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Epstein Barr virus (EBV) causes persistent infection in more than 90% of the human adult
population and is associated with 2% of all tumors in humans. This γ-herpes virus infects
primarily human B and epithelial cells, but it has been reported to be sensed by dendritic
cells (DCs) during primary infection.These activated DCs are thought to contribute to innate
restriction of EBV infection and initiate EBV-specific adaptive immune responses via cross-
priming. The respective evidence and their potential importance for EBV-specific vaccine
development will be discussed in this review.
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INFECTION AND TUMORIGENESIS BY EPSTEIN BARR VIRUS
Epstein Barr virus (EBV) was discovered 50 years ago in a cell line
(EB1) from an African child with Burkitt’s lymphoma (Epstein
et al., 1964). Despite this association with lymphomas and car-
cinomas, including Hodgkin’s lymphoma and nasopharyngeal
carcinoma (Kutok and Wang, 2006; Cesarman, 2014), EBV is car-
ried without symptoms by the vast majority of persistently infected
individuals, which account for more than 90% of the adult human
population (Rickinson et al., 2014). EBV-associated malignancies
arise with increased frequency in immunosuppressed patients,
for example after transplantation (post-transplant lymhoprolif-
erative disease or PTLD), immunosuppressive co-infections such
as HIV, or primary genetic immunodeficiencies (like X-linked
lymphoproliferative disease or XLP). These findings indicate that
asymptomatic chronic infection with EBV results in part from
continuous virus-specific immune control. Mainly cellular immu-
nity by natural killer (NK) and T cells seems to mediate this
immune control (Rickinson et al., 2014), and some EBV-associated
malignancies can even be cured by adoptive transfer of EBV-
specific T-cell lines (Gottschalk et al., 2005). Some evidence has
been provided that dendritic cells (DCs) sense EBV infection
and are involved in the priming of these protective innate and
adaptive immune responses. This evidence and its relevance
for EBV-specific vaccine development will be discussed in this
review.

SELECTIVE HOST CELL TROPISM OF EBV
Dendritic cells are probably not initiating EBV-specific immune
control after getting directly infected by the virus. Although it
has been reported that EBV can enter monocyte precursors of
DCs, no EBV antigen expression could be found in these stud-
ies and only CMV-promoter-driven green fluorescent protein
(GFP) expression of recombinant EBV was detected after infec-
tion (Li et al., 2002; Guerreiro-Cacais et al., 2004). Indeed, the
main host cell of EBV is the human B cell. In healthy EBV car-
riers, memory B cells seem to constitute the site of long-term

persistence (Babcock et al., 1998). Latency 0 in these memory
B cells is associated with no viral protein expression but tran-
scription of EBV encoded small RNAs (EBERs) and micro RNAs
(miRNAs). EBV uses its envelope glycoprotein gp 350 to attach to
complement receptors 1 and 2 (CD35 and CD21) on the sur-
face of B cells, uses gp42 binding to MHC class II molecules
and finally the trimeric complex of gH, gL, and gB for fusion
with the membrane (Connolly et al., 2011). The B-cell com-
partment is reached by EBV after transmission via saliva in the
tonsils. Naïve B-cell infection at these sites is associated with the
expression of eight latent EBV proteins and the non-translated
RNAs (Babcock et al., 2000). This latency III or growth program
drives infected B cells into proliferation and is present in PTLD
and HIV-associated diffuse large B cell lymphomas (DLBCL).
The six EBV nuclear antigen (EBNA1, 2, 3A, 3B, 3C, and LP)
and two latent membrane proteins (LMP1 and LMP2) are suffi-
ciently immunogenic, so that tumors expressing all of these only
emerge under severe immunosuppression. One outcome of this
EBV-driven activation of naïve B cells is thought to be their dif-
ferentiation into germinal center B cells. In these centroblasts
and centrocytes, only three EBV proteins retain their expression
(EBNA1, LMP1, and LMP2; Babcock et al., 2000). This latency II
pattern, which is also found in Hodgkin’s lymphoma, was pro-
posed to rescue EBV-infected B cells from deletion by mimicking
B-cell receptor engagement and T-cell help via CD40 signaling
by LMP2 and LMP1, respectively. Therefore, EBV rescues its
infected B cells from the germinal center reaction in order to
gain access into the long-lived memory B-cell pool. From there,
the virus reactivates into lytic replication and infectious particle
production after B-cell receptor stimulation. Indeed, lytic EBV
replication has primarily been found in plasma cells (Laichalk and
Thorley-Lawson, 2005) and B-cell receptor cross-linking can ini-
tiate replication in some Burkitt’s lymphoma cell lines (Takada,
1984). If this reactivation occurs in mucosal secondary lymphoid
tissues, the virus can be secreted into saliva and transmitted to new
individuals.
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Efficient transmission, however, might require an additional
amplification step in epithelial cells, which have been found to
be preferentially infected by free virus from the basolateral side
(Tugizov et al., 2003). Integrin binding by BMRF2 and gH/gL
for gB-mediated fusion might mediate this epithelial cell infec-
tion and B-cell-produced EBV seems to be particularly good at it
(Borza and Hutt-Fletcher, 2002). This basolateral infection during
shedding into saliva might give rise to the EBV-associated car-
cinomas at mucosal sites, including nasopharyngeal carcinoma.
The biased tropism of EBV toward B and epithelial cells suggests
that DCs are most likely not directly infected by EBV, but process
viral particles and dying EBV-infected B and epithelial cells for
both immune detection of infection and initiation of innate and
adaptive immune responses.

INNATE IMMUNE RECOGNITION OF EBV
Epstein Barr virus is a double-stranded DNA virus of the lym-
phocryptovirus subgroup of γ-herpesviridae. As such, the viral
particle carries double-stranded linear DNA without much methy-
lation, which can be detected by the toll-like receptor (TLR)
9 (Casanova et al., 2011). Indeed, EBV DNA triggers TLR9-
mediated recognition of the virus in plasmacytoid DCs, B cells,
and monocytes (Fiola et al., 2010; Severa et al., 2013; Younesi
et al., 2014). Once EBV enters B cells, it circularizes its DNA to
episomes, which then get heavily methylated (Woellmer et al.,
2012). Therefore, viral DNA of dying EBV-infected B cells
is probably invisible to TLR9. In contrast to mice, human
conventional DCs (cDCs) do not express TLR9 (Iwasaki and
Medzhitov, 2004). Instead TLR2 and 3 have been implicated in
EBV recognition by macrophages and conventional DCs (Gau-
dreault et al., 2007; Ariza et al., 2009; Iwakiri et al., 2009). While
the TLR2 ligand of EBV remains enigmatic, EBERs have been
proposed as TLR3 ligands (Iwakiri et al., 2009). It appears that
EBERs are released from infected B cells in complex with the
EBER-binding protein La. Apart from TLR3-binding, EBERs
can also stimulate the intracellular pathogen associated molec-
ular pattern (PAMP) receptor retinoic acid-inducible gene 1
(RIG-I; Samanta et al., 2006). Both TLR-3 and RIG-I recognize
double-stranded RNA (dsRNA) and EBERs seem to form hair-
pin structures that allow their recognition by these two intra-
and extracellular receptors for dsRNA. Therefore, EBV seems
to stimulate both pDCs and cDCs by viral DNA in viral par-
ticles and viral RNA released from infected cells, respectively
(Figure 1).

INNATE IMMUNE CONTROL OF EBV
These DC populations seem to play significant roles during pri-
mary EBV infection. Along these lines pDCs are potent sources
of type I interferons (IFNα and β; Reizis et al., 2011). In par-
ticular, human pDCs produce high levels of IFNα2 and α14
(Meixlsperger et al., 2013). IFNα and β have been found to restrict
B-cell transformation by EBV during the first 24 h of infection
(Lotz et al., 1985). While this study suggested that the protective
type I IFN effect directly targeted infected B cells, a PBMC trans-
fer model into SCID mice suggested that the IFNα/β-dependent
effect was mediated via NK cell activation and EBV-specific mem-
ory T cells (Lim et al., 2006). In this study, PBMC reconstituted

FIGURE 1 | Plasmacytoid, conventional and monocyte-derived DCs

might contribute to EBV specific immune control. Unmethylated DNA
of EBV particles and EBERs of EBV-infected B cells (LCLs) mature
plasmacytoid (pDCs) and conventional or monocyte-derived DCs (cDCs or
moDCs) via TLR9 or TLR3 stimulation, respectively. These mature pDC and
cDC or moDC populations activate natural killer (NK) and T cells via type I
interferon (IFNα/β) or interleukin 12 (IL-12) secretion, respectively. For T-cell
stimulation by MHC presentation they acquire EBV antigens either via
phagocytosis of dying LCLs (for cDCs and moDCs) or trogocytosis of EBV
epitope presenting MHC complexes (pDCs). The activated NK and primed T
cells then delay primary EBV infection via IFNγ and kill infected cells. PDCs
can also delay primary EBV infection via IFNα/β production.

SCID mice were challenged with EBV infection with and without
prior deletion or enrichment of pDCs in the transferred PBMCs.
They observed pDC- and TLR9-dependent IFNα production in
response to primary EBV infection. Furthermore, EBV-induced
lymphoma formation was observed after pDC depletion and this
was mediated by decreased NK and EBV-specific memory T-cell
activation in the transferred PBMCs of healthy EBV carriers.
Therefore, type I IFN, probably produced primarily by pDCs
during primary EBV infection, seems to have a protective func-
tion against EBV-induced B-cell transformation, early by directly
targeting B cells and later by activating protective lymphocyte
populations.

One of these protective lymphocyte populations are NK cells.
Their activity is stimulated by DCs during viral infections in
mice (Lucas et al., 2007). In particular, surface presentation of
IL-15 is important for this NK cell activation by DCs. Similarly,
human DCs are able to activated NK cells (Ferlazzo et al., 2002).
IL-12, IL-15, and IFNα are primarily involved in NK cell activa-
tion by human monocyte-derived DCs (moDCs; Ferlazzo et al.,
2004; Strowig et al., 2008). This NK cell activation occurs most
potently after TLR3-mediated maturation of moDCs and prefer-
entially stimulates CD56bright killer immunoglobulin-like receptor
(KIR)-negative NK cells (Brilot et al., 2007; Strowig et al., 2008).
In tonsils, the primary site of EBV infection, this NK cell sub-
set produces large amounts of type II IFN (IFN; Strowig et al.,
2008; Lünemann et al., 2013). IFNγ can restrict primary B-cell
transformation by EBV during the first 3–4 days (Lotz et al.,
1985; Strowig et al., 2008; Lünemann et al., 2013). It seems to
delay LMP1 expression during the first 3–5 days after primary
EBV infection of B cells (Strowig et al., 2008). Accordingly, DC
stimulation of NK cells restricts B-cell transformation by EBV
in vitro, especially when the NK cells are derived from tonsils
and are part of the CD56brightKIR− NK cell subset (Strowig et al.,
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2008; Lünemann et al., 2013). Apart from this cytokine-mediated
delay of B-cell transformation, NK cells might also directly kill
infected B cells undergoing lytic EBV replication (Pappworth et al.,
2007; Chijioke et al., 2013). This restricts lytically EBV replicat-
ing B cells in vitro and in vivo in a mouse model of human
immune component reconstitution after CD34+ hematopoietic
progenitor cell (HPC) transfer (Pappworth et al., 2007; Chijioke
et al., 2013). In this mouse model, NK cell activation can be
also achieved by TLR3 agonist injection (Strowig et al., 2010)
and this adjuvant elicits potent DC maturation (Meixlsperger
et al., 2013). Thus, DCs mediate innate immune control dur-
ing EBV infection by IFNα/β production of pDCs and activate
NK cells that delay B-cell transformation via IFNγ and elim-
inate lytic EBV replication by killing of virus-producing cells
(Figure 1).

DCs IN THE PRIMING OF ADAPTIVE EBV-SPECIFIC IMMUNE
CONTROL
Apart from innate lymphocyte activation during EBV infec-
tion, DCs are most likely also involved in the priming of
EBV-specific, protective T-cell responses (Rickinson et al., 2014).
Indeed, in vitro EBV infection of B cells is very inefficient
in priming EBV-specific T cells from PBMCs of EBV-negative
donors (Bickham et al., 2003). However, addition of autolo-
gous moDCs allows priming of EBV-specific T cells in these
cultures. For this purpose, DCs presumably cross-present
EBV antigens from dying EBV-infected B cells in these cul-
tures. Indeed, such dying EBV-transformed B cells can be
presented on MHC class I and II molecules of moDCs for
CD8+ and CD4+ T-cell stimulation, respectively (Münz et al.,
2000; Subklewe et al., 2001). However, some observations call
this prominent role of DCs in the priming of EBV-specific
T-cell responses into question. For example, EBV-transformed
lymphoblastoid B cell lines (LCLs) were able to prime EBV-
specific CD4+ T cells at low frequencies, but these could be
expanded after CD25 targeted selection (Savoldo et al., 2002).
Furthermore, it was found that CD8+ T cells primarily recog-
nize early, but not late lytic EBV antigens, apart from some
prominent latent EBV antigens (Hislop et al., 2007). Indeed,
only subdominant CD8+ T-cell responses were documented
against late lytic EBV antigens (Abbott et al., 2013), while CD4+
T-cell responses against late lytic antigens can be observed
(Adhikary et al., 2006). Since EBV encoded inhibitors of MHC
class I antigen presentation get expressed during early viral
gene expression and, therefore, would primarily prevent late
lytic antigen presentation on MHC class I, this hierarchy in
lytic EBV antigen recognition by CD8+ T cells was taken as
an indication that EBV infected cells prime this CD8+ T-cell
hierarchy. An alternative explanation, however, could be that
DCs prime these different EBV specificities similarly by cross-
presentation, and the preference for early lytic EBV antigen
recognition then is established by amplification of the respec-
tive T-cell responses via restimulation by EBV-infected B cells.
A similar amplification was recently observed for the EBNA1
antigen targeted to the endocytic receptor DEC-205 on DCs
and B cells (Leung et al., 2013b). Among the human DC sub-
sets, priming of EBV-specific T-cell responses has been ascribed

or demonstrated primarily for phagocytic DC subsets. These
would include CD1c+ or CD141+ cDCs, and moDCs. How-
ever, a recent study also reported that pDCs might trogocytose
MHC class I peptide complexes, presenting EBV epitopes (Bonac-
corsi et al., 2014). This cross-dressing with LCL-derived MHC
class I complexes is also sufficient to stimulate EBV-specific
CD8+ T cells. Therefore, different DC populations could con-
tribute to EBV-specific T-cell priming to establish protective
EBV-specific immune control in healthy carriers of this human
tumor virus.

CONCLUSION AND OUTLOOK
These EBV-specific T cells are clearly the protective entity dur-
ing the adaptive immune responses against EBV (Rickinson et al.,
2014). How they are primed requires further investigation, because
vaccination against EBV should probably engage the respective
DC populations both by adjuvant choice as well as antigen tar-
geting to the relevant DC subsets. Indeed with the advent of
mice with reconstituted human immune system compartments,
which recapitulate primary EBV infection and EBV-associated
lymphomagenesis (Leung et al., 2013a), it becomes feasible to
define DC populations that are involved in the priming of pro-
tective immune responses in vivo. In this preclinical model, CD4+
and CD8+ T cells mediate immune control over EBV infection
and B-cell lymphoma development (Strowig et al., 2009) and pro-
tective EBV-specific CD4+ T cells can be primed with vaccine
candidates (Gurer et al., 2008; Meixlsperger et al., 2013). There-
fore, it should be feasible to define important DC populations that
initiate EBV-specific immune control by for example antibody
depletion (Meixlsperger et al., 2013), in order to then refine vac-
cination approaches that protect from EBV infection challenge.
With such smart vaccine formulations that are directed against
the most relevant DC populations EBV negative adolescents with
a high risk to suffer symptomatic EBV infection could be vacci-
nated and their predisposition to develop Hodgkin’s lymphoma or
multiple sclerosis attenuated (Hjalgrim et al., 2003; Thacker et al.,
2006).
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