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Generally, plants are not considered as hosts for human and animal pathogens (HAP). The
recent produce-associated outbreaks of food-borne diseases have drawn attention toward
significant deficiencies in our understanding of the ecology of HAP, and their potential for
interkingdom transfer. To examine the association of microorganisms classified as HAP
with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth
HAPT, for brevity’s sake) in the endosphere of grapevine (Vitis vinifera L.) both in the
plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with
very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic
analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera
(Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the
bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were
identified as P. acnes. Clostridia were detected in leaves and stems, but their number was
much higher in leaves after enrichment. HAPT were indentified both in leaves and wood
of grapevines. This depicts the ability of these taxa to be internalized within plant tissues
and maintain their population levels in a variety of environments. Our analysis highlighted
the presence of HAPT in the grapevine endosphere and unexpected occurrence of these
bacterial taxa in this atypical environment.
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INTRODUCTION
Endophytes (non-pathogenic microorganisms living inside plant
tissues and cells) are common inhabitants of interior plant parts
(the endosphere) universally present and found in all the species
of plants studied up till now (Schulz and Boyle, 2006). Some
endophytes are able to promote plant growth and to suppress
plant diseases (Compant et al., 2005; Lugtenberg and Kamilova,
2009).

Intriguingly, among these endosphere-dwellers, we can occa-
sionally find some human and animal pathogens (HAP) (Holden
et al., 2009; Kirzinger et al., 2011). HAP not only contami-
nate plant surfaces, but also actively interact with plants and
can colonize them as alternative hosts (Holden et al., 2009).
Some human bacterial pathogens are capable to colonize inner
plant tissues (Tyler and Triplett, 2008), a phenomenon that in
most cases can be considered as an opportunistic exploitation
of a short-term habitat (Campisano et al., 2014). Generally,
pathogens are studied solely for their harmful impact on human
and animal health, causing disease and epidemics. On the
other hand, the regular interaction of human and animal car-
riers with their environment puts these pathogens in con-
tact with alternative niches, including additional hosts (Enders
et al., 1993; Lenz et al., 2003). It is then unsurprising that
previous works found out well known and potential HAP

undergoing an endophytitc stage in their lifestyle (Kirzinger et al.,
2011). Scientific literature often reports that members of the
family Enterobactericeae, including pathogenic Salmonella and
Shigella genus strains, Vibrio cholerae strains, and the human
opportunistic pathogen Pseudomonas aeruginosa were found on
plants or inside plants (Akhtyamova, 2013). Salmonella enter-
ica strains have been isolated as endophytic colonizers of bar-
ley roots, spreading to the rhizodermis layers (Kutter et al.,
2006).

Enteric bacterial pathogens, usually transmitted through
foods, are well adapted to vertebrate hosts and generally col-
onize the gut (Wagenaar, 2008). Some have humans as their
principal host, while many others are persistent in animal pop-
ulations, adapted to a particular reservoir or environment, and
affect humans only incidentally (Lynch et al., 2009). HAP on
plants are generally thought of as having a reservoir in the
intestines of a vertebrate host and, once discarded in manure,
coming into direct or indirect contact with epigeous or hypo-
geous plant tissues in a variety of ways. Traditionally, they were
considered to be fleeting on plant surfaces, persisting inertly in
cracks, wounds, and stomatal openings. They were considered
unable to aggressively modify or to communicate with the plant.
However, it is now apparent that enteric bacteria do not just
land on and reside in plants. These pathogens can stick tightly
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to produce, multiply, and enter into the tissues of leaves or fruits,
in some cases even moving into inner plant parts (Berger et al.,
2010; Erickson, 2012). Whether endophytic growth may actu-
ally be part of HAP life cycle is under debate. Findings such as
those mentioned before, reporting an endophytic stage for HAP,
would explain why existing surface decontamination procedures
may be inefficient in removing contaminants from plant pro-
duce (Rosenblueth and Martinez-Romero, 2006; Teplitski et al.,
2009; Saldaña et al., 2011; Barak and Schroeder, 2012; Olaimat
and Holley, 2012). The diffusion of HAP in ecosystems are of
scrupulous importance from the perspectives of both biology
and evolution of cross-kingdom pathogenesis and/or adaptation
(Lenz et al., 2003; Kirzinger et al., 2011). While the major-
ity of published research has focused on describing the enteric
HAP, there is no doubt that other HAP can also interact with
plants as part of their life-cycle. Here, we surveyed the pres-
ence and distribution of HAP taxa (HAPT) in the endosphere of
grapevine (Vitis vinifera L.). We used pyrosequencing of the bac-
terial 16S rDNA gene to identify sequences belonging to genera
where HAP are abundant. We present the first (to the authors’
best knowledge) report of the occurrence of bacteria in taxa
potentially pathogenic to human and animals in the grapevine
endosphere.

MATERIALS AND METHODS
SAMPLE COLLECTION AND DNA EXTRACTION
Grapevines samples were taken in Northern Italy. For stem endo-
phytes analysis, 12 plants (7 plants cv Chardonnay and 5 plants
cv Merlot) were sampled from vineyards in Trentino, Italy with
farmers permission (sites are mapped here: http://goo.gl/maps/
7AI7j) during the fall of 2010, from October 27th to November
11th. One lateral shoot per plant was removed and stored briefly
at 5–10◦C. Plant material was pre-processed as described previ-
ously (Pancher et al., 2012) and DNA was extracted from surface-
disinfected and aseptically peeled grapevine stems. Briefly, plant
material was pulverized in sterile steel jars using liquid nitro-
gen and a mixer-mill. DNA was extracted from each sample
using FastDNA spin kit for soil and a FastPrep-24 mixer (MP
Biomedical, USA) according to standard manufacturer protocols.
Plants used for leaf endophytes analysis (cv Barbera) were sam-
pled from a vineyard in Lombardia, Italy (site is mapped here:
http://goo.gl/5Nfh9R) on October 15th, 2007. Plant leaves were
surface-sterilized as previously described (Bulgari et al., 2009)
and aseptically prepared for DNA extraction. In a subset of leaf
samples DNA isolation was preceded by a microbe enrichment
strategy as described in previous studies (Jiao et al., 2006; Bulgari
et al., 2009, 2011). Briefly, plant tissues were sterilized, grounded
in liquid nitrogen, and aseptically incubated at 28◦C for 12 h in
gentle agitation in an enzymatic solution (0.1% macerozyme, 1%
cellulase, 0.7M mannitol, 5 mM N-morpholinoethanesulfonic
acid, 9 mM CaCl2, and 65 µM KH2PO4). In another subsample,
DNA isolation was performed directly after surface sterilization.
DNA was extracted for each sample according to the proto-
col described by Prince et al. (1993) modified by the addition
of lysozyme (3 mg/ml), L-lysine (0.15 mol/l), EGTA (6 mmol/l,
pH 8.0), and by the incubation at 37◦C for 30 min, before the
lysis step.

PYROSEQUENCING OF ENDOPHYTIC COMMUNITIES
To obtain amplicons for pyrosequencing, we amplified the 16S
rDNA gene from each sample using High Fidelity FastStart
DNA polymerase (Roche, USA) and the universal primers
799f/1520r with 454 adaptors and a sample-specific 10-mer
barcode (designed following the instructions for Roche 454
technology1). These primers allow selective amplification of bac-
terial DNA, targeting 16S rDNA hypervariable regions v5-v9
(Chelius and Triplett, 2001) and minimize the chance of ampli-
fication of plastid DNA (Ghyselinck et al., 2013). The PCR
product was separated on 1% agarose gel and gel-purified using
Invitrogen PureLink (Invitrogen, USA). DNA was quantified via
quantitative PCR using the Library quantification kit—Roche
454 titanium (KAPA Biosystems, USA) and pooled in a final
amplicon library. The 454 pyrosequencing was carried out at the
Sequencing Platform facility in Fondazione Edmund Mach, on
the GS FLX+ system using the new XL+ chemistry dedicated
to long reads of up to 800 bp, following the manufacturer’s rec-
ommendations. The new XL+ chemistry coupled with the uni-
directional sequencing strategy led to the sequencing of multiple
variable regions on a single read and to overcome the bottleneck
associated with a short read approach.

DATA ANALYSIS
We generated 16S rDNA gene sequences relative to endophytes
from three batches of samples: leaf endophytes with bacterial
enrichment, leaf endophytes without enrichment, and stem endo-
phytes. We used Roche 454 GS FLX+ sequencing as described
above and analyzed the sequencing output using a standard
Qiime pipeline (Caporaso et al., 2010). As a first step we demul-
tiplexed and filtered sequences on the basis of quality score and
read length (only sequences with a minimum average score of
20 and length between 250 and 1000 bp were retained), in order
to remove short and low quality reads. Moreover, in this step
we removed sequences with more than 6 ambiguous bases or
with homopolymers longer than 6 bases. We performed chimera
identification and filtering using usearch61 (Edgar, 2010). After
removing chimeras, we used uclust (Edgar, 2010) for cluster-
ing all the sequences into Operational Taxonomic Units (OTUs),
by applying a similarity threshold of 97%. This is commonly
used to represent species level similarity (although this thresh-
old does not necessarily match with what is regarded as species
for many microorganisms) (Crawford et al., 2009). For each
OTU we picked a representative sequence using Qiime and we
used these sequences to assign a taxonomical identity to each
OTU using the RDP classifier (Wang et al., 2007). In this step
we used a confidence threshold of 0.8 and e-value ≤ 0.001
against the Greengenes 97% reference data set. Based on taxo-
nomical identity, we manually selected OTUs corresponding to
HAPT from all three datasets. To understand the distance between
these OTUs and database reference strains, we downloaded 16S
rDNA sequences of HAP and non-pathogenic microorganisms
from NCBI (www.ncbi.nlm.nih.gov) (Altschul et al., 1997) and
aligned them to the representative sequences assigned to the

1http://www.liv.ac.uk/media/livacuk/centreforgenomicresearch/The_GS_FLX_
Titanium_Chemistry_Extended_MID_Set.pdf
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same taxon in our datasets. For the alignment we used MUSCLE
(Edgar, 2004; Caporaso et al., 2010) and filtered the alignment
using Qiime. Then, we built the phylogenetic trees shown in
Figures 1–4 from these alignments using DNAML (Maximum
Likelihood) in BioEdit (Hall, 1999) and rendered them using
Itol (Letunic and Bork, 2006, 2011). Information on OTU type
and abundance was co-displayed with the generated trees. OTUs
were colored according to the origin of samples (types: stem,
leaf enriched, leaf non-enriched, HAP reference strain, non-
pathogenic reference strain). Abundance was displayed as circles
for every OTU (abundance is proportional to the circle radius).

The 16S rDNA gene nucleotide sequences, representative of the
OTUs identified in this study, are available with NCBI GenBank
accession numbers KJ851800-KJ851922 (Supplementary
Table 1).

RESULTS
We investigated the composition of bacterial endophytic com-
munities in the grapevine endosphere (both in the leaf and the
stem) by pyrosequencing the bacterial 16S rDNA gene. Sequence
analysis revealed the presence of several OTUs (70 from enriched

leaves, 13 from non-enriched leaves, and 40 from stems, see
Table 1) classified as HAPT or non-pathogenic taxa closely related
to HAPT. We focused our subsequent analysis on four genera con-
taining potential pathogens: Propionibacterium, Staphylococcus,
Clostridium, and Burkholderia.

We inferred phylogenetic trees from the alignment of 16S
rDNA nucleotide sequences. OTUs assigned to these taxa were
identified, with varying abundance, in enriched and non-
enriched leaves and in stems of grapevine. Most OTUs from
grapevine leaves were assigned to genera Clostridium (44 and
4 OTUs from enriched- and not-enriched leaves, respectively)
and Staphylococcus (17 and 6 OTUs from enriched- and not-
enriched leaves, respectively), albeit the most abundant OTU
from enriched leaf samples (denovo115) was associated with
non-pathogenic species of the genus Burkholderia (Figure 2).
The most abundant OTU from non-enriched leaves (den-
ovo703) was assigned to a cluster including both pathogenic
and non-pathogenic species of the genus Staphylococcus. On the
other hand, most OTUs from endophytic bacteria in grapevine
stems were assigned to genera Burkholderia (19 OTUs) and
Propionibacterium (10 OTUs), although the most abundant OTU

FIGURE 1 | Phylogenetic relationships based on partial 16S rDNA gene

sequences obtained from pyrosequencing (this work) and closely

related Propionibacterium sequences, retrieved from GenBank

(Pathogenic and non-pathogenic Reference). The tree was built using a

maximum likelihood method and rendered using iTOL. The relative
abundance of each OTU is reported as circles and it is proportional to
circle radius. Sequences tag and relative abundance circles were colored
according to the source dataset.
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FIGURE 2 | Phylogenetic relationships based on partial 16S rDNA gene

sequences obtained from pyrosequencing (this work) and closely

related Burkholderia sequences, retrieved from GenBank (Pathogenic

and non-pathogenic Reference). The tree was built using a maximum

likelihood method and rendered using iTOL. The relative abundance of
each OTU is reported as circles and it is proportional to circle radius.
Sequences tag and relative abundance circles were colored according to
the source dataset.

(denovo979) was taxonomically closer to pathogenic species
Staphylococcus epidermidis (Figure 3).

The analysis of the phylogenetic tree of propionibacte-
ria showed three main clades within the Propionibacterium
genus (Figure 1). In detail, all sequences from grapevine leaves
and most sequences from the stem clustered (cluster 1) with
Propionibacterium acnes (which we previously demonstrated to be
endocelluarly associated with grapevine stems, Campisano et al.,
2014), while other sequences from the stem clustered with the
species P. granulosum (cluster 2) and P. avidum (cluster 3).

Phylogenetic analysis indicated that sequences from grapevine
endosphere assigned to the genus Burkholderia formed four dis-
tinct clusters (Figure 2). The first cluster included endophytic
bacteria from grapevine leaves grouping with HAP and plant
pathogens such as B. latens, B. cepacia, and B. gladioli. The sec-
ond cluster included bacteria, identified exclusively in stems,
grouping with Burkholderia mallei (HAP) and B. pseudomallei
(non-pathogenic endophyte). The third cluster included endo-
phytic bacteria from grapevine leaves and stem, grouping with
environmental and endophytic bacteria such as Burkholderia

phytofirmans and B. xenovorans. The forth cluster included HAP
species of the genus Burkholderia (B. kururiensis and B. sac-
chari), and consisted of endophytic bacteria identified exclusively
in grapevine wood tissues.

The tree obtained by analysis of 16S rDNA sequences assigned
to the genus Staphylococcus (Figure 3) revealed that endophytes
were distributed in six main clusters. Cluster 1 included sequences
from grapevine leaf endophytes strictly related to the HAP species
S. saprophyticus and S. haemolyticus, and to the non-pathogenic
species S. succinus, S. xylosus, S. lugdunensis, and S. warneri.
Cluster 2 included sequences from grapevine leaves and stems
grouping with the pathogenic S. aureus, and one OTU from leaf
strictly related to non-pathogenic species S. sciuri. The major-
ity of OTUs from grapevine leaf and wood endophytic bacteria
clustered together with the pathogenic species S. epidermidis
(cluster 3). Cluster 4 included one OTU representing sequences
from plant stems grouping closely to non-pathogenic species
S. caprae and S. urealyticus. The remaining grapevine sequences,
from both leaf and stem, grouped in two unassigned clusters
(these OTUs shared sequence identity <97% in comparison with
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FIGURE 3 | Phylogenetic relationships based on partial 16S rDNA gene

sequences obtained from pyrosequencing (this work) and closely

related Staphylococcus sequences, retrieved from GenBank

(Pathogenic and non-pathogenic Reference). The tree was built using a

maximum likelihood method and rendered using iTOL. The relative
abundance of each OTU is reported as circles and it is proportional to
circle radius. Sequences tag and relative abundance circles were colored
according to the source dataset.

16S rDNA gene nucleotide sequences previously deposited in
GenBank). Blastn (best-hit) of these sequences indicated that the
cluster 5 (represented by denovo411 and denovo2021) is related
to S. warneri, while the cluster 6 (represented by denovo698,
denovo2782, and denovo117) to S. auricularis.

Sequences identified as genus Clostridium (Figure 4) clus-
tered into three groups relative to the tree inferred from the
16S rDNA sequence alignment. Most endophyte sequences in
this genus were obtained from grapevine leaf. In detail, the first
cluster included endophytic bacteria grouping with HAP such as
Clostridium difficile, C. tetani, and with non-pathogenic environ-
mental species (C. vincentii and C. bijerinckii). The second cluster
included grapevine endophytic bacteria closely related to HAP
Clostridium botulinum and C. perfrigerans, and non-pathogenic
bacteria C. drakei and C. ghonii. The third cluster contained
grapevine endophytic bacteria of the genus Clostridium related to
unassigned species.

DISCUSSION
In the present study, we investigated microbial communities in
the endosphere of grapevine leaves and stems by pyrosequencing

and phylogenetic analyses of the 16S rDNA gene. Several
endophytic OTUs belonging to four genera (Propionibacterium,
Staphylococcus, Clostridium, and Burkholderia), known to include
some species recognized as human- and animal-pathogens
(HAP), were identified within the characterized microbial
communities. Such OTUs were identified in enriched and
not-enriched leaves and in grapevine stems. As reported in lit-
erature, the specific treatment of leaf samples with cell hydrolytic
enzymes (microbe enrichment strategy) releases all microbes liv-
ing in association with plant tissues (Jiao et al., 2006; Bulgari
et al., 2009, 2011), improving the bacterial display and identi-
fication. The majority of the bacterial sequences in the genus
Propionibacterium, from grapevine leaf and stem, were identi-
fied as P. acnes. This species is among the causing agents of acnes
and its members are generally associated with human skin, where
they feed on fatty acids secreted by sebaceous glands (Webster
et al., 1981; Zouboulis, 2004). It also colonizes the human gut
(Perry and Lambert, 2011), and is reported as an opportunis-
tic pathogen in post-surgical infections (Nisbet et al., 2007). We
previously identified genomic changes in P. acnes type Zappae,
tightly associated with grapevines (Campisano et al., 2014). The

www.frontiersin.org July 2014 | Volume 5 | Article 327 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Yousaf et al. Human-animal pathogenic taxa in the grapevine endosphere

FIGURE 4 | Phylogenetic relationships based on partial 16S rDNA gene

sequences obtained from pyrosequencing (this work) and closely

related Clostridium sequences, retrieved from GenBank (Pathogenic

and non-pathogenic Reference). The tree was built using a maximum

likelihood method and rendered using iTOL. The relative abundance of
each OTU is reported as circles and it is proportional to circle radius.
Sequences tag and relative abundance circles were colored according to
the source dataset.

wide diversity in sequences assigned to genus Propionibacterium
shows that these endophytes are mostly present in the stem woody
tissues (where the majority of sequences is amplified) and only
marginally present in leaves, reinforcing the notion of a tight
symbiosis of these bacteria with the plant.

The genus Burkholderia includes more than 60 species, some
of which are known plant-dwellers (endophytes and epiphytes,
Compant et al., 2008). Some species of Burkholderia, such
as B. mallei and B. cepacia (Burkholderia cepacia complex,
BCC), are recognized as HAP and plant pathogens (Govan
et al., 1996; LiPuma, 1998; Coenye and Vandamme, 2003).
Recently, Burkholderia species had gained considerable impor-
tance owing to their pathogenicity, but two findings had a strong
impact on their ecological perception: (i) the identification of
nitrogen fixation in Burkholderia species other than B. viet-
namiensis (which belongs to the BCC), such as B. brasilensis
M130 and B. kururiensis, and (ii) the description of legume-
nodulating Burkholderia and their subsequent characterization
as genuine endosymbionts (Suarez-Moreno et al., 2012). We
found sequences clustering with such pathogenic Burkholderia
in grapevine leaves. Stem-associated Burkholderia OTUs either

grouped with non-pathogenic (or plant beneficial) species such
as B. phytofirmans (Sessitsch et al., 2005) and B. xenovorans
(Caballero-Mellado et al., 2007), or formed a separate phyloge-
netic group very similar to B. kururiensis and B. sacchari, by blastn
analysis of best hit.

We can speculate that the presence of potentially pathogenic
Burkholderia associated sequences in leaf green tissues but not
in the woody stems represents a difference in the ecology of
the plant-beneficial burkholderias from the HAP ones. All tis-
sues in the leaf are in close proximity of the plant surface, while
stem-associated tissues are possibly more difficult to colonize
by transient colonizers. This may explain why plant-beneficial
burkholderias were found mainly in the plant woody stem, while
HAP ones only survive in leaves. We also noted that highly
represented Burkholderia OTUs belong to the cluster including
plant-associated species B. phytofirmans and B. xenovorans or
to the clusters including B. kururiensis and B. sacchari, while
the potentially pathogenic ones are in much lower numbers.
B. phytofirmans is one of most studied endophytes. This strain
was visualized colonizing the grapevine root surface, entering the
endorhiza and spreading to grape inflorescence stalks, pedicels
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and then to immature berries through xylem vessels (Compant
et al., 2008). We also reported in this work as one of the most
abundant burkholderias in grapevine.

OTUs from grapevine leaves were mostly identified as genera
Clostridium and Staphylococcus. These taxa include endophytic
OTUs closely related to the pathogenic species Staphylococcus
saprophyticus, S. aureus, and S. epidermidis. Quite interestingly,
most Staphylococcus sequences appeared to associate taxonomi-
cally with S. epidermidis (Figure 3). S. epidermidis colonizes the
epithelial surfaces of every human being. Furthermore, it is one
of the most common causes of nosocomial infections. In addi-
tion to the abundant prevalence of S. epidermidis on the human
skin, this high incidence is mainly due to the exceptional capac-
ity of S. epidermidis to stick to the surfaces of indwelling medical
devices during device insertion (Otto, 2008, 2009). At our knowl-
edge this is the first report of pathogenic Staphylococcus associated
sequences in plants.

Almost all the endophytic sequences assigned to the genus
Clostridium were amplified from grapevine leaf DNA. This group
included sequences grouping with HAP such as Clostridium dif-
ficile, C. perfrigens, C. botulinum, and C. tetani. A major factor
important to the colonization of plants is how long bacteria
persist in the soil before dying. Clostridium spores persisted in
soil for 16 months and were found on the leaves of parlsey
grown in the contaminated soil (Girardin et al., 2005). We can
speculate that the presence of Clostridium, human and animal
pathogenic taxa (HAPT) in grapevine leaves could be related
to long–lasting spore contamination. Honey sometimes contains
spores of C. botulinum, which may cause infant botulism in
humans 1 year old and younger. The toxin eventually paralyzes
the infant’s breathing muscles (Tanzi and Gabay, 2002). C. diffi-
cile can flourish when other bacteria in the gut are killed during
antibiotic therapy, leading to pseudomembranous colitis (a cause
of antibiotic-associated diarrhea).

HAPT were indentified both in leaves and wood of grapevines.
This depicts the ability of these pathogens to be internalized
within plant tissues. Isolation of human pathogenic enterobac-
teria from within the tissue of fresh and minimally prepared
produce has been reported (Eblen et al., 2004; Shi et al., 2007;
Soto et al., 2007; Holden et al., 2009). Furthermore, it appears
that once a plant has been colonized by bacteria there is the
potential for vertical transmission to successive generations, as
demonstrated for S. typhimurium on tomatoes (Guo et al., 2001).
The exploration of endophytic communities, using metagenome-
based community analyses (Bulgarelli et al., 2012; Lundberg et al.,
2012) coupled with the exploration of the pathogenic potential of
pathogens, are beginning to reveal that many HAP are capable of
exploiting plant hosts. This means the apparent pathogens may
have adapted to the plants and have become plant symbionts, for
at least one stage of their life cycle. This also shows the ability and
potential of HAP to persist on multiple hosts, with plants serv-
ing as intermediate hosts or reservoirs for them. The ability of
these pathogens to maintain their population levels in a variety
of environments likely increases their pan genome and evolu-
tionary potential (Campisano et al., 2014). Although we focused
on four genera (Propionibacterium, Staphylococcus, Clostridium,
and Burkholderia) only, we identified several other taxa known
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for harboring HAP bacteria. Our analysis highlighted the pres-
ence of potential HAPT in the grapevine endosphere and, to the
authors’ knowledge, represents the first report of the unexpected
occurrence of these bacterial taxa in this atypical (yet crucially
important for agriculture) environment.
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