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In the context of understanding and predicting the effects of human-induced
environmental change (EC) on biodiversity (BD), and the consequences of BD change for
ecosystem functioning (EF), microbial ecologists face the challenge of linking individual
level variability in functional traits to larger-scale ecosystem processes. Since lower
level BD at genetic, individual, and population levels largely determines the functionality
and resilience of natural populations and communities, individual level measures
promise to link EC-induced physiological, ecological, and evolutionary responses to EF.
Intraspecific trait differences, while representing among the least-understood aspects
of natural microbial communities, have recently become easier to measure due to new
technology. For example, recent advance in scanning flow-cytometry (SCF), automation
of phytoplankton sampling and integration with environmental sensors allow to measure
morphological and physiological traits of individual algae with high spatial and temporal
resolution. Here we present emerging features of automated SFC data from natural
phytoplankton communities and the opportunities that they provide for understanding
the functioning of complex aquatic microbial communities. We highlight some current
limitations and future needs, particularly focusing on the large amount of individual level
data that, for the purpose of understanding the EC-BD-EF link, need to be translated
into meaningful BD indices. We review the available functional diversity (FD) indices
that, despite having been designed for mean trait values at the species level, can
be adapted to individual-based trait data and provide links to ecological theory. We
conclude that, considering some computational, mathematical and ecological issues, a
set of multi-dimensional indices that address richness, evenness and divergence in overall
community trait space represent the most promising BD metrics to study EC-BD-EF using
individual level data.
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GENERAL INTRODUCTION
Microbial ecology is currently undergoing a dramatic change,
with potential implications for theory and practice in general
microbiology, community and ecosystem ecology. New technolo-
gies (e.g., secondary-ion mass spectrometry, flow-cytometry, next
generation sequencing, and single cell genomics) are uncovering
vast genetic and functional diversity (FD), and novel microbial
groups and functions (Prosser et al., 2007; Rinke et al., 2013;
Wessel et al., 2013). Such accumulation of data requires guidance
of sound theory and the application of robust analytical tools to
provide mechanistic insight and, ultimately, predictive power that
is of practical and cross disciplinary value (Prosser et al., 2007).

Abbreviations: FD, functional diversity; BD, biodiversity; EC, environmen-
tal change; EF, ecosystem functioning; SFC, scanning flow-cytometry; FL,
fluorescence.

The application of theory added by an ad-hoc analytical testing
tools is currently limited in large datasets produced by microbial
ecologists.

Here we focus on the challenge of understanding and pre-
dicting the effects environmental change (EC) on biodiversity
(BD), and the consequences of BD change for ecosystem func-
tioning (EF) (Hillebrand and Matthiessen, 2009; Reiss et al., 2009;
Cardinale et al., 2012). Diversity provides functionality and sta-
bility of ecosystem processes, overall determining the resilience
and adaptive capacity of an ecosystem to change (Norberg et al.,
2001; Loreau, 2010; Naeem et al., 2012). Comprehensive reviews
in several fields of ecology and ecosystem science have highlighted
a multitude of research needs in EC-BD-EF context (Naeem and
Wright, 2003; Arkema et al., 2006; Suding et al., 2008; Cianciaruso
et al., 2009; Hillebrand and Matthiessen, 2009; Reiss et al., 2009;
Naeem et al., 2012). The pressing knowledge gaps include, among
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others, the need to introduce a trait-based analysis using the
characteristics of individual phenotypes rather than species, to
create measures of FD that relate to system processes and selec-
tion/evolution of traits as they respond to EC. Diversity of func-
tional traits, as opposed to taxonomic diversity, appears to be
a better predictor of EF across a range of communities (Suding
et al., 2008; Hillebrand and Matthiessen, 2009; Reiss et al., 2009;
Cardinale et al., 2012). Species-derived BD metrics may not be
directly linked to EF, and the relationships between, for exam-
ple, species richness and FD or EF are not trivial (Naeem and
Wright, 2003; Petchey and Gaston, 2006; Cianciaruso et al., 2009;
Cardinale et al., 2011).

Monitoring a large number of traits with potential functional
properties in a natural microbial community is a requirement
for understanding the effects of EC on the BD-EF relationship,
but presents a number of great challenges. Given the fast genera-
tion time of most microorganisms and the relatively small spatial
scale at which events occur, this task requires high-frequency
sampling of fluctuating small-scale environments (Pomati et al.,
2011; Stocker, 2012). Scanning flow-cytometry (SFC) and recent
developments in its applications give promising tools for the auto-
mated counting, characterization and identification of aquatic
planktonic microorganisms. Aquatic microbial communities are
a classic model in EC-BD-EF research, since they control a sig-
nificant part of global biogeochemistry and roughly half of the
primary production on earth (Falkowski, 2012; Stocker, 2012).
In this article we review the literature of FD indices and we
advocate that environmental flow-cytometry offers the opportu-
nity of pioneering the development of BD indices that describe
phytoplankton FD starting from individual level trait data, and
of testing of the linkages between these FD indices, EC and
important community processes.

AN INDIVIDUAL TRAIT-BASED PERSPECTIVE TO BD-EF
RESEARCH
Species still play a leading role in microbial ecology experiments
and theory, even though a number of recent findings challenge
the existence of a prokaryote species in nature (Ereshefsky, 2010;
Rinke et al., 2013). A species centered view blindfolds the impor-
tance of phenotypic variance within and between populations
and its importance in ecological and evolutionary response of
populations and communities to EC. Traits, defined as any mor-
phological, physiological or phenological feature measurable at
the individual level (such as cell size, shape, motility, nutrient
uptake requirements, type of reproduction) (Reiss et al., 2009),
offer a “common currency” to expand BD-EF theory since trait-
based approaches, by focusing on phenotypes, have the potential
to incorporate variance within and between populations in the
observed BD patterns, to capture time-dependent responses asso-
ciated with EC, and link their effects on community-level and
ecosystem processes (Norberg et al., 2001; Norberg, 2004; Suding
et al., 2008; Hillebrand and Matthiessen, 2009).

Four components of an individual level trait-based research
offer crucial links with EC and EF. First, individual trait variation
accounts for intra-population variance, therefore it captures the
range of available phenotypic plasticity in trait expression, i.e., it
forms the needed trait-based link between individual genotypes

and variability in their aggregated responses. Second, trade-offs
among traits constrain how selection and evolutionary processes
influence higher order effects in response to EC. A hierarchical
expansion from individuals to community level in measures of
continuous distributions of phenotypic values (traits) would offer
the opportunity to apply concepts and theories from evolution-
ary ecology and genetics (e.g., Norberg et al., 2001) to under-
stand consequences of trait evolution for EC-BD-EF research.
Understanding how evolutionary responses to EC reflects on
BD-EF is at the moment largely missing. In order to achieve
this, it will be necessary to separate phenotypic from genetic
responses, which may be accomplished in the near future by
single-cell genomics (Rinke et al., 2013), by experimentally mea-
suring heritability of observed phenotypic expression, or through
experimental evolution tests. Third, metrics of population-and
community-wide trait-distributions allow linking ecological pro-
cesses (such as environmental filtering, stochastic population
dynamics, and species interactions) to individual responses and
EF (Norberg et al., 2001; Savage et al., 2007; Pomati et al., 2013).
Fourth, functional trait diversity is dependent on the spatial and
temporal turnover of individuals and populations within a com-
munity, and represents the range of strategies that a system can
express to respond to fluctuating selection and dynamic ecologi-
cal change. Dynamics of functional trait diversity therefore should
relate to stability, resilience and adaptive capacity of the ecosystem
(Norberg et al., 2001; Norberg, 2004; Isbell et al., 2011). Plasticity
in trait variation can buffer populations from extreme tempo-
ral fluctuations in the environment and in population density
providing mechanism for resilience, and accounts for niche and
functional responses on community effects that do not appear
significant when considering species-mean traits (Bolnick et al.,
2011).

APPLICATION OF AUTOMATED SFC IN THE FIELD: CURRENT
USE AND MAIN LIMITATIONS
SFC can measure individual microbial cells and colonies since its
lasers and optical system allow sensor measurements (light scat-
tering at different angles and fluorescence) in a time-resolved
mode (scan-profiles) (Figure 1). In the flow-cell, particles are
aligned along their main axis, and their identical flow-speed pro-
vide a highly accurate laser-scan (Figure 1). The parameterization
of scattering and fluorescence (FL) scan-profiles results in a very
fine and reproducible characterization of three-dimensional and
FL particle descriptors, when particles are larger than the diam-
eter of the laser beams (circa 5 µm). Particles smaller than the
width of the laser beams cannot be properly characterized by their
scan-profiles, so SFC for small particles provides information
similar to conventional flow-cytometry, such as total (integrated
signal) for scattering and FL allowing distinctions for example in
pigment profiles, with the addition of an accurate estimation of
particle length down to circa 1 µm of size.

The performance of SFC in different applications has been
documented (Dubelaar et al., 1999; Maltsev, 2000; Dubelaar
et al., 2004; Sosik et al., 2010). Besides laboratory use, recent
developments in SFC allow also in-situ use: samples are taken
fully automatically at any time or sequence of times set by the
operator. In particular, SFC as provided by the commercially
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FIGURE 1 | Schematic summary of the scanning flow-cytometry

approach to phytoplankton particle characterization, as operated by

the Cytobuoy (Dubelaar et al., 1999; Dubelaar and Jonker, 2000).

Particles in a water sample are separated by the instrument’s injector
and internal fluid systems (not depicted in the figure) and then scanned
by one or more lasers. Signals from different detectors (FWS, forward
scattering; SWS, sideward scattering; FL-red, chlorophyll-a fluorescence;
FL-yellow and -orange, fluorescence from accessory or degraded

pigment) are recorded for each particle in a time-resolved mode
(scan-profile). The example shows the scan of a colony of Asterionella
formosa, note its accurate description by the sensors. Each scattering
and FL scan-profile can be studied for several parameters that describe
its length, area, amplitude, symmetry etc., representing a description of
the particle’s shape and pigmentation. The Cytobuoy also allows to
photograph scanned particles, potentially providing additional information
at the morphological and taxonomical level.

available Cytobuoy (www.cytobuoy.com) (Dubelaar et al., 1999;
Dubelaar and Jonker, 2000) allows the automated sampling and
analysis of microbial plankton communities in marine (Thyssen
et al., 2007, 2008a,b, 2011) and freshwater (Pomati et al., 2011;
Arnoldini et al., 2013) systems. Additionally, automated SFC can
be integrated with multi-parametric sensors for aquatic ecosys-
tem monitoring (e.g., measuring water chemistry, physics and
algal pigments) in order to link phytoplankton BD with EF (pro-
ductivity) and EC over time or over the vertical profile of a deep
water body (Dubelaar and Jonker, 2000; Sosik et al., 2010; Pomati
et al., 2011).

As an example of SFC data, we will focus on data collected
by a Cytobuoy flow-cytometer (Figure 1). The datasets may typ-
ically comprise up to tens of thousands of individually scanned
particles per aquatic sample. Scaled up to complete monitor-
ing datasets, we can reach the level of millions of scan-profiles
and associated algal descriptors. The size and complexity of such
datasets leads to special challenges in handling, processing, visu-
alization and analysis, especially considering that no standardized
techniques for this purpose exist to date. Each particle can be
described by 48–54 parameters (depending on the number of
available lasers) based on the light scattered at two angles (for-
ward and sideward, providing information on size and shape
of the particles) and FL emitted by photosynthetic pigments

(chlorophyll-a, phycocyanin, phycoerythrin, and degraded pig-
ments) (Dubelaar et al., 2004; Malkassian et al., 2011; Pomati
et al., 2011) (Figure 1). Parameters measured with Cytobuoy
instruments are the amplitude, length, FL patterns and shape of
these signals, and are governed by the morphology and pigmen-
tation of particles: in the case of phytoplankton, they potentially
represent physio-morphological traits such as size, pigment type,
pigment concentration and pigment distribution within cells or
colonies, coloniality, internal cell rugosity (cytoplasmatic struc-
tures like vesicles and membranes) (Thyssen et al., 2008b; Pomati
et al., 2013). The Cytobuoy also has the capability to take pho-
tographs of particles that flow through the laser beam, potentially
providing information at the morphological and taxonomical
level for large nanoplankton (10–20 µm) and microplankton
(20–200 µm) (Figure 1). The current low resolution of photos
prevents investigation of smaller cells and fine image analysis,
however particles dimensions and potentially biovolume can be
estimated.

As mentioned in the previous chapter, SFC partially under-
estimates the diversity of pico-planktonic organisms (size range
between 0.2 and 2 µm), for example small eukaryotic flagellates.
We suggest that the lack of high resolution on scan-profiles for
small cells is not a major limitation of SFC analysis of phytoplank-
ton diversity. In general, the most common pico-phytoplankton
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are rather similar with regards to their morphology, with more
important ecological differences in pigment profiles (which can
be accounted for by total FL signals). We believe that there are
stronger limitations in the trait-diversity analysis performed by
SFC than the low resolution on morphology of pico-plankton,
for example the lack in SFC data of physiological (e.g., nutri-
ent acquisition) and life history traits (e.g., type of reproduction,
resting stages) that can convey very important ecological and
evolutionary information.

DERIVING BIODIVERSITY MEASURES
Parameters measured with Cytobuoy are partially redun-
dant, since many morphological and FL descriptors are
cross-correlated. Therefore, the choice of measured param-
eters represents the first critical decision step in the pro-
cess of defining BD measures (Figure 2). A first assessment
of traits based on correlation and ecological relevance is
required in order to extract a number of robust descriptors
for individual particles. Fortunately, phytoplankton is a clas-
sical model in ecology and evolution, and detailed knowl-
edge about its most relevant ecological traits exists, which can
also be relatively easily validated with microscopic analysis. In
particular, cell size and shape (which influence motility and
nutrient uptake through surface-to-volume ratio), and photo-
synthetic performance (driven by pigment type and concentra-
tion), are key phytoplankton traits, affecting growth, metabolism,
access to resources, and susceptibility to grazing (Litchman and
Klausmeier, 2008). Previous work has shown that a number of
size- and pigment-related parameters monitored by Cytobuoy
analysis are ecologically meaningful, responding to changes in
nutrient levels, temperature, and abundance of zooplankton graz-
ers (Pomati et al., 2011, 2013). Many of these focal traits, such
as size and pigment content, also appeared to be under selection
by environmental filters and species interactions, determining
changes in population dynamics and phytoplankton commu-
nity functioning (Pomati and Nizzetto, 2013; Pomati et al.,
2013).

With individual-based data such as SFC’s, conventional eco-
logical measures of BD are not directly applicable. One possible
approach is to define groups based on some key traits or on a set
of linear combinations of all traits (for example, principal com-
ponents) (Pomati et al., 2011, 2013) (Figure 2). In this context,
we suggest to utilize a set of defined and well understood phy-
toplankton traits for studying BD changes, rather than principal
components (which would be specific to the dataset), in order
to allow for comparison of results across studies. A classifica-
tion of phytoplankton into categories based on morphological
characters has shown to offer good prospects in terms of objectiv-
ity, reproducibility, functional properties, and prediction (Kruk
et al., 2010). In order to create functional categories of organ-
isms, different approaches have been proposed for clustering SFC
datasets (Caillault et al., 2009; Malkassian et al., 2011; Pomati
et al., 2011, 2013). Groups obtained by statistical clustering seem
to retain meaningful ecological information, since SFC-based
clusters and associated traits have shown distinct diurnal and sea-
sonal dynamics (Thyssen et al., 2008b, 2011; Pomati et al., 2011).
Additionally, the total abundance within these categories can be
tracked and characterized by conventional species-based metrics
(such as richness, evenness and diversity indices) (Figure 2). In
previous work, we have found that patterns of Cytobuoy-derived
functional groups were comparable to those of identified phy-
toplankton taxa, both with regards to alpha- and beta-diversity
measures (Pomati et al., 2013).

We also noted that the identity (and abundance) of Cytobuoy-
derived functional groups did not fully reflect the identity
(and abundance) of microscopically defined taxonomic groups
(Pomati et al., 2011, 2013). Several species can in fact map into
one functional category (in case they share similar morphology)
and individuals of the same species can be assigned to differ-
ent groups (single cells vs. colonies, for example), hampering
our ability to fully interpret the observed ecological dynamics.
This phenomenon can also be explained by the much larger
volumes analyzed by traditional microscopic methods for the
analysis of phytoplankton (hundreds of mL) compared to those

FIGURE 2 | The process of producing a functional classification

(unshaded objects) of individuals in natural community samples. At
different steps of the sequential process, which contains a number of critical
decisions, different measures of FD (shaded ellipse) can be estimated (see

section Concluding Remarks and Outlook and Table 1). The shaded
rectangular boxes represent decisions in the process of making a
classification, so that the number of decisions required for each measure
increases from left to right. Adapted from Petchey and Gaston (2006).
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Table 1 | List of published functional metrics and associated references.

Main reason for

exclusion

Weighted by abundance Not weighted by abundance

None Rao coefficient* = abundance-weighted mean distance between
each pair of species in a trait distance matrix (Rao, 1982;
Botta-Dukát, 2005; Ricotta and Moretti, 2011)
Functional identity = community weighted mean value of functional
traits (Garnier et al., 2004; Mouillot et al., 2013)
FEve = the regularity in the distribution and relative abundance of
species within the multidimensional functional space for a given
community, based on the minimum spanning tree concept (Villéger
et al., 2008)
FDiv = abundance-weighted deviation of species distances to the
centroid of their distribution in multidimensional functional space
from the overall mean distance (Villéger et al., 2008; Mouillot et al.,
2013)
FDis (functional dispersion) = abundance-weighted mean distance
of species to the centroid of their distribution in multidimensional
functional space (Laliberté and Legendre, 2010; Mouillot et al., 2013)

FRic = the volume of the minimal convex hull
containing all species in a community within the
multidimensional functional space (Cornwell et al.,
2006; Villéger et al., 2008)

Only applicable to
single traits

Evar = functional evenness, degree to which the biomass of a
community is distributed in niche space to allow effective utilization
of the entire range of resources available to it (Smith and Wilson,
1996; Mason et al., 2005)
FDvar = variance of trait values weighted by relative abundance,
measure of functional divergence (Mason et al., 2003; Petchey and
Gaston, 2006)
CWM = community weighted mean trait value (Garnier et al., 2004;
Ricotta and Moretti, 2011)

NOk = niche overlap index based on kernel density functions, it can
therefore work with distributions of any shape without prior
assumptions (Mouillot et al., 2005)
FRO (functional regularity) = regularity of spacing between species
along a functional trait gradient and evenness in the distribution of
abundance across species (Mouillot et al., 2005; Petchey and
Gaston, 2006; Villéger et al., 2008)
Among = between-species variance component of functional
diversity (Lepš et al., 2006)
Within = within-species variance component of functional diversity
(Lepš et al., 2006)
FDS = functional divergence as the relative range of the trait
clustering (Schleuter et al., 2010)
Skew = skewness of trait distribution (Swenson and Weiser, 2010)

mnnd = mean nearest neighbor dissimilarity (Weiher
et al., 1998; Hejda and Bello, 2013)

PC (phenological complementarity) = variance ratio of
timing of species growth (Stevens and Carson, 2001)

FR = functional richness of a trait, amount of niche
space filled by the species together (Mason et al.,
2005)
Trait mean = community mean trait value (Kraft et al.,
2008)

Kurtosis = indicator used in distribution analysis as a
sign of flattening or “peakedness” of a distribution
(Kraft et al., 2008; Kraft and Ackerly, 2010)

SDNN = standard deviation of nearest neighbor
distance along trait axes (Kraft et al., 2008; Kraft and
Ackerly, 2010)
Trait range = range of the trait values (Kraft et al., 2008;
Kraft and Ackerly, 2010)
Trait variance = variance of the trait values (Kraft et al.,
2008; Kraft and Ackerly, 2010; Hulshof et al., 2013)
SDNDr = standard deviation of successive neighbor
distances along trait axes, divided by trait range in
order to partially correct for effects of habitat filtering
(Kraft and Ackerly, 2010)
SDNNr = SDNN divided by trait range, in order to
partially correct for effects of habitat filtering (Kraft and
Ackerly, 2010)
FRIs = functional richness based on species’ trait
variability instead of the community’s trait range
(Schleuter et al., 2010)

Loss of information
(categorizing of
individuals
necessary)

Functional specialization = abundance of specialist relative to
generalist species (Bellwood et al., 2006; Villéger et al., 2010;
Mouillot et al., 2013)
FRed (functional redundancy) = Simpson index—Rao index = how
much a community is “saturated” with species with similar traits
(de Bello et al., 2007)

FAD1 (functional attribute diversity) = number of
different attribute combinations that occurs in the
community (Walker et al., 1999)
FAD2 (functional attribute diversity) = sum of pairwise
distances between species in functional attribute
space (Walker et al., 1999; Petchey and Gaston, 2006)

(Continued)
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Table 1 | Continued

Main reason for

exclusion

Weighted by abundance Not weighted by abundance

PFT = plant functional types (Pillar and Sosinski, 2003)
Average functional attribute diversity = average
pairwise distances between species in functional
attribute space (Heemsbergen et al., 2004; Petchey and
Gaston, 2006)
FGR (functional group richness) = number of functional
groups represented by the species in a community
(Petchey and Gaston, 2006)
FRIm = functional richness based on “range union”
across species present in a community (Schleuter
et al., 2010)

Computationally
intractable
(calculation of a
hierarchical
dendrogram
necessary)

Ia = sum of abundance-weighted diversity over the depth of a tree
(Pavoine et al., 2009)

FD = sum of branch length of a functional classification
(Petchey and Gaston, 2002)
Functional originality = isolation of species in the
functional space occupied by a given community
(Pavoine et al., 2005; Mouillot et al., 2008, 2013)
GFD = sum of branch length of a functional
classification (Mouchet et al., 2008, 2010)
NMDS = functional diversity from non-metric
multi-dimensional scaling (Cadotte et al., 2009)
SESFD = standardized effect size for the FD (Petchey
and Gaston, 2002) obtained using a matrix-swap null
model to randomize occurrences in order to remove
any trivial effects of species richness (Mason et al.,
2013)

Nominal/ordinal/binary
traits

UTC = unique trait combinations (Erős et al., 2009)
CFR (combinatory functional richness) = number of
unique trait combinations (Podani et al., 2013)
FH (functional heterogeneity) = how heterogeneous is
the assemblage for each trait and for all traits taken as
a whole (Podani et al., 2013)
CFD (combinatory functional diversity) = combination
of CFR and evenness of trait combinations among
species (Podani et al., 2013)
CFE (combinatory functional evenness) =
CFD/log(species richness) (Podani et al., 2013)
FA (functional associatum) = FH-CFD (Podani et al.,
2013)

Standard null model
correction integrated
in the index

SESFDis = standardized effect size for functional dispersion (FDis)
obtained using a null model randomizing abundances across species
but within communities (Mason et al., 2013)
SESRao = standardized effect size for Rao coefficient obtained
using a null model randomizing abundances across species but
within communities (Mason et al., 2013)

SESFRic = standardized effect size for FRic (Villéger
et al., 2008) obtained using a matrix-swap null model to
randomize occurrences in order to remove any trivial
effects of species richness (Mason et al., 2013)

Functional metrics are subdivided based on the eventual reasons for excluding their application to individual-based trait data and further classified according to their

potential to be weighted by individual taxa abundance. The most promising functional metrics for application to individual-based SFC data are highlighted in blue

boxes.
*Mean distance/dissimilarity among species (MPD) represents the abundance-weighted mean phylogenetic or trait dissimilarity among all possible pairs of species

(Warwick and Clarke, 1995; Pavoine and Bonsall, 2011; de Bello et al., 2012) and is therefore analogous to the Rao coefficient. However, it excludes same-species

pairs and this is not meaningful in an individual-based context, where each individual is unique and species are not defined.

sampled by automated SFC (few mL). The likelihood to count
large particles is higher in microscopic-based methods, while
small cells are more efficiently counted by flow-cytometry. To
account for this different resolution of flow-cytometry across

the range of phytoplankton abundances and sizes it is possi-
ble to perform two separate protocols in SFC to analyze small
(and abundant) particles on one side, and large (and rare) par-
ticles on the other side. This approach has the limitation of
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not providing a single comprehensive description of the phyto-
plankton community in terms of the distribution of organisms
in the multi-dimensional trait-space and their relative abun-
dance. Such a structure carries important information about the
ecological and evolutionary processes that have shaped the com-
munity, and should be the target (see below) of trait-diversity
indices. The alternative strategy is to calibrate sampling proto-
cols in order to retain only particles above the analytical scanning
limit (1 µm) and sample volumes larger enough to acquire suf-
ficient information about the characteristics of both small and
large particles and cover the widest possible trait-diversity of
the phytoplankton. This approach has the limitation of los-
ing information about pico-plankton smaller than 1 µm, but
retains the actual community structure in terms of relative abun-
dance of organisms and their descriptors in the multidimensional
trait-space.

Current approaches employed for BD research using SFC data
have two main scientific limitations. First, they require statis-
tical clustering or artificial neural networks to construct func-
tional groups (Boddy et al., 2001), and these final categories
may not have a general ecological interpretation. Each different
method suffers from arbitrary decision steps that may critically
affect the outcomes in terms of BD metrics, through identity
and abundance of resulting formed groups (Figure 2) (Petchey
and Gaston, 2006). Second, SFC data do not yet fully exploit
the rich individual-based description of communities embedded
within the datasets and described above. Individual-based SFC
data are in the form of high-dimensional multivariate distribu-
tions of phytoplankton descriptors, which have variable strength
as predictors of the relevant target processes. As reviewed in sec-
tion An Individual Trait-Based Perspective to BD-EF Research,
there is an emerging consensus that the composition and dis-
tribution of continuous measurable functional traits, i.e., FD, is
a better predictor of EF, stability and adaptive capacity of the
system compared to richness or evenness of groups of organisms
(Norberg et al., 2001; Naeem and Wright, 2003; Norberg, 2004;
Hillebrand and Matthiessen, 2009; Reiss et al., 2009). Below we
review the available metrics that directly take into account the
full range of multiple trait variation for quantifying FD for each
given community (Mouchet et al., 2010; Schleuter et al., 2010).
Most FD metrics and indices have rarely or never been applied
to individual level data, used in empirical studies, or tested for
their temporal and spatial relationships with important com-
munity processes. We argue that SFC data represent a unique
opportunity to experiment and develop individual-level FD
metrics.

TRAIT-BASED BIODIVERSITY INDICES AND METRICS
Classical BD measures (species richness and diversity indices)
treat individuals within a species as identical (Magurran and
McGill, 2011), i.e., ignoring their phenotypic variance. For
individual-level data, we need richness and diversity metrics that
include and account for intraspecific differences. Although in the
last years several FD indices and metrics have been proposed
(Table 1), and some of them can take into account intraspe-
cific trait differences, none of these metrics has been specifically
designed for application to large and complex (e.g., multiple

traits) individual-based datasets that may or may not include tax-
onomic information. Table 1 summarizes available FD metrics
and the main reasons for excluding them to in the application
to individual-based trait data. In the following sections we ana-
lyze and discuss the requirements that metrics have to fulfill to be
further considered in an individual-based context.

One classification criterion of published metrics is their
potential to be weighted according to abundance of individual
taxa (Table 1). In the context of species level data, abundance
weighting allow considering not only the position of species
in the multi-dimensional trait space, but also their relative fre-
quency. In the case of traits measured at the individual level,
abundance weighting is not necessary, since every point in multi-
dimensional space represents one single organism. Abundance is
therefore already embedded within the multivariate description
of the community. Abundance weighting does not however affect
the validity of a metric for its application to individual-based trait
data. In indices that can take into account relative abundance, this
can be set to value 1 and the metric applied to individual level
data.

WHY SHOULD MULTIPLE TRAITS BE PREFERRED
Published functional metrics are based either on single or multi-
ple traits. One-dimensional indices account for selection on single
traits by EC, and have been successfully utilized to test hypotheses
on the processes that determine diversity, identity, and abundance
of co-occurring species. This approach allows a direct link to clas-
sic ecological theory: responses in the distribution of single traits
at the community level (convergence on similar values, reduction
of trait range, clustered patterns, evenly spaced traits) can help
inferring mechanisms such as environmental filtering, compet-
itive exclusion of some species, grazing/predation/parasitism by
specialists or generalists, competition for resources (Macarthur
and Levins, 1967; Chesson and Kuang, 2008; Kraft et al., 2008;
Cornwell and Ackerly, 2009; Ingram and Shurin, 2009; Kraft and
Ackerly, 2010; Paine et al., 2011; Pomati et al., 2013). For example,
species co-occurrence patterns can be partially explained by habi-
tat filtering, niche partitioning and stabilizing processes (Kraft
and Ackerly, 2010), and even different trophic groups seem to
be reciprocally linked by the response of single morphological
traits to ecosystem management (Moretti et al., 2013). A sin-
gle trait approach, however, does not afford an comprehensive
view of species differences in potentially important functional
traits, which may affect functioning directly or indirectly (Suding
et al., 2008). Additionally, when studying niche complementar-
ity, results based on a single trait are biased toward finding
functional redundancy among species, because functional niches
that are distinct in a multi-dimensional functional space could
appear as overlapping when only a trait (dimension) is considered
(Rosenfeld, 2002; Mouchet et al., 2010).

Metrics based on multiple traits allow a more comprehensive
view of differences among taxa, and potentially among individ-
uals. A multi-dimensional trait approach is common in ecolog-
ical morphometrics, classical ecology, evolutionary genetics and
evolutionary ecology, where it is used to illustrate differences
between biological entities (e.g., morphs, niches, genotypes, and
life-history strategies). Multiple trait metrics should theoretically
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offer a better link to ecosystem function, because the community
contribution to ecosystem processes results from the combination
of all traits of species or individuals (Suding et al., 2008; Reiss
et al., 2009). The use of complementary multiple trait metrics
has recently been proposed as a powerful framework for detect-
ing responses to disturbance, and to relate them to ecological
theory (Mouillot et al., 2013). For instance, multi-dimensional
FD provided support for the physiological tolerance hypothesis in
plant communities (Currie et al., 2004), which represents a spe-
cific case of assembly through environmental filtering (Cornwell
and Ackerly, 2009), suggesting that increased species richness in
favorable climatic conditions is a consequence of availability of a
wider range of functional traits (Spasojevic et al., 2014). We argue
that FD indices based on multiple traits are better suited for link-
ing BD metrics to EC and EF using individual-based data. This is
especially true if we consider that a multi-dimensional approach
still allows to separately consider single trait responses, while one-
dimensional indices lack the evaluation of individual differences
in a multi-dimensional trait space.

FURTHER CRITERIA FOR APPLICATION TO INDIVIDUAL-BASED SFC
DATA
Some mathematical aspects in the calculation of indices can be
simplified when dealing with traits measured at the individual
level using SFC. For example, we suggest not to consider those
indices that integrate mathematical methods for separating intra-
from interspecific trait differences (Schleuter et al., 2010), since
individual-based data already combine both hierarchical levels. In
addition, we suggest to exclude indices that need and assume trait
frequency distributions or other data necessarily aggregated at the
species level, because in SFC data every single individual represent
a unique combination of traits and the process of categorizing
would cause unavoidable loss of potentially important informa-
tion (Table 1). Finally, we consider only the indices that have been
designed to deal with traits that are continuous or expressed as
proportions (i.e., not nominal, ordinal or binary traits), as for
SFC measurements such as size and FL typically belong to this
kind (Table 1).

Individual-based SFC datasets, especially if collected auto-
matically with high spatial or temporal resolution, are generally
extremely large. One possible way to solve this problem would
be develop efficient subsampling algorithms, able to reduce the
amount of data points maintaining the topology of data in a
multi-dimensional space and the relative abundance of organ-
isms. Suitable FD indices should however be computationally
efficient. It could be convenient, for example, to avoid the calcula-
tion of distances and functional dendrograms among individuals
(Petchey and Gaston, 2002). These require computation of met-
rics of similarity/dissimilarly among all data points and construc-
tion of topologies that become intractable for normal computers
given the very large matrices (Table 1). The limitation of such
approach becomes even more relevant when it’s necessary to com-
pare different samples (communities) across space and time, since
for this purpose it is generally necessary to build an overall dis-
tance matrix and functional dendrogram merging all samples
in a single dataset. Considering that it would also be desirable
to minimize the number of arbitrary and critical decision steps

in calculating FD indices (Figure 2), we argue that the best FD
measures should also be robust toward possible methodological
issues.

Since we seek to understand links between EC, BD dynamics
and EF, we do not necessarily have to consider indices that incor-
porate a standard null model correction (Table 1) (Mason et al.,
2013). Indeed, randomization of matrices may not be the best
null approach in many cases since neutral (stochastic) processes
may not generate strictly random patterns (Bell, 2005). Suitable
indices to study FD and EF should rather allow their application
to individual-based neutral models that simulate stochastic pro-
cesses, such as dispersal of individuals, demography (birth, death,
and reproduction) and ecological drift (Allouche and Kadmon,
2009; Jabot, 2010; Vanpeteghem and Haegeman, 2010).

FUNCTIONAL RICHNESS, EVENNESS, AND DIVERGENCE
Some BD indices represent a combination of different compo-
nents of FD. FDvar (Mason et al., 2003), Rao coefficient (Rao,
1982; Botta-Dukát, 2005), and FDis (Laliberté and Legendre,
2010) combine measures of functional richness and divergence
(Mason et al., 2013). In order to adequately describe and under-
stand individual-level FD, however, each one of the ideally suit-
able multi-trait indices should measure one of the three different
components of FD: richness, evenness, and divergence (Mason
et al., 2005). In the most ideal case, these components are inde-
pendent to each other (orthogonal). Additional components of
FD have been suggested (Podani et al., 2013), they however do
not apply to potential individual level trait data. FD components
such as combinatory functional diversity (CFD) or functional
heterogeneity (FH) only concern trait combinations in the con-
text of nominal traits (i.e., non-quantitative traits coded into
categories by discrete numbers), while we focus on continu-
ous high-resolution data (Table 1). Another metric, though not
effectively being a FD index, could be useful in characteriz-
ing communities in a multi-dimensional trait space. The func-
tional identity (multi-trait analogous of community weighted
mean CWM; Table 1) represents the centroid (coordinates) of a
trait distribution in multi-dimensional functional space (Garnier
et al., 2004; Spasojevic and Suding, 2012; Mouillot et al., 2013).
With centroid coordinates information it is possible to detect a
uniform translation of all data points in space, case in which
FD indices of richness, evenness, and divergence are not sup-
posed to change. However we argue that, at least in the context
of multi-dimensional individual trait data, most of the changes in
community functional structure would be reflected in functional
richness, evenness and divergence.

Functional richness is the total amount of space occupied by
all taxa of a community in the multi-dimensional trait space.
An ideal richness index should be able to take into account and
exclude gaps in trait distribution. In other words, trait rich-
ness approximates as accurately as possible the multi-dimensional
space effectively occupied by the community, rather than a sim-
ple trait range. Nevertheless, very different estimates of functional
richness have been proposed, such as the volume of the mini-
mal convex hull containing all taxa within the multi-dimensional
space (Cornwell et al., 2006; Villéger et al., 2008), the total branch
length of a dendrogram calculated according to distances between
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taxa in the trait space (Petchey and Gaston, 2002) or simply the
number of functional groups represented by taxa in a community
(Petchey and Gaston, 2006).

Functional evenness is a measure of how evenly taxa are dis-
tributed within the trait space. While different one-dimensional
indices have been proposed for even spacing of traits, e.g., Evar

(Smith and Wilson, 1996; Mason et al., 2005), FRO (functional
regularity) (Mouillot et al., 2005) and SDNN/SDNNr/SDNDr
(based on the standard deviation of nearest or successive neighbor
distance) (Kraft and Ackerly, 2010), only one multi-dimensional
index of functional evenness based on quantitative data exist
(Table 1). FEve measures the regularity in the distribution of taxa
within the multi-dimensional functional space, calculating a net-
work that links all the points with the minimum sum of branch
lengths (minimum spanning tree) (Villéger et al., 2008).

Functional divergence measures how spread-out taxa are in
the multi-dimensional trait space. For its estimation several
approaches are possible. FDiv quantifies how single taxa distances
to the centroid of a trait distribution in the multi-dimensional
space deviate from the overall mean distance (Villéger et al.,
2008). The Rao coefficient is the total distance between each pair
of taxa in a trait distance matrix (Rao, 1982; Botta-Dukát, 2005;
Ricotta and Moretti, 2011), while FDis (functional dispersion)
measures the mean distance of taxa to the centroid of a trait dis-
tribution in a multi-dimensional space (Laliberté and Legendre,
2010; Mouillot et al., 2013).

A POSSIBLE WAY FORWARD
We suggest that to study EC-BD-EF relationships in general,
it is necessary to select a set of FD indices that are able to
account for physiological, ecological, and evolutionary compo-
nents of BD change. Specifically, for individual-based data such
as SFC, FD indices should describe changes in the structure
of multi-dimensional trait space, where each coordinate axis
corresponds to a measured trait and each point represents an
individual organism. This representation of BD is analogous
to Hutchinsonian niche hypervolume, where species are points
in a multi-dimensional space defined by environmental param-
eters (Hutchinson, 1957). Our proposed approach, therefore,
expands the functional niche definition by Rosenfeld (2002),
where niche axes are represented by ecological processes that are
in fact related to morphological and physiological attributes of
individuals (Rosenfeld, 2002).

According to these considerations and those explained in the
previous section, we identify FRic, FEve, and three indices of func-
tional divergence (FDiv, FDis, and Rao coefficient) as the most
promising existing FD indices for application to individual-based
SFC data (Table 1). Their definition (presented earlier) and inter-
pretation can easily be adapted to fit individuals instead of species.
It is important to note that trait divergence of individual-based
data can potentially be interpreted in the context of evolutionary
adaptation: single individuals or groups of similar individuals that
diverge from the centroid of the trait distribution can be thought
to reflect combinations of traits under selection. Over time such
trait divergence processes illustrate evolutionary trajectories that
target populations express as a response to an ongoing EC. On
the contrary, the widely used species mean traits do not allow to

detect differences and changes at the phenotypic level where evo-
lution effectively works, namely in diverging alternative strategies
and phenotypes at the individual level.

FRic, FEve, FDiv, FDis, Rao coefficient are based on the
objective position of every individual organism (point) within
a multi-dimensional trait space. Therefore, these indices do not
require a processes of categorization, they allow the use of raw
data, and restrict the number of critical decision steps in cal-
culating BD measures (Table 1, Figure 2). As they also do not
require calculation of large relative distance matrices among data
points or functional dendrograms (Table 1), these indices are
directly computable for each sample separately and comparable
among samples. These indices and associated functions are freely
available for use and calculation using the open source program-
ming language R (R-Development-Core-Team, 2014) through
the FD package (Laliberté and Legendre, 2010). Our prelimi-
nary assessment suggests that they are computationally tractable
even for very large high-frequency individual-based SFC datasets
(Table 1).

Both the Rao coefficient and FDis seem to embed a mixture of
functional divergence and functional trait richness (Mason et al.,
2013). From a theoretical point of view, FDiv, FDis, and Rao coef-
ficient could all be suitable for application to individual-based
SFC data. Uncertainty however exists on which one would per-
form best with this type of data sets (Schleuter et al., 2010). We
suggest to consider all these divergence measures in a detailed
future assessment of their actual performance.

CONCLUDING REMARKS AND OUTLOOK
The main reason for an increasing interest toward a functional
description of BD is the expectation that it better describes EF
and services than taxonomic diversity (Cardinale et al., 2012).
Based on previews empirical and theoretical studies in commu-
nity ecology, we predict a positive relationship between FD and EF
(Ptacnik et al., 2008; Striebel et al., 2009; Cardinale et al., 2012).
Very little is known about the exact form of that relationship.
New applications of SFC seem to be the most promising way to
address those research questions, as we argue that measuring FD
at the individual level adds a more realistic understanding of the
phenotypic variance in FD, which is the raw material for any filter-
ing or selection process determining the dynamics of response to
EC. Therefore, individual level indices should be better applicable
for predicting both the future FD and EF. This is especially rele-
vant for predictions of complex cross-generational multi-species
community response to changing environmental conditions (e.g.,
climate change).

We have highlighted some of the limitations of SFC anal-
ysis of trait-diversity. We believe that it will be crucial in the
future to empirically test how much SFC-derived trait-diversity
retain information about the diversity of plankton shapes and
strategies, and how they relate to important aquatic ecosystem
processes like the production and degradation of organic mat-
ter. It will be crucial in the future to test our proposed set of
FD indices in simulated artificial and real-world scenarios. A reli-
able index has to be accurate when replicated both in space and
time. It must tractably respond to the changes in the structure of
the multivariate trait space as expected by the formal definition
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of its properties (richness, evenness, and divergence) and from
ecological and evolutionary theory (Schleuter et al., 2010). The
concepts and conclusions developed here in the context of SFC
datasets are general and applicable to individual-level data of any
type. Furthermore, ideal indices are applicable to a broad range
of groups of organisms, potentially to all organism for which it
is possible to measure morphological and physiological contin-
uous (i.e., non-categorical) data at the level of single individuals
coexisting in a community.
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