse structures may have
important consequences for C sequestration in soil. Mycorrhizal growth form has been
used to group fungi into distinctive functional groups that vary qualitatively and spatially
in their foraging and nutrient acquiring potential. Through new genomic techniques we
are beginning to understand the mechanisms involved in the specificity and selection
of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal
associations. In this review we examine evidence for tree species- mycorrhizal specificity,
and the mechanisms involved (e.g., signal compounds). We also explore what is known
about the effects of these associations and interactions with other soil organisms
on the quality and quantity of C flow into the mycorrhizosphere (the area under the
influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity
of the mycorrhizosphere biome in forests and its potential to sequester substantial C
belowground highlights the vital importance of increasing our knowledge of the dynamics
of the different mycorrhizal functional groups in diverse forests.

Keywords: mycorrhizosphere, root exudates, plant-microbe interactions, LMWOA, signaling, carbon cycling,
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INTRODUCTION
Soil organic matter (SOM) is the largest carbon (C) pool in ter-
restrial ecosystems (Falkowski et al., 2000; Fontaine et al., 2003),
greater than terrestrial biomass C and atmospheric C combined
(Jobbágy and Jackson, 2000). Carbon enters the SOM pool via
litter (leaves, coarse and fine roots), brash (branches and coarse
woody debris) and root exudates. The proportion of recently
photosynthesized C allocated to leaves, storage, metabolism and
root exudates has important consequences for soil C storage and
varies depending on the environment, plant type, age of the plant,
microbial symbionts and nutrient availability (Litton et al., 2007;
Epron et al., 2012). Belowground C allocation is notoriously diffi-
cult to measure and varies depending on the spatial heterogeneity
of belowground structures, the assemblage of microorganisms
in the rhizosphere and environmental conditions (Subke et al.,
2009; Kuzyakov and Gavrichkova, 2010; Mencuccini and Holtta,
2010; Warren et al., 2012). Recent studies have challenged our

understanding of the mechanisms of C sequestration in soil.
Clemmensen et al. (2013) showed that 50–70% of C stored in
soil is derived from roots or root-associated microorganisms and
that humus accumulation in boreal forests is regulated mainly
by C allocation to roots and associated mycelium rather than
decomposition of litter by saprophytes. Consequently, studies are
beginning to focus on quantifying not only C allocation below-
ground, but also the spatial and temporal distribution of this C
and how it is influenced by root-associated mycorrhizae (Litton
and Giardina, 2008; Chapin et al., 2009; Warren et al., 2012).

Ninety percent of vascular plants form symbiotic relationships
with mycorrhizal fungi (Wang and Qui, 2006; Smith and Read,
2008). Mycorrhizae can be generalized into two groups, endomyc-
orrhizae, where hyphae penetrate root cells, and ectomycorrhizae,
which do not penetrate. There are several types of endomycor-
rhizae including ericoid, arbutoid, monotropoid, orchid and, by
far the most prevalent, arbuscular (occurring in approximately
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85% of plant species) (Smith and Read, 2008). Arbuscular
mycorrhizae (AM) are generally Glomeromycota, and form
vesicles or arbuscules after invaginating the cell membranes of
root cells. Ectomycorrhizae (ECM) are typically Basidiomycetes,
Ascomycetes and Zygomycetes, occuring in 10% of plant species
(mostly trees and woody plants). Ectomycorrhizae create a hyphal
mantle covering the root tip and form a Hartig net within the
root cortex, surrounding the root cells. Although saprotrophic
fungi and bacteria are the primary decomposers in the soil, plant
acquisition of released nutrients, such as N and P, is achieved
through their symbiotic relationships with mycorrhizae (Read
and Perez-Moreno, 2003; Lindahl et al., 2007; Talbot et al., 2008).

Mycorrhizae are involved in a number of important soil pro-
cesses including: weathering of mineral nutrients (Landeweert
et al., 2001; Finlay and Rosling, 2006; Wallander, 2006), C cycling,
mediating plant responses to stress (Finlay, 2008), and interacting
with soil bacteria (both negatively e.g., pathogens and positively
e.g., mycorrhization helper bacteria) (Johansson et al., 2004;
Frey-Klett et al., 2007). Ectomycorrhizae have broad enzymatic
capabilities; they can decompose labile and recalcitrant SOM, and
some can mineralize organic N (Chalot and Brun, 1998). This
allows the mycorrhizae to transfer large amounts of N directly to
their host plants (Hobbie and Hobbie, 2006). Arbuscular myc-
orrhizal fungal enzymatic capabilities are not thought to be as
extensive as ECM; AM can only transfer small amounts of N
to their hosts when soil-N levels are high (Tobar et al., 1994;
Hodge et al., 2000; Govindarajulu et al., 2005; Reynolds et al.,

2005). Arbuscular mycorrhizae mainly access inorganic N sources
(Fellbaum et al., 2012), though organic N uptake by AM has been
demonstrated in boreal forests (Whiteside et al., 2012). However,
AM can transfer large amounts of P to their plant hosts (Smith
and Read, 2008), either by hydrolysation of organic P from hyphal
tips and subsequent transfer to the tree via arbuscules, or by
uptake, conversion and transport of inorganic phosphorus along
hyphae. Although some plant species can form symbiotic rela-
tionships with both AM and ECM, the dominance or presence of
one over the other will alter tree-nutrient availability.

There are 10,000 ECM fungal species that are known to be
associated with as many as 8,000 different plant species (Taylor
and Alexander, 2005). Tree species select mycorrhizae and free-
living microorganisms through exudation of distinct chemical
signals into the rhizosphere (the area surrounding the root that is
directly influenced by root exudates, Figure 1) (Pires et al., 2012;
Shi et al., 2012). Specific exudates will trigger the expression of
mycorrhization genes, which are associated with the initiation of
hyphal growth toward the plant root rhizosphere (Martin et al.,
2007; Podila et al., 2009). In addition, there is increasing evi-
dence that tree-species-rhizosphere community differences are
the result of the trees “selecting” for specific microbes through
root exudates (Prescott and Grayston, 2013). Plants release sev-
eral types of root exudates including: mucilage that maintains
a constant moisture environment, metal chelators that mobi-
lize iron and zinc, and various forms of C comprising of car-
bohydrates, amino acids, low-molecular-weight aliphatic- and

FIGURE 1 | Schematic view of root-mycorrhizal zones of influence and

the various mycorrhizal growth forms. Rhizoplane describes the area
adjacent to the root where the soil particles adhere. The Rhizosphere is the
area of soil around the root that is influenced by root-exuded labile C. The

hyphosphere is the area of soil around mycorrhizal hyphae that is influenced
by hyphal-exuded labile carbon and enzyme production. The
mycorrhizosphere is the area of soil influenced by root and mycorrhizal
communities combined.
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aromatic-acids, fatty acids, enzymes and hormones (Grayston
et al., 1997; Table 1). The composition and quantity of root exu-
dates will vary depending on tree species (Tuason and Arocena,
2009), and will also be modified within a given tree species
depending on which mycorrhizal species colonize the tree roots
(van Hees et al., 2005). Different ECM can increase root exu-
dation of organic acid (van Hees et al., 2003, 2005; Johansson
et al., 2009) and can change organic acid composition compared
to non-mycorrhizal trees (Klugh and Cumming, 2003; van Hees
et al., 2005). The variation in C allocated to ECM- and AM-roots,
and subsequently ECM and AM root exudates is due, in part, to
hyphal exudation from the mycorrhizae and mycorrhizal mor-
phology. These hyphal exudates create an area of greater microbial
biomass and activity, termed the mycorrhizosphere (area sur-
rounding the mycorrhizal root tip) or hyphosphere (Figure 1)
(Jones et al., 2004; Frey-Klett et al., 2007; Finlay, 2008; Nazir et al.,
2010). Although bacteria and archaea are omnipresent in the rhi-
zosphere and mycorrhizosphere, their role in ecosystem processes
is only beginning to be understood.

This review focuses on describing host-specificity of soil
microorganisms and fauna in the mycorrhizosphere of trees,
the signals involved in establishing these interactions, and their
impact on soil C flow and sequestration. We concentrate on inter-
actions within the mycorrhizosphere, as this is the active site of
root exudation, nutrient cycling, and plant nutrient uptake. The
spatial enormity of the mycorrhizosphere biome in forests hints at
its potential to sequester substantial amounts of C belowground.
An understanding of the controls on C allocation belowground,
and the movement of that C throughout the soil environment is a
vital knowledge gap.

THE MYCORRHIZOSPHERE BIOME
TREE-MYCORRHIZAL SPECIFICITY
Many temperate forest tree species have ECM associations
(including: pine, spruce, larch, hemlock, true firs, Douglas-fir,
aspen, birch); some species have AM associations (e.g., cedar,
maple, ash) and some have both (e.g., alder, poplar). Some tree
species, such as Douglas fir (which associated with more than
2000 known ECM, Molina and Trappe, 1982) have high fungal
receptivity, whereas other tree species such as alder (which only
associate with 50 known ECM, Pritsch et al., 1997) have nar-
row fungal receptivity. It has been estimated that ECM mycelia
can account for up to 80% of the fungal community and 30% of
the total microbial biomass in forest soils (Högberg and Högberg,
2002; Wallander, 2006).

The presence and abundance of specific plant species can
influence soil microbial community composition and function
(Kourtev et al., 2002; Edwards and Zak, 2010; Eisenhauer et al.,
2010), which can, in turn, impact soil C cycling and seques-
tration as mycorrhizal species differ in growth strategies and C
demand. There is evidence of specificity in many plant-microbe
interactions, suggesting both strong selective pressure and com-
petition within the rhizosphere microbiome (Podila et al., 2009).
There are many species of ECM fungi (Smith and Read, 2008)
and though many ECM (e.g., Lactarius) have a broad host range
some (e.g., Suillus) have only narrow host range (Bruns et al.,
2002; Kennedy et al., 2003). The signaling specificity by host

tree species to engage ECM fungi has been well studied (Molina
and Trappe, 1982; Ishida et al., 2007; Tedersoo et al., 2008). For
example, distinct chemical signals (e.g., small-secreted proteins
and hydrophobins) may enable trees such as Populus to recruit
advantageous ectomycorrhizal fungi from the broad soil micro-
bial community (Podila et al., 2009). Whole-genome sequencing
is now enabling us to have a much greater understanding of the
suite of important genes and signals involved in ECM symbiotic
associations (Martin et al., 2008, 2010). However, we are only
just beginning to understand the factors involved in specificity
and selection in AM associations (Brachmann and Parniske, 2006;
Bonfante and Genre, 2010).

MYCORRHIZAL MORPHOLOGY
Variations in extrametrical mycelium (EMM) hyphal pattern pro-
duction and in mycorrhizae type may have consequences for
C flow and carbon sequestration. ECM fungal taxa vary in the
growth patterns of their EMM as a result of their multifari-
ous foraging strategies (Agerer, 2001); the dominance of one
morphological type over the other may have consequences for
the spatial distribution of recent photosynthates belowground.
Agerer (2001) describes the following ECM anatomies: contact
explorers, convoy explorers, long-distance explorers, medium dis-
tance explorers and short-distance explorers (Figure 1). Contact
explorers are EMM with a smooth mantle and few emanating
hyphae (diffuse hyphal cords), the tips of which are often in
close contact with dead leaves. Examples of contact explorers
are Lactarius and Russula species that produce exudates through-
out their hyphae. Convoy explorers are EMM that grow within
rhizomorphs (aggregated parallel hyphal cords that can conduct
nutrients over long distances) or mantles and produce hausto-
ria in cortical cells of roots. Long-distance exploring EMM are
smooth with highly differentiated rhizomorphs. For example,
Boletales species are long distance hydrophilic hyphal explorers,
and only exude compounds from their tips. Medium distance
explorers have some rhizomorph formation and form 3 sub-
types: fringe, mat, and smooth. Fringe subtype hyphae fan out
from hairy rhizomorphs, which ramify and interconnect (e.g.,
Dermocybe cinnamomeolutea). Mat subtype hyphae have a lim-
ited range of exploration and rhizomorphs do not differentiate
(e.g., Hysterangium stoloniferum). Smooth subtype hyphae have
internally undifferentiated rhizomorphs with a central core of
thick hyphae, with smooth mantles, and a few emanating hyphae
(e.g., Thelephora terrestris) (Agerer, 2001). Short-distance explor-
ers have a voluminous envelope of emanating hyphae without
rhizomorph formation (e.g., Quercirhiza squamosal) (Agerer,
2001).

Hyphae have the ability to move carbon both horizontally, over
long distances, extending well beyond the roots of trees and ver-
tically, down the soil profile. Most ECM are found in the F and
H soil layer (area of highly decomposed leaves beneath surface
of forest floor, Figure 2), but also can be found in the min-
eral soil, whereas other ECM prefer decaying wood (Amaranthus
and Perry, 1989; Tedersoo et al., 2003). Some ECM are able
to mobilize minerals from rocks in soil (Landeweert et al.,
2001), whereas others access nutrients from coarse woody debris
(Amaranthus et al., 1994). Some ECM fungi also have saprophytic
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FIGURE 2 | Diagram of soil profiles with depth and the relative

proportion of collembola/protozoa, bacteria and fungi at each of these

depths. L, characterized by the accumulation of organic matter; F:
characterized by the accumulation of partially decomposed organic matter;
H: characterized by the accumulation of decomposed organic matter where
the original structure is indescernable. A: mineral horizon characterized by
eluviation of materials in solution, or accumulation of organic matter, or
both. B: mineral horizon characterized by enrichment of clay, organic matter,
and iron and aluminium oxides or by in situ weathering. C: mineral horizon
characterized by little or no alteration through the soil-forming processes,
usually represents the parent material.

growth capabilities e.g., Tomentella sp. (Kõljalg et al., 2000). It
is hypothesized that these ECM may switch to a saprophytic
lifestyle when photosynthate C becomes scarce e.g., during winter
(Courty et al., 2008).

Arbuscular mycorrhizae do not form rhizomorphs and
are considered to have five distinct hyphal architecture types
(Figure 1). These include: infection networks, produced by spores
and root fragments; germ tubes (only 20–30 mm long); hyphal
bridges that connect runner-type hyphae and form patches of
dense hyphal networks close to the root zone (Friese and Allen,
1991; Dodd et al., 2000); runner-types that expand rapidly
through the soil or along roots (Mosse, 1962), seeking out
new segments of roots to infect (Friese and Allen, 1991); and
absorptive hyphal networks that explore the soil matrix for
nutrients (Friese and Allen, 1991). Absorptive hyphal networks
can extend 4–7 centimeters into the soil. Each network can
have up to 8 branching orders, with each branch extending
approximately 5 millimeters (Allen, 2007). Bago et al. (1998)
described a 6th architectural form, where absorptive hyphae
can form from runner hyphae, extending the potential range
of nutrient absorption well beyond 4–7 centimeters. However,
ECM EMM can extend even further from the roots as a result
of rhizomorph formation. ECM rhizomorphs live, on aver-
age, 11 months, but have been observed to live for up to
7 years (Treseder et al., 2005). In contrast, AM hyphae only
live on average 5–6 days (Staddon et al., 2003), suggesting the
ECM dominated forests have greater C storage potential. The
following section describes tree-rhizosphere C flow in greater
detail.

QUANTIFICATION AND CHARACTERISTICS OF
MYCORRHIZOSPHERE C FLOW
TREE-RHIZOSPHERE C FLOW
Differences in root-associated fungi (both the presence/absence
and type of fungal association) may be responsible for the large
variation (10 X) in root exudation rates (Phillips et al., 2008,
2011). Exudation rates from root tips and hyphal tips tend to
be greatest in the fine roots and in mycorrhizae that are allo-
cated more C (Phillips et al., 2008, 2011). Carbon allocation to
ECM hyphae will vary depending on ECM taxa (Bidartondo et al.,
2001) and stage of colonization. For example, more C is allocated
belowground during early stages of colonization (Cairney et al.,
1989; Cairney and Alexander, 1992). Movement of recent photo-
synthates within EMM is not uniform, and will vary depending
on the fungal species and their life stage (Cairney, 2012). Sun
et al. (1999) demonstrated that ECM hyphal tips were active sites
of exudation and re-adsorption of compounds, with little exuda-
tion along rhizomorphs. In addition, Leake et al. (2001) showed
that more C was allocated to frontal tips of hyphae that occupied
a hotspot of organic matter in soil. Infected ECM root tips may
receive 42 times more carbon than uninfected root tips on the
same plant (Cairney et al., 1989; Wu et al., 2002). Therefore there
will be much patchiness in root exudate distribution in the forest
floor, depending on root distribution and hyphal distribution.

Several techniques- including tree-girdling and stable-isotope
labeling- have the potential to accurately measure the amount of
C allocated belowground as well as the impact of root-exuded
C on the microbial community. Tree girdling has demonstrated
that labile C drives soil respiration (Högberg et al., 2001). Tree
girdling stops the flow of photosynthates to tree roots, altering
the availability and quality of C sources available to soil microbes
in the rhizosphere (Subke et al., 2004; Högberg et al., 2007).
However, how girdling affects the soil microbial community, par-
ticularly the bacterial community, is not consistent. Tree girdling
caused significant decreases in the activity and biomass of the
soil microbial community in boreal and temperate forests (Scott-
Denton et al., 2006; Weintraub et al., 2007); this was mainly
due to loss of ECM (45% decrease in ECM biomass relative
to non-girdled plots) (Högberg and Högberg, 2002; Yarwood
et al., 2009; Pena et al., 2010). The response of bacterial abun-
dance and biomass to girdling has been marginal in boreal forests
(Högberg et al., 2007; Yarwood et al., 2009) and in sub-tropical
evergreen broadleaf forests (Li et al., 2009). Koranada et al. (2011)
observed (using PLFA) a significant reduction in fungal biomass
and Gram-positive bacterial biomass in girdled beech forests. As
Gram-positive bacteria were less affected by exudates, Koranada
et al. (2011) hypothesized that other effects of girdling treatments
on rhizospheric conditions, such as alterations in oxygen supply,
pH and redox potential (a result of the reduced root respiration
or uptake of nutrients by plants) may have decreased Gram-
positive bacterial populations. Other studies have shown no effect
of girdling on microbial biomass or soil respiration; however in
some of these studies trees re-sprouted (e.g., Eucalyptus), (Wu
et al., 2011; Chen et al., 2012), and in other studies carbohydrates
were still available in roots after girdling (Binkley et al., 2006). The
increased availability of root carbohydrates may lead to a posi-
tive priming effects on SOM decomposition, increasing microbial
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community biomass and activity in the short-term (Subke et al.,
2004; Scott-Denton et al., 2006). The variability of tree-girdling
results may be the result of variation in tree-mycorrhizal species
associations, or may be due to priming effects. Consequently
developing non-destructive techniques may provide more insight
into C-flow in forest ecosystems.

Natural-abundance stable-isotope ratios have recently been
used to non-destructively investigate the flux of C from trees to
the soil microbial community. In a second-growth coastal western
hemlock forests in B.C. eighty-year-old Douglas-fir and west-
ern hemlock trees supplied C to the mycorrhizal symbionts for
a distance up to ten meters (Churchland et al., 2013). Similarly,
labeling of young trees with 13C-enriched CO2 has also been
used to assess spatial and temporal C flux belowground. Epron
et al. (2011) showed that there was rapid transfer of recent pho-
tosynthates to the mycorrhizosphere of beech (0.5–1 day), oak
(0.5–1 day) and pine (1–2 days), and that the patterns of car-
bon allocation belowground varied seasonally in pine and beech,
according to the phenology of the species. Similarly, Esperschütz
et al. (2009) demonstrated using 13CO2 pulse-labeling and PLFA
analysis, that the C in beech root exudates is first utilized by
Gram-negative bacteria and mycorrhizal fungi. Stem-injection-
labelling of mature trees has shown that C exudation from 22-
year-old Sitka spruce in the field is rapid (24 h) and that these
exudates are utilized first by fungi. The extent of influence of these
trees exudates can be up to 20 m away from the base, and may,
in part, be due to transport through EMM (Churchland et al.,
2012). Although these techniques are too coarse to measure car-
bon movement in a single hypha, they show that C can move great
distances away from the tree base and are utilized by the fungi and
bacteria in the rhizosphere.

ROOT EXUDATES
Characterizing root exudation is challenging, but new techniques
hold potential for breakthroughs. Most studies characterizing
exudates released by different tree species have been microcosm
studies conducted on seedlings in the laboratory under con-
trolled conditions, either in hydroponic or sand systems, which
do not scale up to mature trees and forests (Grayston et al., 1997).
Hydroponic systems lack the physical substrates important for
root growth; this affects exudation and can lead to re-uptake of
exudates by plant roots. Studies in sand or soil systems are limited
because of adsorption of exudates or degradation by the micro-
bial community (Grayston et al., 1997, and references therein).
There have been a few studies of tree root exudation in the
field, mainly on young seedlings using either excavated root tips
(which are surface-sterilized and placed in sterile tubes in the
field) or soil extraction techniques. This latter approach has sim-
ilar problems to the microcosms mentioned above (Phillips et al.,
2008). In addition, it is difficult to extrapolate exudation rates
from seedlings to mature trees, as a smaller portion (though, in
total, a much greater amount) of recently-photosynthesized C is
being allocated to the roots. Recently Shi et al. (2012) demon-
strated an anion exchange membrane system that improved root
exudate collection in situ from two-year-old radiata pine trees
growing in large-scale biotrons. Because these anion exchange
membranes rapidly adsorb root exudates there is little chance for

consumption by microbes present in the biotron soil. This tech-
nique may result in a better understanding of root exudation from
mature trees and forest stands.

The amount of C allocated to roots, root exudates, mycor-
rhizae and other rhizosphere microorganisms can change under
different nutrient regimes and increase in the presence of specific
microorganisms (Grayston et al., 1997). Ectomycorrhizal fungi
influence both the quantity of C allocated to their roots, and the
chemical composition of those exudates (van Schöll et al., 2006;
Rineau and Garbaye, 2010). For example, ECM trees will allo-
cate a third more C to their roots than non ECM trees (Durall
et al., 1994; Riewicz and Anderson, 1994; Qu et al., 2004), likely
because EMM have a large C demand (Riewicz and Anderson,
1994; Cairney and Burke, 1996; Cairney, 2012). Laboratory stud-
ies have shown that up to 29% of plant-assimilated C can
be allocated to EMM (Riewicz and Anderson, 1994; Ek, 1997;
Bidartondo et al., 2001). Environmental conditions also influ-
ence the degree to which tree roots are colonized, and likely
mediate fluxes of labile C in forest soils (Meier et al., 2013). For
instance, loblolly pine mass-specific exudation rates can vary by
over three orders of magnitude under varying CO2 concentra-
tions (Phillips et al., 2008, 2011). Plants have been observed to
allocate more C to their roots and mycorrhizal symbionts under
nutrient poor conditions (Zak et al., 1993; Franklin et al., 2012).
In systems that are not N-limited, or in systems where N has
been added, fungal biomass can decrease up to 45%, mainly due
to decreased C allocation from trees to the mycorrhizal fungi
(Högberg et al., 2007).

Root exudates represent semi-continuous input of labile C into
soil, though exudation rates vary in time and space (Hinsinger
et al., 2005), between deciduous and conifer species, over sea-
sons (Collignon et al., 2011) and in different climates (Lin et al.,
1999; Jones et al., 2004). Reviews on rhizodeposition from plants
acknowledge the scant information on the character of exudates
from trees (Grayston et al., 1997; Kuzyakov and Domanski, 2000;
Neumann and Romheld, 2001; Jones et al., 2004). Plants are able
to influence not only the quantity but also the composition of
C exuded by their roots. This is thought to play a role in tree-
microbe signaling and specificity in the rhizosphere. Production
of enzymes, low-molecular-weight organic-acids (LMWOA), and
other compounds support rhizosphere microbial communities
(Bais et al., 2006). Root exudates also enhance nutrient avail-
ability by mobilizing poorly-soluble mineral-nutrients (Jones and
Darrah, 1994; Marschner et al., 2011) and supplying labile-C
substrates that increase rhizosphere microorganism activity and
turnover (Phillips et al., 2012), ultimately influencing the decom-
position of SOM (Rosling et al., 2004a,b). Most of the knowl-
edge about the character of root exudates and how they may
vary between tree species is on LMWOA and with ECM fungi
(Cairney, 2012). In one of the few studies on carbohydrate charac-
terization, Liebeke et al. (2009) used a gas-chromatograph-mass-
spectrometer to reveal differences in the sugar content of soil
extracts from different forest soils, demonstrating that oak soil
contained mannitol and trehalose that was not present in beech
soil. They hypothesized that the variation in sugar concentra-
tions was responsible for differences in the bacterial communities
under these tree species. There is increasing evidence that trees
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can actively restrict carbohydrate flow to their fungal partners.
This is done through control of sucrose export and hydrolysis if
the fungal partner does not deliver sufficient mineral nutrients
(see review by Nehls et al., 2010).

PLANT-MYCORRHIZAE SIGNALING MOLECULES
Several root exudates and hyphal exudates have the potential
to induce mycorrhizal infection and change the microbial com-
munity structure of the rhizosphere. Secreted proteins, specifi-
cally a class of secreted proteins called effectors, have recently
been established as plant-mycorrhizal signaling molecules (Lowe
and Howlett, 2012). Effector proteins facilitate infection by sup-
pressing immunity and/or inducing defense responses in plants
(DeWit et al., 2009). For example, Laccaria bicolor was found to
secrete the effector Mycorrhizal-Induced Small Secreted Protein
7 (MISSP7) during root colonization, in response to diffusible
signals exuded from plant roots (Plett et al., 2011). Secretion
and uptake of MISSP7 by the plant (via PI-3-P mediated endo-
cytosis) affected cell wall chemistry, ultimately allowing hyphal
penetration of the root apoplast. MISSP7 is the most upregulated
protein during mycorrhization, and without it symbiosis does not
occur (Plett et al., 2011). Following this discovery another effec-
tor protein, SP7, was uncovered (Maffei et al., 2012). Secreted by
the AM fungi Gigaspora intraradices, SP7 interacts with a plant
pathogenesis related transcription factor. SP7 was found to play
a role in managing the formation of symbiosis with plant roots
through the suppression of the plant immune system (Kloppholz
et al., 2011). Plants have also been found to increase produc-
tion of strigolactones under nutrient poor conditions (Maffei
et al., 2012). Strigolactones have been found to induce fungal
spore germination (Maffei et al., 2012) and hyphal branching
(Bonfante and Requena, 2011), suggesting that plants might be
signaling nearby mycorrhizae to promote infection. Much less is
known about AM signaling, although recently it has been shown
that AM fungi also produce active diffusible signals, similar to
Nod factors released by rhizobia. These signals are needed for
mycorrhizal formation (Bonfante and Requena, 2011). Similarly
plant secreted effectors have also been found, which influence
interactions between plant roots and free-living microorganisms
(Hogenhout et al., 2009).

MODIFICATIONS BY ECM/AM ON EXUDATES AND SIGNALS
Mycorrhizae modify the amount and composition of root exu-
dates (van Schöll et al., 2006; Johansson et al., 2008, 2009),
affecting exudation into the mycorrhizosphere and hyphosphere
(Sun et al., 1999; Ahonen-Jonnarth et al., 2000; Jones et al.,
2004; Johansson et al., 2008, 2009). The tips of growing ECM
hyphae have been found to exude sugars, polyols, amino acids,
peptides, proteins, hydroxamate siderophores, various LMWOA
and pigments (growing front; Table 1) (Sun et al., 1999; Ahonen-
Jonnarth et al., 2000; Jones et al., 2004; Johansson et al., 2008,
2009). Different ECM taxa vary the amount and composition
of compounds exuded (Lapeyrie et al., 1987; Griffiths et al.,
1994; van Schöll et al., 2006; Johansson et al., 2009; Tuason and
Arocena, 2009). In general, the presence of ECM increases organic
acid exudation (Johansson et al., 2008, 2009) and/or changes the
type of organic acid exuded (van Schöll et al., 2006; Table 2).

For example, van Hees et al. (2006a) found that Hebeloma
crustuliniforme (ECM), when in symbiosis with Pinus sylvestris,
exuded oxalate and ferricrocin and, to a lesser extent, malonate
and acetate which were absent from non-mycorrhizal Scots pine
soil.

There is some evidence that hyphal exudates result in specific
hyphosphere bacteria communities (Table 3; See Nazir et al., 2010
for list of bacterial-AM fungal relationships). It has been sug-
gested that organic acids contribute to microbial selection in the
mycorrhizosphere (de Boer et al., 2005). Differences in LMWOA
ECM hyphal exudation are thought to be partially responsible
for selecting specific microbial communities (Martin et al., 2008;
Tuason and Arocena, 2009). Similarly, Toljander et al. (2007)
found increased γ-proteobacteria abundance when extracted AM
mycelial exudates were present, including formate, acetate, α and
β glucose, and oligosaccharides. Trehalose has been reported to
select specific bacterial communities in the mycorrhizosphere of
several tree species including, Douglas-fir, Corsican pine and oak
(Frey et al., 1997; Rangel-Castro et al., 2002; Izumi et al., 2006a,b;
Uroz et al., 2007). Frey et al. (1997) suggested that the release of
trehalose by the ECM fungus Laccaria bicolor exerts a nutrient-
mediated selection on the surrounding bacteria. Specifically, tre-
halose has been found to have growth-promoting effects on the
mycorrhization-helper bacteria (MHB), Pseudomonas monteilii,
when inoculated with the ECM fungus Pisolithus albus in a plate-
assay (Duponnois and Kisa, 2006). Trehalose released by the
mycelium of Laccaria bicolor was shown to be a chemoattrac-
tant for Pseudomonas fluorescens BBc6R8 (Frey-Klett et al., 2007).
At present it is not clear how hyphosphere microbial communi-
ties will impact a mycorrhizal’s ability to acquire nutrients, but
it is clear that exudation specificity has the potential to select for
species-specific microbial communities.

SPATIAL AND SEASONAL VARIATION IN RHIZOSPHERE C FLOW
Rhizosphere C flow varies spatially down the soil profile and hor-
izontally with changes in root and hyphal distribution. Carbon
flow also fluctuates seasonally and differs between coniferous and
deciduous trees. In forest soil there is soil microbial community-
composition stratification with depth due to a decrease in root
biomass, root exudates, available C and a shift in SOM compo-
sition (Grayston et al., 1997; Berg et al., 1998; Fritze et al., 2000;
Leckie et al., 2004; Lejon et al., 2005). Fungi are typically found
in upper soil layers (Litter>Formulating >Humified, Figure 2)
(Gardes and Bruns, 1993; Hirose et al., 2004). In contrast, actino-
mycete abundance has been shown to increase with depth (Fritze
et al., 2000) while Gram–negative bacterial distribution is linked
to root distribution (Soderberg et al., 2004). However, soil res-
piration rates and microbial activity are related to proximity to
trees and tree roots (Churchland et al., 2013). In a free-air carbon-
dioxide-enrichment (FACE) study, Phillips et al. (2008) showed
that exudation rates could be predicted by the number of roots
and mycorrhizal fine root tips (Pritchard et al., 2008b). This
suggests that recent tree-carbon can be transported over large dis-
tances via roots and hyphae, supporting microbial communities
meters away from the tree base.

There are different seasonal and physiological effects on rhi-
zosphere C flow for deciduous and evergreen tree species. In
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Table 2 | Modification of low molecular weight organic acid (LMWOA) exudates from trees by different ectomycorrhizal (ECM) and arbuscular

mycorrhizal (AM) fungi.

Tree species ECM or AM Mycorrhizal

symbiont

ECM/AM effect on

LMWOA exudation

(vs. non ECM/AM

roots)

Methodology References

Scots pine ECM Paxillus involutus ↑ oxalic acid, formic
acid

9-month-old inoculated seedlings
were planted in sterilized soil
collected from an E-horizon, and
placed in climate controlled
growth room. LMWOA were
collected via suction from soil
column and indentified using
capillary zone electrophoresis

van Hees et al., 2005

Suillus granulatus ↑ citric acid

Norway spruce ECM Paxillus involutus ↑ malonic acid

Scots pine ECM Suillus variegatus ↑oxalic acid 9–12-week-old inoculated
seedlings were grown in petri
dishes containing glass beads
with a growth solution. LMWOA
were analyzed using HPLC
analysis

Ahonen-Jonnarth
et al., 2000

Rhizopogon roseolus ↑ oxalic acid

Paxillus involutus ↑oxalic acid, malonic
acid

Scots Pine
(under elevated
CO2)

ECM Sullius variegates
Sulliusbovinus
Paxillusinvolutus
Rhizopogon roseolus

↑oxalic acid 16-week-old inoculated seedlings
were grown in petri dishes
containing peat:vermiculite
substrate with a growth solution.
LMWOA were analyzed using
HPLC analysis

Johansson et al.,
2009

Hebelomavelutipes
Pilodermabyssinum

↑citric, fumaric, formic,
malonic acid

Scots pine ECM Hebeloma
longicaudum

↓malonic acid 21-week-old inoculated seedlings
were grown on glass beads or
sand with a growth solution.
LMWOA were indentified using
capillary zone electrophoresus

van Schöll et al., 2006

Paxillus involutus
Piloderma croceum

↑oxalic

White spruce ECM Not identified ↑ malonic, oxalic,
gluconic, succinic,
protocatechuic acid

Soil collected in situ around trees
that were 20–35 cm diameter at
breast height. LMWOA were
indentified using capillary zone
electrophoresis

Tuason and Arocena,
2009

Subalpine fir ECM Not identified ↑ malonic, oxalic,
glutaric, isocitric acid

Norway spruce ECM Paxillus involutus ↑ Malate, citric 9-month-old inoculated seedlings
were planted in a soil-sand
column system. LMWOA were
collected using suction from soil
column and analyzed using
capillary zone electrophoresus

van Hees et al., 2003

Scots pine ECM Hebeloma
crustuliniforme

↑oxalic, citric, propionic
acid

↑oxalic acid, ferrocrocin

16-week-old inoculated seedlings
were grown in a sand culture
system. LMWOA were collected
via suction from soil column and
analyzed using capillary zone
electrophoresis.
16-week-old inoculated seedlings
were grown in aseptic
multi-compartment dishes
containing sterile nutrient agar
with stock nutrient solution.
LMWOA were analyzed using
capillary zone electrophoresis

van Hees et al., 2006a

van Hees et al.,
2006b

(Continued)

Frontiers in Microbiology | Terrestrial Microbiology June 2014 | Volume 5 | Article 261 | 8

http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Churchland and Grayston Plant-microbe interactions in the tree mycorrhizosphere biome

Table 2 | Continued

Tree species ECM or AM Mycorrhizal

symbiont

ECM/AM effect on

LMWOA exudation

(vs. non ECM/AM

roots)

Methodology References

Norway spruce ECM Laccaria bicolor ↑oxalic acid 8-week-old inoculated seedlings
were grown in glass bead
mesocosms with growth
medium. LMWOA were analyzed
using HPLC analysis

Eldhuset et al., 2007

Japanese red
pine

ECM Pisolithus tinctorius ↑citric acid 4-month-old inoculated seedlings
were grown in perlite in pots.
LMWOA were analyzed using an
electroconductivity detection
method

Tahara et al., 2005

Scots pine ECM Amantia muscaria
Hebeloma velutipes
Piloderma fallax
Suillus variegatus

↑LMWOA exudation,
individual OA’s varied
depending on N
addition and elevated
CO2

4-week-old
Inoculated seedlings were grown
in petri dishes containing
vermiculite and a growth medium.
LMWOA were analyzed using
capillary zone electrophoresis

Fransson and
Johansson, 2010.

Scots pine ECM Hebeloma velutipes,
P. involutus,
Piloderma byssinum,
R. roseolus,
S. bovinus
S. variegatus

↑LMWOA exudation,
especially oxalic acid

16-week-old inoculated seedlings
were grown in petri dishes
containing peat:vermiculate and
growth medium. LMWOA were
analyzed using capillary zone
electrophoresis

Johansson et al.,
2008

Tulip poplar AM Acaulospora
morrowiae
Glomus
claroideumG. clarum
Paraglomus
brasilianum

-
-
↑ malate, citric acid
-
-

5-month-old seedlings were
grown in fungal inoculated sand.
Roots were washed for organic
acid profiles. LMWOA were
indentified using ion
chromatography

Klugh and Cumming,
2007

↑, increase; -, no change; ↓, decrease; n/a, information not available.

a meta-analysis of C-allocation dynamics in trees Epron et al.
(2012) showed that broadleaf trees exhibit, on average, 10 times
higher rates of C transfer than coniferous species, although this
varies depending on season. In spring (before bud break) and
fall (during leaf senescence), broadleaves allocate a greater pro-
portion of C to their roots (Epron et al., 2012). A number of
studies have documented seasonal trends in soil microbial com-
munities and activities in a variety of ecosystems (Allison and
Treseder, 2008; Björk et al., 2008; Cruz-Martinez et al., 2009),
including the coniferous forests of the Pacific Northwest (Brant
et al., 2006; Moore-Kucera and Dick, 2008) and deciduous forests
of Europe (Hibbard et al., 2005; Rasche et al., 2011). Studies
specifically examining ECM fungi have found that their commu-
nity structure, as well as enzymatic and metabolic capabilities,
exhibit considerable temporal variation over a single year (Buée
et al., 2005; Courty et al., 2007, 2008). This is likely related to dif-
ferences in belowground C flow (Collignon et al., 2011). Burke
et al. (2011) showed ECM, but not AM varied over a grow-
ing season in a mixed deciduous forest in Pennsylvania and that

ECM and AM were associated with different enzyme activities
involved in nutrient cycling. Specifically, AM fungi were asso-
ciated with leucine aminopeptidase and urease, both enzymes
involved in N acquisition. Arbuscular mycorrhizae were not tra-
ditionally considered able to supply their host with significant
amounts of N (Smith and Read, 2008), though there is recent evi-
dence that AM fungi can access both inorganic N (Fellbaum et al.,
2012) and organic N (Whiteside et al., 2012) sources in forests.
ECM were associated with most measured enzymes involved in
C and N acquisition, but only during the late summer (Burke
et al., 2011). This indicates that mycorrhizal ability to break-
down recalcitrant C and provide their host with N may vary
seasonally.

EFFECTS OF MYCORRHIZOSPHERE C FLOW ON OTHER
ORGANISMS
FREE-LIVING FUNGI, BACTERIA AND ARCHAEA
It is clear that variation in the quality and quantity of C released in
root and hyphal exudates produced by different tree species can
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Table 3 | Examples of mycorrhization helper bacteria, with significant effects on ECM formation.

Fungi Bacteria MHB effect Host plant References

Laccaria laccata Agrobacterium
radiobacter

↑ mycorrhizal colonization 6-month-old pine and birch
seedlings grown on
sand-mica-rock substrate

Leyval and
Berthelin, 1993

Suillus grevillei Pseudomonas
fluorescens strain 70
Pseudomonas putida
strain 42

↑ Fungal growth Fungi and bacteria were cultured
from sporocarps found in
Eurpoean larch forest

Varese et al., 1996

Geopora species Sphingomonas sp. 23L ↑ fungal inoculation, and tree
growth

Willow tree cuttings potted in 1 kg
of fly ash, bacterial inoculant was
added

Hrynkiewicz et al.,
2009

Lactarius rufus,
Laccaria bicolor or
Suillus luteus

Paenibacillus sp. EJP73,
Burkholderia sp. EJP67,
Paenibacillus sp. EJP73

Altered root branching
↑L. bicolor mycorrhiza formation

Scots pine seedlings grown in
vermiculite-peat moss
microcosms

Aspray et al., 2006

Suillus granulatus
Cenococcum
geophilum

Ralstonia basilensis,
Bacillus subtilis

Increased hyphal growth 1-week-old Japanese black pine
was planted in autoclaved soil
before inoculated with fungi

Kataoka et al.,
2009

Laccaria bicolor
S238N

Pseudomonas
fluorescens BBc6R8

Promotes presymbiotic
fungal-survival and increases
radial growth, hyphal apex
density and branching angle

Pre-symbiotic, grown on
Pachlewski medium

Deveau et al.,
2007

Amantia muscaria
Suillus bovinus

Streptomycetes nov. sp.
505
Streptomyces annulatus
1003 (AcH 1003)

1.2–1.7 fold increase in
second-order root mycorrhizal
rate

4-weeks-old Norway spruce and
Scots pine seedlings were grown
on autoclaved peatmoss and
perlite before inoculation

Schrey et al., 2005

Laccria laccata Pseudomonas species,
Bacillus species

↑ mycorrhizal colonization Douglas-fir seeds were sown in
inoculated vermiculite-peat moss
polythene cells

Duponnois and
Garbaye, 1991

Laccaria fraterna
Laccaria laccata

Bacillus species
Pseudomonas species

↑ mycorrhizal colonization Eucalyptus seeds were sown in
sphagnum peat-perlite before
inoculation

Dunstan et al.,
1998

Lacterius rufus Paenibacillus species
Burkholderia species

↑ mycorrhizal colonization Sterile Scots pine seedlings
grown on agar petri dishes were
used for inoculation once roots
were 4.5–6 cm long

Poole et al., 2001

Pisolithus alba Pseudomonas monteilii
Pseudomonas
resinovorans

↑ mycorrhizal colonization Soapbush seedlings were planted
in autoclaved soapbush soil
before inoculation

Founoune et al.,
2002a

Pisolithus species Pseudomonas species ↑ mycorrhizal colonization Soapbush seedlings were planted
in autoclaved soapbush soil
before inoculation

Founoune et al.,
2002b

Rhizopogon luteolus Unidentified ↑ mycorrhizal colonization Radiata pine seedlings were
grown on autoclaved soil before
inoculation

Garbaye and
Bowen, 1989

Scleroderma species
Pisolithus species

Pseudomonas monteilii
strain HR13

↑ mycorrhizal colonization Acacia seedlings were grown on
sterilized sand before inoculation

Duponnois and
Plenchette, 2003

Suillus luteus Bacillus species ↑ root growth and mycorrhizal
colonization

2-week-old Scots pine seedlings
were grown on inoculated
peat-vermiculate petri dishes

Bending et al.,
2002
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result in different rhizosphere and hyphosphere microbial com-
munities and this varies between tree species associated with ECM
and AM (Garbaye, 1991; Broeckling et al., 2008; Prescott and
Grayston, 2013). Phillips and Fahey (2006) collected rhizosphere
soil, bulk soil, and fine roots from the upper four centimeters
of 12 monospecific tree species plots (six AM and six ECM tree
species) planted on a common soil. The rhizosphere of AM trees
and ECM trees were 10–12 and 25–30% more active (as mea-
sured by respired CO2) than bulk soil, demonstrating that ECM
trees have a greater rhizosphere effect than AM trees. The mag-
nitude of rhizosphere effects was negatively correlated with the
degree of mycorrhizal colonization in AM tree species and with
fine root biomass in ECM tree species. This suggests that different
factors influence rhizosphere effects in tree species forming AM
vs. ECM associations (Phillips and Fahey, 2006). Hyphal exudates
from ECM tips support a diverse population of bacteria, archaea
and fungi (Frey-Klett et al., 2007; Tedersoo et al., 2009; Bomberg
et al., 2011). High throughput sequencing methods developed
over recent years are enabling us to obtain much greater phy-
logenetic resolution to our studies of mycorrhizosphere micro-
bial communities. For example, Kluber et al. (2010) used DNA
sequencing to identify the rhizomorphic ECM mat-forming taxa
(Hysterangium, Piloderma, Suillus and Russula species) in the
forest floor and the hydrophobic mat-forming taxa (Gomphus
and Ramaria species) in the mineral soil in a Douglas-fir for-
est. The two ECM mat forms had enhanced enzyme activities,
specifically chitinase, phosphatase and phenol oxidase compared
to non-mat forms in adjacent locations (Kluber et al., 2010). It
was not established if the enhanced enzyme activity in the mats
was the result of the ECM themselves or the distinctive bacte-
ria and fungi in their mycorrhizosphere (Kluber et al., 2011).
Bomberg and Timonen (2007, 2009) demonstrated (using PCR-
DGGE of archaeal 16S rRNA genes) that there were specific
archaeal communities in the ectomycorrhizosphere of several
common boreal forest trees and that the type of ECM had the
most influence on archaeal diversity. Bomberg et al. (2011) found
no evidence of archaea in bulk humus samples lacking tree roots
or ECM, indicating archaea are dependent on plant-derived C for
growth. Similarly, Pires et al. (2012) used pyrosequencing and
PCR-DGGE to reveal differences in archaeal richness between
two mangrove species. Uroz et al. (2012) revealed (pyrosequenc-
ing 16S rRNA) that Alpha-, Beta-, and Gammaproteobacteria
were significantly higher in the ectomycorrhizosphere of oak
than in bulk soil and the bacterial communities found in the
ectomycorrhizosphere of Xerocomus pruinatus and Scleroderma
citrinum on oak were similar at the genus level, but different
at the OTU level, demonstrating the specificity of the ectomy-
corrhizosphere. In the future, further refinements to molecular
techniques, enhanced bioinformatic analysis and development of
novel methods to culture and study these newly revealed organ-
isms should enable links between these organisms and their
functions to be elucidated. To date most of our knowledge on
the role of associated microorganisms in the ectomycorrhizo-
sphere has been based on studies of culturable organisms. The
spectrum of plant-microbe relationships in the rhizosphere can
range from mutualistic to pathogenic (Bais et al., 2006). Plant-
growth-promoting rhizobacteria (PGPR)—which are found in

the rhizosphere and mycorrhizosphere—benefit plants by cre-
ating biofilms that protect the root against pathogens (Akhtar
and Siddiqui, 2009). These rhizosphere bacteria induce systemic
acquired resistance (preparing the plant for attack; Pieterse et al.,
2003) and enhance plant growth (Adesemoye et al., 2008; Yang
et al., 2009). Several very good reviews have been written on
PGPR (Vessey, 2003; Lugtenberg and Kamilova, 2009).There is
some evidence of synergistic interactions between PGPR and
mycorrhizal fungi, which may benefit the plants as a result of
greater nutrient acquisition, inhibition of plant pathogens and
greater mycorrhization (Artursson et al., 2006). Uroz et al. (2007)
demonstrated positive interactions between ECM and bacteria
that result in increased weathering of mineral nutrients, ulti-
mately increasing nutrient uptake by the plant. AM have also been
found to alter the structure of mycorrhizosphere microbial com-
munities (Rillig and Mummey, 2006; Toljander et al., 2007; Welc
et al., 2012). Isolation and identification of rhizobacteria found
in the mycorrhizosphere around AM hyphae have shown bac-
teria with antagonistic properties toward soil-borne pathogens
(Lioussanne et al., 2010), and antifungal properties (although
they do not affect the AM symbiosis; Dwivedi et al., 2009). The
N2 fixing ability of some AM plants improves when mycorrhizae
are present vs. when they are absent (Kucey and Paul, 1982; Fitter
and Garbaye, 1994).

Greater mycorrhization effects have been attributed to one
specific group of PGPR, the so-called mycorrhization-helper bac-
teria (MHB) (Garbaye, 1994). Three life-stages in mycorrhizal
fungi have been recognized, the free-living saprotrophic, the pre-
infection stage and the symbiotic, mycorrhization stage (Deveau
et al., 2007; Courty et al., 2008). During the pre-infection “free-
living stage,” mycorrhizal fungi can interact with specific bac-
teria (e.g., Pseudomonas species) that are thought to enhance
mycorrhizal establishment (Garbaye, 1994; Pivato et al., 2009).
These mycorrhization-helper bacteria (MHB) can increase myc-
orrhization of a plant 1.2–17.5 times (Frey-Klett et al., 2007).
Mycorrhization-helper bacteria are not plant-specific, but may
be fungal-specific (Garbaye, 1994; Pivato et al., 2009). For exam-
ple, Pseudomonas fluorescens BBc6R8 promotes survival of ECM
Laccaria bicolour S238N when in its free-living stage, increas-
ing radial fungal growth, hyphal density and branching angle.
Mycorrhization-helper bacteria also change mycelial physiol-
ogy from the free-living saprotrophic state to a “pre-symbiotic”
stage (Deveau et al., 2007). During mycorrhization, a prolifer-
ation of bacteria can improve the receptivity of roots (Aspray
et al., 2006), accelerate germination of fungal propagules in
soil (Garbaye, 1994), and increase production of compounds
such as auxofurans (Tylka et al., 1991) which have been shown
to affect fungal metabolism and gene expression (Riedlinger
et al., 2006). Mycorrhization-helper bacterial strains identified
thus far include: Gram-negative Proteobacteria, Gram-positive
Firmicutes and Gram-positive Actinomycetes (Frey-Klett et al.,
2007) (Table 3). How MHB encourage mycorrhization is only
beginning to be unraveled. Most MHB increase fungal colo-
nization of the roots via: stimulating mycelia extension and
branching (Garbaye, 1994; Poole et al., 2001; Schrey et al.,
2005), increasing root-fungus contacts/colonization, and influ-
encing soil environmental conditions (Frey-Klett et al., 2007).
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Mycorrhization-helper bacteria have been observed to stimu-
late spore germination of Glomus mosseae and Glomus clarum
(AM) (Mosse, 1962; Xavier and Germida, 2003, respectively).
In the case of Glomus clarum there may have been a com-
plex bacterial consortium producing antagonistic volatiles (Tylka
et al., 1991). The release of a number of different compounds,
including gasses (Duponnois and Kisa, 2006) and secondary
metabolites (e.g., auxofuran)(Keller et al., 2006; Riedlinger et al.,
2006) by MHB have been shown to increase mycelial growth.
Mycorrhization-helper bacteria are thought to reduce plant and
mycorrhizal stress by detoxifying soil (e.g., Polyphenolic sub-
stances produced by Paxillus involutus are toxic to the fungus,
but can be broken down by MHB; Duponnois and Garbaye,
1990). The potential for MHB to increase and support myc-
orrhizal infection has been demonstrated only under labora-
tory conditions. However, as in the case of PGPR, little is
known about the effect these bacteria have on mycorrhization
in situ.

TREE-MYCORRHIZAL-MICROBIAL AND FAUNAL INTERACTIONS
The term rhizosphere fauna has typically been used to refer to
agricultural pests, specifically root herbivores (Bonkowski et al.,
2009). However, rhizosphere fauna encompass a broad range of
feeding types, including those that feed on bacteria, mycelium,
and other fauna. Soil fauna influence the composition and activ-
ity of microbial populations by: directly grazing on bacteria and
fungal hyphae, transporting fungal and microbial cells in their
gut (thus facilitating microbial dispersion) and changing physi-
cal and chemical conditions of the soil (i.e., worm casts) (Oades,
2003). Several fungivorous collembola species have the capac-
ity to influence development of Basidiomycete mycelia (Tordoff
et al., 2008; Crowther et al., 2011b), and the extent of that
influence is directly dependent on collembola density (Hanlon
and Anderson, 1979; Kaneko et al., 1998). Setälä (1995) com-
pared control soil (no fauna) and faunal-inoculated soil in Scots
pine and silver birch microcosms. In all cases the presence of
soil fauna reduced ECM abundance, reduced microbial biomass
and increased shoot production. Faunal community impacts on
decomposer fungi have also been shown to be density depen-
dent, although there is evidence that the faunal community
composition may have a greater impact on the microbial com-
munity. Crowther and A’Bear (2012) found that grazing pressures
exerted by low-density woodlouse populations on saprotrophic
fungi surpassed grazing pressures exerted by high density milli-
pedes or high density collembola populations, ultimately limiting
mycelial development. Grazing of mycelium not only influences
microbial populations, but also has direct impacts on nutrient
cycling because it increases enzyme release into the mycorrhi-
zosphere (Crowther et al., 2011a), particularly in the presence
of macrofauna (Crowther et al., 2011b). This increase will, in
turn, affect soil nutrient availability (both N and P) and SOM
turnover.

Mycophagous soil fauna grazing on AM and ECM in forests
will affect C flow into the mycorrhizosphere by disrupting the
movement of C along rhizomorphs and runner-type hyphae
(Setälä, 1995; Coleman et al., 2004). Once removed from its C
source, the growing hyphal front will stop releasing exudates,

stop growing and potentially die off or convert to a saprotrophic
life stage. The amount of hyphal grazing varies with mycorrhizal
species, as soil fauna have been shown to be selective in their
feeding preferences (Klironomos and Kendrick, 1996; Crowther
and A’Bear, 2012). Klironomos and Kendrick (1996) showed that
mites and collembola preferentially graze fungi growing on lit-
ter. However, when offered only AM growing on maple, they
consume the fine hyphae most distant from the root. Cesarz
et al. (2013) demonstrated that ECM vs. AM mycorrhizal-tree
identity had a major influence on belowground nematode com-
munities. Ash, which forms AM symbiosis, had greater popula-
tions of bacterial-feeding nematodes and lesser populations of
fungal-feeding nematodes. In contrast beech, which forms EM
symbiosis, had enhanced fungal-feeding nematode populations.
Grazing on hyphal mycorrhizal networks can also significantly
influence plant-C allocation belowground, and may influence C
sequestration (Johnson et al., 2005).

CONSEQUENCES OF THE MYCORRHIZOSPHERE ON SOIL C
Differences in tree-mycorrhizal symbiosis types may impact
C-cycling and C sequestration because of differences in C allo-
cation and longevity of these structures in soil. ECM trees with
extensive mycelia have two to three times more C flux to the
soil than AM trees (Finlay and Söderström, 1992; Phillips and
Fahey, 2005; Pumpanen et al., 2009). This may be due to ECM
roots being “more leaky,” possibly due to higher exudation rates
(Phillips and Fahey, 2006). Pumpanen et al. (2009) demonstrated
that roots and ECM growth account for 13–21% of recently
assimilated C, whereas 9–26% of recently assimilated C is respired
from the roots and rhizosphere. The turnover times of ECM and
AM are also dramatically different; the turnover times of EMM
and mycorrhizal fine roots are in the order of months to years
(Cairney, 2012) and AM days to weeks (Langley and Hungate,
2003). The slower turnover of ECM is thought to be due to the
chitin content of this fungal tissue, although in AM fungi the pro-
duction of the glycoprotein glomalin can decrease AM hyphal
turn over times significantly. Glomalin binds the soil matrix
forming a soil aggregate within which AM hyphae are trapped
and are slow to decompose, having an estimated residence time
of 6–42 years (Rillig, 2004). These soil aggregates represent more
the 5% of total soil C, significantly contributing to long term
soil C sequestration (Wright and Upadhyaya, 1998; Rillig et al.,
2001). However, the grazing of AM fungi is also higher than ECM
because of the thin walls of AM fungi, which reduces residence
times of this C in soil (Klironomos and Kendrick, 1996). Cheng
et al. (2012) recently suggested that AM fungi diminish rather
than enhance soil C pools in the short-term, as a result of acceler-
ated decomposition of litter, when sites are exposed to elevated
CO2. Although ECM production of proteolytic and lignolytic
enzymes enables increased degradation of SOM (releasing more
C) relative to AM (Read, 1992; Chalot and Brun, 1998), the recent
study by Clemmensen et al. (2013) has suggested that accumula-
tion and preservation of root and root-associated fungal residues
is responsible for up to two-thirds of the C sequestered in boreal
forests. This suggests that ECM dominated soils are more likely
to sequester soil C, at least in the short term. However, long-term
effects (decadal) may be qualitatively different from short-term
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effects; specifically there may be a long-term gain in recalcitrant
compounds (Verbruggen et al., 2012).

ECM differ in nutrient uptake and transfer rates, altering the
net primary production (NPP) of trees and may ultimately influ-
ence ecosystem C-cycling and C sequestration (Burgess et al.,
1993). The ability of ECM to promote tree NPP varies depending
on the extent of root colonization, the type of hyphae (Colpaert
et al., 1992; Thomson et al., 1994) and the ability of the hyphae
to acquire and transfer nutrients to the tree (Agerer, 2001). ECM
fungi also have broad enzymatic capabilities (Chalot and Brun,
1998) that allow them to decompose labile and recalcitrant com-
ponents of SOM, access organic sources of N, and transfer large
amounts of N to host plants (Hobbie and Hobbie, 2006). AM
fungi can also acquire substantial N from SOM (Hodge et al.,
2010; Whiteside et al., 2012), although they do not have as broad
an N-based enzymatic capability and appear to transfer only a
small fraction of their host plants demand for N (Hodge and
Fitter, 2010). This is particularly evident in dry soil conditions
when N transport by roots is restricted, but soil N levels are
still high (Tobar et al., 1994; Govindarajulu et al., 2005). There
is some evidence that AM hyphae hydrolyze organic C at their
root tips (Koide and Kabir, 2000), but there is limited evidence
of AM derived phosphatases in the mycorrhizosphere along the
hyphae (Joner et al., 2000). Belowground C allocation in AM-
fungal-dominated ecosystems may not return sufficient N (or
P) to offset the C investment by the tree, limiting the increase
in NPP associated with greater atmospheric CO2 concentrations
(Drake et al., 2011). Turnover of SOM has been shown to be faster
in forest stands with AM mycorrhizal associations compared to
ECM (Vesterdal et al., 2012). Phillips et al. (2013) proposed that
forests dominated by AM and ECM associated trees vary in their
C cycling and nutrient acquisition and may respond to global
changes in predictable ways. They have proposed a new frame-
work for predicting these variations in biogeochemical processes
between forests [the Mycorrhizal-Associated Nutrient Economy
model (MANE)] using forest inventory analysis maintained by
the US Forest Service and previously described mycorrhizal des-
ignations (Brundrett et al., 1990; Wang and Qui, 2006). AM-
dominated forest stands will have an inorganic nutrient economy
resulting from elevated rates of C, N, and P mineralization and
high quality litter. In contrast, ECM-dominated forest stands will
have an organic nutrient economy as a result of slow rates of C, N,
and P turnover and a lower quality litter. Thus further supports
the hypothesis that ECM dominant forests will sequester more C.

ECM have the potential to act as a strong C sink, acquiring
large amounts of C from their plant hosts (Smith and Read, 2008).
The ECM then move the plant C to their hyphal tips, generating
new biomass and exuding various compounds for nutrient acqui-
sition. This movement of C can be a significant transport of plant
C beyond the rhizosphere (Norton et al., 1990; Erland et al., 1991;
Finlay and Söderström, 1992), and the recalcitrant chitinous cell
wall of the mycelium will remain in the soil for months (Setälä
et al., 1999; Treseder and Allen, 2000). The life-span of ECM
root tips may be anywhere from 3 to 22 months (Orlov, 1960;
Majdi et al., 2001), and may increase with soil depth (Pritchard
et al., 2008a; McCormack et al., 2010). The consequences of C
movement throughout the soil via hyphae is only beginning to

be understood. Carbon will be transported out of the rhizo-
sphere, moving as little as a few centimeters to as much as tens
of meters (Gryta et al., 1997; Dunham et al., 2003; Murata et al.,
2005; Churchland et al., 2012). However, long-distance, contin-
uous, transport of C in hyphae is likely small as EMM are often
fragmented, due to foraging by soil fauna (Dahlberg and Stenlid,
1995) and there are impermeable cell walls that form physiologi-
cally separated regions along hyphae (Olsson, 1999). However, C
movement along hyphae would be very difficult to measure, and
the potential impacts of the movement on C sequestration is large.
Depending on forest type, climate and measurement methods,
estimates of fungal biomass in ECM root tips can range from 20–
10,000 kg/ha (Fogel and Hunt, 1979; Vogt et al., 1982; Dahlberg
et al., 1997; Satomura et al., 2003; Sims et al., 2007; Helmisaari
et al., 2009; Okada et al., 2011). The majority of this biomass
is found in the forest floor and organic soil layers (Bååth et al.,
2004; Wallander et al., 2004; Göransson et al., 2006), and consti-
tute up to 1/3 of the total microbial biomass in forests (Swedish
conifer forest; Högberg and Högberg, 2002). A recent study by
Clemmensen et al. (2013) determined that 50–70% of stored C
belowground was derived from root and root-associated microor-
ganisms. Using 14C bomb-carbon modeling Clemmensen et al.
(2013) found preservation of fungal residues in late-successional
forests and in particular root-associated fungi, not saprotrophs,
are the important regulators of ecosystem C dynamics. The sheer
volume of tree C allocated belowground, and the ability of this
C to move throughout the soil profile and soil ecosystem, shows
how important it is to determine accurate C models of forests and
other mycorrhizal-dominated soil ecosystems.

CONCLUSIONS
Carbon allocation to mycorrhizal hyphae enhances the degree
to which tree C can impact soil microbial communities and
soil C cycling. Different mycorrhizal morphotypes will vary the
spatial distribution of this C considerably, although the vast, del-
icate nature of mycorrhizal hyphae makes this a difficult area
of study. The greater C allocation to mycorrhizal roots, coupled
with slower turnover times of mycorrhizal roots compared to
non-mycorrhizal roots, hints at the potential of mycorrhizal asso-
ciations to increase C sequestration in soil. However, differences
between ECM and AM may impact soil C sequestration. ECM
roots have longer turnover times than AM, and, due to their
chitinous cell walls, are less likely to be grazed by fauna. Recent
improvements in stable-isotope labeling and probing methods
have resulted in a better understanding of the quantity and qual-
ity of C exuded belowground and spatial and temporal dynamics
of C flow in forest soil. In addition whole-genome sequencing is
showing us the large suite of important genes and signals involved
in symbiotic associations. These new techniques should enable
great strides to be made on our understanding of the role of
different mycorrhizal functional groups in forest C cycling. We
suggest the next step in developing this understanding would be
tracing the flow C throughout the different hyphal morphotypes
and measuring turnover times of this C to establish how ECM
and AM distribute C in forest soil. This could be done through
a combination of stable-isotope labeling and probing techniques
conducted in large-scale controlled conditions, such as a biotron,
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coupled with nanosims technology to increase sensitivity and iso-
topic detection at high spatial resolution. We may then be able to
determine the consequences of these variations for C-cycling and
C sequestration.
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