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We have observed how the ciliate Paramecium attempts to retreat from the dead-end
of a long capillary that is too narrow for turning. After many trial-and-error episodes
of short-term backward swimming (SBS), which is the conventional avoidance behavior
exhibited in free swimming when an obstacle is faced, long-term backward swimming
(LBS) that lasted five to ten times longer was developed. LBS may have a beneficial
effect for complete withdrawal from the capillary space, although in our experiment
it was impossible for the organism to do so due to the capillary length. In order to
identify a physically possible mechanism for LBS, we propose model equations for
the membrane potential of Hodgkin—Huxley type, which describe the control of ciliary
movement. The physiological implications and physical mechanism of the development of
LBS are discussed.
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1. INTRODUCTION

It is not trivial to study how unicellular organisms tackle a
problem, as they often try different behaviors instead of previ-
ously unsuccessful behaviors to solve dilemmas. One of the most
important issues to be addressed here is what types of behavior
can be induced and how such behavioral options appear in terms
of information processing in the cell. It is interesting to iden-
tify whether mechanisms of information processing are based on
mechanical equations of motion, because in some sense the phys-
ical basis of an adaptation or learning process could be suggested
(Corning et al., 1973; Bray, 2009).

Aneural organisms such as protozoa and plants have been well
studied within the context of neurobiology (Eisenstein, 1975).
Comparative studies show the similarity among them; learning
and habitation behaviors often develop in ciliates and plants in
response to external stimulation and environmental conditions.
Paramecium and Stentor are some of the most well-studied model
microorganisms. The excitable cell membrane of Paramecium
bears interesting similarity to that of neurons in higher animals
(Hamilton, 1975; Wood, 1975).

Based on many electrophysiological studies, dynamic changes
in membrane potential in Paramecium can be described by the
highly non-linear differential equations of the Hodgkin—Huxley
type, which was originally proposed for neuron in squid. For
Paramecium, some of the equations of motion relevant to the
membrane potential have already been well established; they
involve the electrophysiological properties of the potassium and
calcium channels, which are the main contributors to the mem-
brane potential in Paramecium.

In fact, the membrane potential is closely related to swim-
ming speed and direction in Paramecium. The swimming obeys

collective motion of beating cilia and this collective motion is
regulated by the membrane potential. Y. Naitoh concludes that
the ciliary motion and the membrane potential are nearly in one-
to-one-correspondence (Naitoh and Sugino, 1984). An important
question arises then: is the mechanism of learning and habita-
tion understood by means of Hodgkin—Huxley type equations for
membrane potential in Paramecium? Here we will consider the
question, shedding light on a retreating behavior from a capillary
space. An answer obtained in this report is positive.

When a forward swimming Paramecium collides with a solid
object, the specimen first swims backward for a short distance
because the beating direction of the cilia is temporarily reversed
(Eckert, 1972; Naitoh, 1974; Naitoh and Sugino, 1984). The cilia
then gradually resume beating in their original direction, and the
specimen begins to swim forward again. This behavioral response
is known as the avoidance response, which is an innate reflex
action. In the early 1900s, Smith (1908) and Day and Bentley
(1911) observed the swimming of Paramecium in a capillary tube.
The Paramecium initially showed a simple avoidance response
at the closed end of capillary tube, because it was difficult for
the organism to turn around in the narrow space of the cap-
illary. After this avoidance action had been repeated a number
of times, the Paramecium exhibited novel behavior; the organ-
ism folded up its own body very tightly and successfully turned
in the confined space. This observation subsequently attracted
much attention from researchers because it implied the devel-
opment of new behavior. Development of new behaviors had
been only observed for higher animals and was believed to be a
characteristic of intelligence (St John and Corning, 1973).

It is known that backward swimming in Paramecium depends
only on depolarization of the electrical potential in the cellular
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membrane (Eckert, 1972). More specifically, the Ca?* current
can reverse the rotation of the ciliary beat and thus regulate
the duration of backward swimming. The relationship between
this behavior and the membrane potential in Paramecium has
been studied using electrophysiological measurements by Naitoh
(1974); Naitoh and Sugino (1984).

In this report, we describe how the ciliate Paramecium
attempted to retreat from the dead-end of a capillary that was too
narrow in which to turn. In addition to the conventional avoid-
ance behavior of short-term backward swimming (SBS) when an
obstacle is faced during free swimming, we find emergent new
avoidance behavior: long-term backward swimming (LBS) that
lasted five to ten times longer than SBS. We next analyze the
dynamical properties of the model equation for the membrane
potential and consider a possible mechanism for the LBS. Finally,
we discuss the physiological implications of episodes of SBS and
LBS and propose a physical mechanism for the development of
these two types of behavior.

2. ORGANISMS AND EXPERIMENTAL METHODS

Specimens of Paramecium were grown at room temperature in a
decocted liquid extracted from straw. This was exchanged with
the assay medium [1.0 mM Tris-HCI (pH = 7.2), 1.0 mM CaCl,,
2.0-20.0 mM KCl] by using a narrow glass pipette 3 h before the
test.

Figure 1 shows the experimental setup used for the behavioral
test of Paramecium in a dead-ended capillary of length 40-50 mm.
The capillary had an internal diameter of 0.08 mm, which is about
twice the width of the protozoan body, and was used in the hor-
izontal orientation. At the beginning of a trial, an individual
Paramecium was collected with a narrow glass pipet and placed
in the capillary filled with the assay medium. The ends of the
capillary were then closed with mineral oil in order to confine
the Paramecium inside. Each specimen was used only once in all
experiments.

The specimens were observed using a stereomicroscope
(Olympus SZX16). Microscopic video images were taken using
a CCD camera and recorded by a video camera. The video images
were saved in AVI format on a personal computer before analysis
with the free software NIH image].

3. BEHAVIOR OF PARAMECIUM IN A DEAD-ENDED
CAPILLARY
3.1. TWO TYPES OF BACKWARD SWIMMING OF PARAMECIUM IN A
DEAD-ENDED CAPILLARY
Figure 2 shows typical behavior of a specimen in a dead-ended
capillary [(KCl) = 4 mM]. Figure 2A shows a time-course of the
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FIGURE 1 | Experimental setup.

distance from the capillary end. When the forward swimming
Paramecium bumped against the capillary end, the specimen
began to swim backward before reversing direction and swim-
ming forward again. This behavior was repeated many times.
Shortly after the first collision with the capillary end (in the region
labeled T1 in Figure 2), the backward swimming distance was
0.3-0.5 mm, which corresponds to one to two times the length of
the body. The period of backward swimming was 2—5 s. The back-
ward swimming distance gradually became longer (region T2 in
Figure 2A), and the period increased to 5-10s. Finally, in region
T3 in Figure 2A, the distance reached 3—4 mm and the period
increased to 5-15s. Figure 2B shows the distribution of back-
ward swimming distances in Figure 2A. Two peaks are present at
0.3-0.5 mm and 3—4 mm. This behavior was observed in 13 of 15
tested individuals under the same experimental conditions.

These results imply that Paramecium exhibits two types of
backward swimming, which are distinguishable by their distances
and periods. The first type can be referred to as short-term back-
ward swimming (SBS) with distances of 0.3—1 mm and periods of
2-10s. The second type is long-term backward swimming (LBS)
with distances of 3-4 mm and periods of 10-15s.

3.2. EFFECT OF LONG-TERM BACKWARD SWIMMING ON
CONCENTRATION OF POTASSIUM IONS

Figure 3 shows effect of potassium ion concentration (2, 4, 8, and
20 mM) on backward swimming of Paramecium in a dead-ended
capillary. Figure 3A shows the trajectory of backward and forward
swimming motions in the time and one-dimensional space plot,
and the distance of backward swimming was measured from the
swimming trajectory. The statistical occurrence of this distance
was shown in Figure 3B. They had peaks at 0.3—1 mm (open tri-
angles in Figure 3B) and 3—4 mm (closed triangles in Figure 3B)
at 2, 4, and 8 mM, and there was a single peak at 2 mm (closed
triangles in Figure 3B) at 20 mM. In Figure 3C, the distribution
of backward swimming periods is shown for each K* concentra-
tion; at 2, 4, and 8 mM there were peaks at 3-9 s (open triangles
in Figure 3C), and 10-15s (closed triangles in Figure 3C), and
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FIGURE 2 | Typical behavior of Paramecium in a dead-ended capillary.
(A) Time-course of distance from capillary end. (B) Distribution of backward
swimming distances.
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FIGURE 3 | Effect of potassium ion concentration on backward
swimming (BS) of Paramecium in a dead-ended capillary. (A)
Time-courses of distance from capillary end. (B) Distribution of backward
swimming distances. (C) Distribution of time periods of backward swimming.
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(D) Dependence of LBS distance on potassium ion concentration. (B-D) The
number of individuals at 2, 4, 8, and 20 mM of potassium ions was 3, 13, 3,
and 3, respectively. Open and closed triangles show the peak of SBS and
LBS, respectively.

at 20mM there was a single peak at 17s (closed triangles in
Figure 3C). Figure 3D shows the dependency of LBS distance on
potassium ion concentration. The LBS distance decreased with
increasing concentration.

In summary, Paramecium in a dead-ended capillary exhibited
both SBS and LBS at KT concentrations of 2-8 mM, and only LBS
at 20 mM.

4. MATHEMATICAL MODELING OF LONG-TERM BACKWARD

SWIMMING IN PARAMECIUM
4.1. BEHAVIORAL MODEL FOR PARAMECIUM BASED ON

HODGKIN-HUXLEY-TYPE EQUATION

The experimental results described above provide clear evi-
dence that repeated mechanical stimulus in a dead-ended
capillary can increase the distance of backward swimming
in Paramecium. The modification of behavior in Paramecium
is a novel behavior, which develops from the restriction of
the moving region. This implies that there is an adaptive
capacity for spatial navigation in Paramecium. The impor-
tant thing for understanding such behaviors or capaci-
ties in organisms is an understanding of the physiological
mechanism.

The movement of cilia occurs due to the ciliary motion.
The ciliary motion is regulated by the membrane potential
change or the biochemical reactions in the cell and the cil-
ium. In Paramecium the relationship between the behaviors and
the membrane potential changes has been well studied (Eckert,
1972; Naitoh, 1974; Naitoh and Sugino, 1984). Therefore, we
now attempt to understand the underlying mechanisms of these
behaviors in Paramecium through mathematical modeling of
membrane potential change.

Based on the Hodgkin—Huxley-type model for the excitation
dynamics of membrane potentials (Hodgkin and Huxley, 1952;
Naitoh and Sugino, 1984), we propose a simplified model to
explain the behavior observed in our biological experiment. In
the mathematical modeling that follows we consider only the
case of LBS, even though the experiments also revealed SBS.
Before constructing the model, we explain the mechanism of

the membrane potential response in Paramecium induced by
mechanical stimulus.

The swimming behavior of Paramecium depends on its cil-
iary motion, which is in turn controlled by a membrane potential
caused mainly by the difference in concentration of Ca>* and K+
between the interior and exterior of the cell. The mechanism by
which the membrane potential changes is essentially the same as
that in nerve cells and muscle cells, although the ionic species
involved are different.

When the forward swimming Paramecium collides with a solid
object, extracellular Ca®>* ions flow into the cell, mediated by
opening of the mechano-sensitive Ca?t channels that are dis-
tributed in the anterior region of the cell (Ogura and Machemer,
1980; Satow et al., 1983; Machemer and Machemer-Réhnisch,
1984; Tominaga and Naitoh, 1994). This depolarizes the mem-
brane potential. The depolarized membrane is more permeable
to Ca?* ions due to opening of the voltage-sensitive Ca’t chan-
nels, which are localized in cilia. This results in a large regenerative
depolarization (Dunlap, 1977; Machemer and Ogura, 1979). The
increased concentration of Ca?" in cilia leads to the reversal of
ciliary beating and hence to backward swimming. The increased
membrane potential also opens the voltage-sensitive K chan-
nels, allowing intracellular K* ions to flow out of the cell. This
outflow leads to repolarization of the membrane. The cilia grad-
ually resume their original direction of beating as the membrane
potential decreases, and the Paramecium begins to swim forward
again. The duration time of backward swimming corresponds to
the duration time of Ca?* current flow.

Naitoh and Sugino (1984) have reported that the avoidance
response of Paramecium, which corresponds to SBS in our report,
can be represented by a Hodgkin—Huxley-type equation on the
basis of the above scenario for the physiological mechanism of
backward swimming. However, the mechanism of the membrane
response to repeated current stimuli is unclear. Naitoh (1990) has
suggested that Ca’t channels with slow time constants (which
deactivate slowly) might carry Ca’* current after the action
potential has gone, even though Ca?* channels with fast and slow
time constants are the same physically. Hinrichsen et al. (1984)
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reported that the backward swimming of a mutant specimen of
Paramecium, whose Ca®>* current deactivated poorly, persisted
for longer under high concentrations of K* ions than that of
wild-type Paramecium.

According to this line of understanding, we can assume that
the time constants of the Ca?* channels in Paramecium can be
changed by the stimulus. LBS is induced by the Ca?* current,
which is deactivated slowly due to Ca?* channels with slow time
constants that remain activated after the action potential is gone.
We also assume that the membrane potential in the cell corre-
sponds to that in the cilia without regard to the localization of
Ca®* channels for simplicity. We formulated an equation for the
membrane potential relevant to LBS in Paramecium (regions
T2 and T3 in Figure2A). The time-course of the membrane
potential can be expressed as:

Cn V() = 8()Lapp(t) — Ica(t, V)
_IK(ta V) _Ileak(ta V) (1)

Here ¢ is the time, C,, is the membrane capacitance, § is a func-
tion that switches the outward current, and Iy (t) is the outward
electric current, which corresponds to the mechanical stimulus
applied by bumping against the end of the capillary in our experi-
ment. I, is the Ca?t current, I is the K current, and I}, is the
leak current. These three quantities can be expressed as:

Ica(t, V) = gca(V(t) — Eca)s (2)
Ik(t, V) = gk (V(t) — Ek), (3)
Ileak(tv V) = gleak(v(t) - Eleak), (4)

where gc, and gx are the ionic conductance (the rate of passage
of ions), the definition of which will be given later. g is the
maximum ionic conductance of the leak ion channel. Ec, and
Eg are the equilibrium potentials of Ca?* and K, respectively.
These two quantities can be described by the Nernst equation
(Equation 5) for the diffusion of electric charge. Ej.4 is the equi-
librium potential of the leak ions, and is given approximately by
Equation (6).

Ex = (RT/zF) In([X*"]o/[X*"]) (X € {Ca,K}), (5)

Eteak = (81caEca + 81k Ex)/(8rca + Z1K)- (6)

Here, R is a gas constant, T is the absolute temperature, z is
the ionic valence, and F is the Faraday constant. The parameters
[X?T], and [X*1]; are the extracellular and intracellular con-
centrations of X*T ions, respectively. grc, and gk are the ionic
conductance of the Ca?t and Kt channels, which are insensitive
to changes in the membrane potential.

The Ca** and K+ currents are controlled by the conductance
of the Ca** and K* channels, respectively. The Ca?* conductance
(gca) is described using the activation gate factor m and the deac-
tivation gate factor h. The K™ conductance (gx) is described by
the activation gate factor n. These factors are the variables that
represent the gating of the voltage-sensitive ionic channels.

The occurrence of LBS requires long-term activation of the
Ca?™ channel, because the duration time of backward swimming

in Paramecium depends on the time for which Ca?* current flows.
We assume that the Ca?* channels are in one of two modes, with
a fast or slow time constant with respect to the deactivation pro-
cess. We now introduce two more parameters, gc,s and P(t), to
represent the conductance and occurrence rate of Ca** chan-
nels with the slow time constant, respectively. We include these
parameters in the original equation for Ca?* conductance in the
Hodgkin—Huxley-type model for Paramecium reported by Naitoh
and Sugino (1984). The definition of P(t) will be given later. The
total Ca®* conductance is given as the sum of the products of the
occurrence rate with the conductance of the Ca?* channels with
fast and slow time constants. The resulting equations for ionic
conductance are as follows:

gca(t, V) = (1 = P(t))gcar(t, V) + P(1)gcas(t, V), (7)
gcar(t, V) = geamp(V)* {1 — (1 — he(V))}, (8)
geas(t, V) = Zeams(V)*{1 — (1 = hs(V))*}, (9)

gk (t, V) = gxn(V), (10)

where gc,r is the Ca?t conductance with the fast time constant.
gcqa and gx are the maximum Ca?t and Kt conductance of the
membrane when all the Ca?* and Kt channels are activated,
respectively. jr and js (j € {m, h}) are the gate variables for the
channels with fast and slow time constants. The equations for the
gate variables are as follows:

x = ax(V)(1 —x) — Bc(V)x,

x € {mp, ms, hg, hs, n}, (11)
where x is the opening rate of the gates. o and B are functions of
the membrane potential, which are determined by fitting the rate
constants using analytical expressions as follows:

Uy (V) = —0.0224(V + 2.5809)

J(exp( — (V +2.5809)/0.7331) — 1), (12
Bup(V) = 0.1426 exp( — V/39.3464), 13
aps(V) = 0.1exp( —

(12)
( (13)
( (V +30)/5), (14)
B (V) = 1/(exp((38.2866 — V)/30.9397) + 1),  (15)
a,(V) = 0.0375(58.5845 — V) (16)

/(exp((58.5845 — V)/8.16699) — 1),

Bn(V) = 0.1015exp( — V/68.0968), (17)
O‘js(V) = ajP(V)Va ﬁjs(V) = ﬂjF(V)V,
j € {m,h}, (18)
_|ré=o,
B {1 §=1 (19)

Here, y (0 < y < 1) is a constant. For each fixed V in Equation
(11), the time constants (t(x € {mp, ms, hp, hs, n})) and
equilibrium values (xoo (x € {mp, ms, hp, hs, n})) of the gate
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variables are given as follows:

Te=1/(ax + By),  Xoo = ax/(ax + By). (20)

P (0 < P < 1) is the rate of the Ca®T channel with the slow time
constant in the deactivation process. The Ca’* channels with
the fast and slow time constants are the same physically, and it
is assumed that the mode of the Ca’* channel is changed by
the stimulus-induced membrane potential response. The relevant
equation is as follows:

P(t) = (P(t) + AP) exp( — (t — ti)/7p), (21)

where t; is the finishing time of the i stimulation, AP is the max-
imum rate of the Ca?T channel changing the mode, and 7p is the
decay time constant of P.

The numerical parameters and initial values for our pro-
posed model are based on the experimental conditions
and the measurements of membrane potential reported
by Naitoh et al and are as follows: C, =2 [wF/cm?],
Eca = 125 [mV] ([Ca®T]; = 6.06 x 1078 [M], [Ca®t], = 1073
M), Ex=-57~0 [mV] ([K*];=20 [mM], [K¥],
2-20 [mM]), gco=0.1 [mS/cm?], gx =0.8 [mS/cm?],
T =298 [K], R=2.0 (cal/K-mole), F = 23,000 (cal/V-mole),
gca = 0.6667 [mS/cm?], gk = 1.3333 [mS/cm?], Zeqr = 0.42
[mS/cm?], 7 = 0.005-0.05, Cp=0.2, p = 700.0,
V(0) = =30 [mV], mp(V(0)) =0.2911, mg(V(0)) = 0.01,
hp(V(0)) = 0.162, hs(V(0)) = 0.1, n(V(0)) = 0.0163, P(0) = 0,
Lypp = 100.

4.2. SIMULATION OF PROPOSED MODEL FOR BACKWARD SWIMMING
IN PARAMECIUM

We simulated the membrane potential responses when the
outward electric current is injected periodically, because LBS
occurred by repeating the colliding with the end of capillary.
Figure 4A shows time-courses of the membrane potential, the
Ca’* current, the gate parameter mg, and the rate of the Ca?*
channel with the slow time constant when the outward electric
current is injected periodically. Here it was assumed that [K*] =
4mM (Egx = —40mV). When the outward electric current was
injected before all the Ca?t channels with the slow time constant
had returned to the mode with the fast time constant (P > 0), the
rate of the Ca?* channel with the slow time constant increased
gradually. This resulted in an increase in magnitude of the Ca?"
current after the action potential had passed.

Figure 4B shows the dependency of the duration for which
Ca?t current flows (1) on the number of trials (the number of
collisions with the capillary end). The duration time is defined as
the time for which the Ca®* current is smaller than a threshold
value. The duration time increased with the number of trials and
eventually became saturated. The time for which Ca®* current
flows corresponds to the duration time of backward swimming
in Paramecium, and the results of this simulation represent the
behavior displayed during regions T2 and T3 in Figure 2A.

Figure 4C shows the dependency of the duration time of Ca®*
current flow on the equilibrium potential of the K™ ion. The
threshold for this duration time was set to —0.1 (nA) based on the
experimental data reported by Naitoh and Kaneko (1972). The
duration time is maximum at Ex = —40 mV, which corresponds
to [KT] =4 mM.

The maximum value of the duration time of Ca** current flow
depends on the time constants of the gate parameters and on the
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FIGURE 4 | Membrane potential response induced by a periodic channel with the slow time constant (Ex = —40mV). (B) Dependence of
outward flow of current in the presence of a Ca?* channel with the Ca?t current duration time on the number of trials (Ex = —40mV).
the slow time constant. (A) Time dependence of the membrane (C) Dependence of the Ca?* current duration time on the potassium
potential, Ca2™ current, gate parameter (msg), and the rate of the equilibrium potential.
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threshold value of the duration time (data not shown). As shown
in Figure 6B, the time constant of /i, which influences the dura-
tion time of Ca* current flow, reached its maximum value when
the membrane potential was —20 mV, which is the same value
of the resting potential as Ex and Ec, were —40 and —125mV,
respectively. Therefore, when the threshold value for the dura-
tion time is sufficiently low, the Ca?* current-flow duration time
is maximum at Ex = —40 mV as shown in Figure 4C. When the
threshold value for the duration time is sufficiently high, the Ca®*
current-flow duration time decreases with increasing Ex. The lat-
ter case was experimentally observed, as illustrated by the result
in Figure 3D.

4.3. MATHEMATICAL MECHANISM FOR DEVELOPMENT OF LBS

To understand the mechanism of the long-term Cat current,
which is invoked by the Ca?* channel with slow time constant,
we analyzed the relationship between the change of membrane
potential and the move of nullcline.

Figures 5A,B show the stimulus-induced membrane poten-
tial responses in the absence (P = 0) and presence (P = 1) of
Ca’* channels that have slow time constants with respect to the
deactivation process. Figure 6 shows the dependence of the gate
parameters on the membrane potential.

The injection of an outward electric current into the cell pro-
duced a passive exponential membrane depolarization, and a V

nullcline (V = 0) that was shifted from (0) to (1) in Figure 5A.
As the time constant of mp was smaller than those of hr and n
(Figure 6B), both mp and n increased as the membrane potential
became positive, whereas hr decreased (Figure 6A). mp increased
before changes occurred in hp and n. Here Ca%* ions flow into the
cell when the Ca?T channels are opened. The magnitude of the
membrane potential increased with the magnitude of the Ca?*
current.

When the membrane potential became larger than 20 mV, n
began to increase as shown in Figure 6A. Now K* ions flow out
of the cell due to the opening of the Kt channels. The mag-
nitude of the membrane potential was controlled by increasing
the magnitude of the K* current. When the membrane potential
approached Ec,, it began to decrease because the magnitude of
the Ca?* current was small and the magnitude of the K* cur-
rent was large. Although the V nullcline then shifted from (1)
to (2), there was little change in the equilibrium values of the
gate parameters (mr, hp, n) when the magnitude of the outward
electric current was large enough. Therefore, the Ca>* channels
remained in the activated state.

The membrane potential decreased sharply after the outward
electric current was gone, and then the V nullcline shifted from
(2) to (3). As the time constant of mf was smaller than those of hp
and n, the decrease of mp occurred before the decrease of n and
the increase of hr. The Kt current was still carried after the Ca®*t
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current had stopped, and the membrane potential became hyper-
polarized. The V nullcline then shifted from (3) to (4), and the
membrane potential neared the resting state. Paramecium swims
backward while Ca?* current flows due to activation of the Ca?™*
channels.

As shown in Figure 5B, the V nullclines shifted successively
from (5) to (9) in the presence of the Ca?t channel with the slow
time constant (P = 1). In Figure 5B2 it is apparent that the orbit
of the solution was deformed due to the slow time constants of
ms and hg in the deactivation process of the Ca>* channel. As the
time constants of mg and hg were larger than that of #, the Ca2t
current still flowed due to the slow convergence of m and h after
the Kt current had stopped. Although the Ca®* current flowed
while the Ca** channels were activated, because the Ca>* current
was small [(7-8) in Figure 5B], the change in membrane potential
was also small. Therefore, given the presence of Ca?* channels
with the slow time constant, our proposed model reproduces the
Ca?*t current that invokes backward swimming in Paramecium
after the action potential is gone.

5. DISCUSSION

The relationship between the membrane potential, which invokes
ciliary motion, and the behavior of Paramecium is well studied.
Therefore, the behavior of Paramecium is a good example for the
study of physical mechanisms of behavior in organisms in gen-
eral. In this report, we have analyzed the mechanism of LBS using
mechanical equations.

Our experiment shows that two types backward swimming
are exhibited (SBS and LBS) when Paramecium bumps against
the end of the capillary. As SBS is the short-term response with
a period in the range 1-2s, this is the conventional avoidance
response when an obstacle is faced during free swimming. LBS
is the long-term response with a period of 5-15s, and thus repre-
sents a novel type of avoidance behavior. We have shown that LBS
is invoked by the long-term activation of Ca®™ channels, because
LBS occurred even when the potassium equilibrium potential
was zero. Our proposed mathematical model reproduces the
experimentally observed behavior.

Our mathematical modeling allows us to discuss possible
mechanisms for the development of LBS in Paramecium. The
Hodgkin—Huxley-type equation that describes the membrane

potential for behavior in Paramecium does not obey the all-or-
nothing law such as that in nerve cells because the equation has
one stable state, which depends on the extracellular ionic con-
centration and the presence or absence of an outward stimulus
current. Although one might consider that the membrane poten-
tial response can easily be determined, in practice a number of
different responses can be expected due to the presence of three
variables with different time scales in the non-steady state. We
have shown that the long-term non-steady state imposed by the
presence of Ca®* channels with a slow time constant in the deac-
tivation process invoke LBS, which is caused by an increase in the
duration time of Ca** current flow.

The properties of time constants related to Ca?t channels
in living organisms are unclear. However, channel proteins have
rather complex structures and are involved in a number of dif-
ferent reactions, thus it is feasible that Ca%t channels can have
slow time constants. Although the experimental conditions differ
from our experiment, Hennessey and Kung (1985) have reported
that the inactivation of Ca’* currents in Paramecium shows
fast (10 ms range) and slow (10s range) kinetics. It is expected
that these properties will become more clearer through further
electrophysiological measurements and the study of molecular
dynamics.

Our model proposes that the development of LBS is invoked by
a change in the Ca?" channel from the fast time-constant mode
in the deactivation process to the slow time-constant mode. As
this is a reversible physiological change, LBS in Paramecium is
a type of adaptive behavior in a narrow space. We suggest that
small changes in parameters such as the time constant of chan-
nel proteins enable the organism to adapt when confronted with
problematic conditions.

We now briefly discuss the biological implications of LBS,
which represents novel behavior for retreat from a dead-ended
capillary and is induced by repeated collisions with the end of
the capillary. Although SBS facilitates the avoidance of obstacles,
obstacles cannot be avoided in all situations. One such situation
is a dead-ended narrow space, which can also exist in nature. If an
organism is unable to retreat from the narrow space, this becomes
a problem of survival. It is known that, to retreat from the nar-
row space, Paramecia fold their bodies very tightly and somehow
turn even in narrow spaces (Smith, 1908; Day and Bentley, 1911).
This is an emergence of new behavior. When the confined space
was, however, too narrow in which to turn, Paramecia could per-
form LBS as shown in this report. This is another emergence of
new behavior. This switching of behavioral options implies that
Paramecium prefers forward swimming but a qualitatively differ-
ent strategy emerges in the case of impossibility to turn. Such a
long narrow space as tested in this report could be very rare in
nature but the potential ability to evacuate from the long capil-
lary is stored and appears when necessary. With respect to narrow
space of capillary, emergence of new behavior occurs two times:
turning by tightly folding and LBS. Although ciliate Paramecia
are a single-celled organism, they can choose a better way from
a variety of options to avoid difficult situations. A mechanism to
switch these behaviors is an interesting theme from the point of
view evolving behaviors and perhaps primitive intelligences.

It has been debated for many years whether ciliates have the
capacity of associative learning as higher organisms do. When
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Paramecium or Stentor was confined in a vertically fixed capillary
that was closed at the top and opened at the bottom in a water ves-
sel, time to escape from the bottom of the capillary decreased after
escape behaviors were performed repeatedly. Some researchers
have claimed that this escape behavior was associative learning
because two phenomena were associated: (1) “avoiding behavior”
that was induced by the repetitive collisions to the top end, and
(2) “reversal of swimming direction” that resulted in the success
of escape (Bennett and Francis, 1972; Applewhite and Gardner,
1973; Huber et al., 1974). Contrary to this claim, Hinkle and
Wood (1994) put forth a counter-argument that the escape behav-
ior from the vertical capillary was not associative learning. The
reason for their argument was because Stentor tended to gather at
the bottom of capillary even if the exit of capillary was reversed
from the bottom to the top of capillary. Stentor may just prefer to
cluster at the lower ends of capillaries.

As the capillary was fixed horizontally in our experiment, the
preference of vertical direction was not addressed for the escape
movements of swimming organisms. However, our experimental
setup is amenable to examination of associative learning, where,
for instance, the latency of onset and offset of Paramecium escape
behaviors may be modified by iterative learning experiences.
According to our mathematical model proposed in this paper,
such associative learning may be possible. Nevertheless, further
studies are required to determine the temporal and mechanistic
characteristics of any type of associative memory expression. In
terms of conventional ethology, associative learning and memory
might be expressed as operants and the formation of new behav-
iors. Although past studies have attempted to demonstrate oper-
ant conditioning in protozoa (Corning et al., 1973; Eisenstein,
1975), few have been successful when considering criteria estab-
lished from animal research. But we anticipate the ethological
significance of LBS will encourage constructive studies on the
mechanisms of behavioral evolution, such as adaption or learning
processes, and on the cytological physiochemical processes that
may underlie them.
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