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Iron is the fourth most abundant mineral
in the Earth’s lithosphere (Weber et al.,
2006; Emerson et al., 2013), where it is
present at a mean concentration of 5%
(Hedrich et al., 2011). Iron can exist in
two oxidation stages as ferrous (Fe(II))
and ferric (Fe(III)) iron and some bacteria
and archaea have evolved to use iron as
an obligate or facultative energy source,
giving them the name “Iron Oxidizing
Bacteria” (FeOB) and “Iron Oxidizing
Archaea” (FeOA), respectively (Figure 1).
The oxidation from Fe(II) to Fe(III) can
occur under both oxic and anoxic condi-
tions within a pH range between 0.5 to
8.4 (Edwards et al., 2000; Weber et al.,
2006; Hedrich et al., 2011). Here, the
microbially mediated oxidation of iron
under (micro-)aerobic circum-neutral
conditions will be discussed.

The biogeochemistry of iron poses sev-
eral challenges to iron oxidizing microbes
(for a detailed review see Weber et al.,
2006). In circum-neutral environments
and in the presence of oxygen, rapid
abiotic oxidation of Fe(Il) occurs, with
half-life times of less than 60s (Emerson
et al., 2010). This abiotic oxidation to

poorly soluble iron-oxyhydroxides reduces
the availability of Fe(II) for biologi-
cal process significantly. Microbial oxida-
tion of Fe(Il) therefore generally occurs
in microaerophilic environments, which
extend the half-life time of ferrous iron
while at the same time increasing the
amount of soluble Fe(II) (Bonnefoy and
Holmes, 2012). Further, the oxidation
from ferrous to ferric iron under low oxy-
gen partial pressure increases the Gibbs
free energy yield from 29 to —90kJ mol ™!
Fe(II) (Emerson et al., 2010).

Iron oxidizing bacteria and archaea
have contributed on a global scale to shape
the lithosphere (Emerson and Moyer,
2002; Weber et al., 2006). Evidence of their
impact on the global iron cycle has been
dated back to Pre-Cambrian age where
they are thought to have potentially aided
in the deposition of banded iron forma-
tions (Hedrich et al., 2011). Even today
they have a major impact on terrestrial
and aquatic systems. FeOB and FeOA can
be found in habitats ranging from deep
sea vents to freshwater systems and the
rhizosphere and can form thick mats and
deposits from a few millimeters to tens
of centimeters thick. More recently, these
microbes have made their appearance in
man-made environments and industrial
processes (Valdes et al., 2008). Most com-
monly known may be their contribution to
biofouling and corrosion where the build-
up of ferric iron can lead to a reduction
in the water flow rates and water qual-
ity (Hedrich et al., 2011; Mcbeth et al.,
2011).

Iron oxidizing microbes and their geo-
logical significance were first described
in the 19th century (Ehrenberg, 1837;
Harder, 1919). They are of key impor-
tance to global biogeochemical processes
and more recently have gained interest
for their impact on man-made environ-
ments (Hedrich et al., 2011). Yet, progress
in understanding the ecology, physiol-
ogy and genetic analysis of iron oxi-
dizing microbes has been slow (Weber
et al, 2006). Although iron oxidizing
microbes can be readily observed in nature
due to their striking morphology (such
as the iconic stalk-forming Gallionella)
and ability to form large microbial mats,
they have proven elusive to cultivation
under laboratory conditions. This elu-
siveness has caused confusion in the
past, where taxonomy was inferred exclu-
sively by morphological and ecological
characteristics (Emerson et al.,, 2010).
Recent advances in culturing techniques
(Fabisch et al., 2013; Tischler et al., 2013)
and culture-independent high-throughput
DNA sequencing methods are providing
a clearer phylogenetic picture of these
bacteria (Emerson et al., 2010).

The recent availability of metagenomic
data in particular has greatly acceler-
ated our understanding of iron oxidizing
microbes (Wang et al., 2011; Yelton et al,,
2013). Only 54 bacterial and 13 archaeal
genomes of FeOB are publicly accessible to
date (Weber et al., 2006; Cardenas et al.,
2010; Emerson et al., 2010; Hedrich et al,,
2011), on which the emerging sequence-
based taxonomic framework is built upon
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in green; likely iron oxidizing/reducing candidate microbes are indicated in
gray. Archaeal iron oxidizers and reducers are highlighted in light blue
sections. Accession numbers for respective Genbank or assembly entries are
listed in brackets behind strain designations. Sideroxydans lithotrophicus ES1
and Gallionella capsiferriformans ES2 are shown in bold. Interestingly,
Sideroxydans lithotrophicus ES1 and Gallionella capsiferriformans ES2 form
their own sub-cluster and are most similar to Thiobacillus and Dechloromonas
genomes. The recently published draft genome of Gallionella sp
SCGCAAA018-N21 (marked by “*") does not fall into the ES1/ES2 cluster, but
groups within the larger zeta proteobacterium cluster. This may indicate the
need to further investigate whether N21 represents a true Gallionella strain.
In most instances, iron oxidizing and iron reducing microbes form their own
separate cluster. There are notable exceptions (e.g., Rhodoferax
ferrireducens T118 or Geobacter bremensis R1) and it may be possible that
those microbes are able to carry out both iron oxidation and iron reduction,
depending on their respective environmental circumstances. Most candidate
iron oxidizing or iron reducing bacteria and archaea fall within distinct clusters
that harbor examples of confirmed phenotypes. This may assist future
research in systematically test for iron oxidizing or iron reducing phenotypes.

FIGURE 1 | Functional Genome Distribution Tree of iron oxidizing and
iron reducing microbes. 158 genomes of publicly available known (and
predicted) iron oxidizing and iron reducing bacteria and archaea were included
into a Functional Genome Distribution (FGD) analysis (Altermann, 2012).
Briefly, draft genomes were downloaded in FASTA format, concatenated and
their respective gene models predicted through an updated version of the
GAMOLA annotation pipeline (Altermann and Klaenhammer, 2003).
Complete genomes were downloaded in Genbank format. All 158 genomes
were then subjected to an FGD analysis using the compACTor software.
Briefly, within an FGD analysis complete ORFeomes are compared to each
other, providing a snapshot of genome-to-genome similarities, rather than an
ancestral outlook. In summary, the 158 genomes comprised 501,624 open
reading frames (ORFs) and a total of 79,881,099 individual BLAST analyses
were carried out to calculate the level of similarities between all genomes.
The resulting dissimilarity matrix was then visualized in Mega6 (Tamura et al.,
2013) using the UPGMA algorithm to infer a dissimilarity tree. The early draft
sequence of Leptothrix ochracea L12 was found to be too incomplete and
was removed from the final tree. Iron oxidizing bacteria and archaea are
shown in red; iron reducing bacteria (FeRB) and archaea (FeRA) are depicted
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(Figure 1). New information from culti-
vated strains still refines this framework
and the recently introduced class of marine
Zetaproteobacteria (Emerson et al., 2007)
is an excellent example of this rapid taxo-
nomic evolution. An overview of publicly
available genomes of iron oxidizing (and
reducing) microbes and their relation to
each other is presented in Figure 1.

While metagenomic datasets are valu-
able in improving our understanding of
the presence and composition of iron oxi-
dizing microbial communities (lonescu
et al, 2012; Kato et al., 2013; Singer
et al, 2013), they rely on a robust
gene-based taxonomic framework. Such a
framework and detailed metabolic recon-
struction of individual microbial strains
require access to (draft) genome sequences
and, consequently, to pure strains of
iron oxidizing microbes (Kato et al,
2013). Despite the requirement for new
strains of iron oxidizing microbes, iso-
lation and characterization is challeng-
ing and time consuming. For example,
Gallionella were first described in 1837
(Ehrenberg, 1837) and are amenable to
cultivation. However, it was not until
the mid-1990s where cultivation of two
further strains, Gallionella ferruginea and
Gallionella  capsiferriformans ES-2, was
successful (Hallbeck et al., 1993; Emerson
and Moyer, 1997). Similarly, the isolation
and characterization of other freshwater
Fe(II) oxidizing Betaproteobacteria such
as Sideroxydans sp. ES-1, that is metaboli-
cally flexible and can utilize reduced sulfur
compounds and fix nitrogen, were also
achieved only in the 1990s (Emerson and
Moyer, 1997).

Since the initial description of both
Gallionella  capsiferriformans ES-2  and
Sideroxydans lithotrophicus ES-1 a num-
ber of publications have investigated
their morphological, phenotypical and
industrial characteristics (Hallbeck and
Pedersen, 1995; De Vet et al., 2012; Krepski
etal., 2012), but no information was avail-
able on their genetic blueprint. The recent
publication by Emerson et al. (2013),
presenting the comparative analysis of
genomic sequences of both Sideroxydans
lithotrophicus ES-1 and Gallionella capsi-
ferriformans ES-2, has filled this gap. By
combining morphological characteristics
with in silico comparative genomic analy-
ses the authors were able to demonstrate

that, although isolated from the same
habitat, an iron-mat from ferruginous
groundwater in Michigan (Emerson and
Moyer, 1997), both strains belong to dif-
ferent genera in the recently proposed
order Gallionellales. Importantly, the
genomic comparison and metabolic path-
way reconstruction highlighted a number
of similarities and differences between
both strains: 60% of the predicted genes
were homologous at the 30% similarity
level and both strains share a number
of core metabolic capabilities for envi-
ronmental sensing (chemotaxis), motility
(pili), the uptake of nutrients through
ABC transporters, energy metabolism, and
detoxification of heavy metals, although
strain ES-2 harbors a greater array of
detoxification systems than ES-1 implying
a superior ability to persist in habitats rich
in environmental toxins. Notably, ~10%
of both genomes is dedicated to environ-
mental sensing and signal transduction
which is a significantly higher number of
genes than found in most other microbial
genomes. Both strains harbor complete
sets of chemotaxis genes and in combi-
nation with the elaborate environmental
sensing array, controlled movement along
the opposing gradients of Fe(II) and oxy-
gen may facilitate optimal positioning of
individual cells.

One of the problems aerobic Fe(II)
oxidizing microbes must overcome is the
presence of highly reactive oxygen species
(ROS) that are produced via Fenton chem-
istry in the presence of oxygen and
iron. Catalase and superoxide dismutase
are the most common defense mecha-
nisms against ROS and surprisingly both
strains feature only a minimal set of cata-
lase and peroxidase genes. This may be
compensated by a number of truncated
hemoglobins that are highly conserved and
found in other FeOB such as M. ferrooxy-
dans PV-1. These hemoglobins may rep-
resent an intracellular oxygen buffer that
reduces the occurrence of ROS by binding
oxygen under microaerophilic conditions
and high concentrations of Fe(II).

Interestingly, strains ES-1 and ES-2
differ in their strategies to generate
ATP. While ES-2 relies on the alterna-
tive complex III and a bacterial ATPase,
ES-1 employs Cytochrome bcl, and a
bacterial/archaeal-type ATPase in addition
to the bacterial ATPase. The advantages of

a second ATPase are presently unknown
and the distribution of such redundant
systems throughout the genomes of iron
oxidizing microbes may provide clues to
their respective niche adaptation in the
future.

Both strains harbor prophage that may
have been acquired independently and do
not share homologous genes. However, the
ES-1 prophage shares significant nucleic
acid similarity (24%) to a prophage gene
cluster identified in Mariprofundus fer-
rooxydans PV-1 (Singer et al., 2011), pos-
sibly indicating shared hosts in the past.
Neither of the two strains features CRISPR
sequences that have long been associated
with phage defense, posing an interesting
question on the evolutionary pressure of
bacteriophage in iron oxidizing communi-
ties. It is generally accepted that phage and
their respective hosts are locked into an
ongoing arms race that shapes their evo-
lution (Stern and Sorek, 2011). Emerging
genomes of iron oxidizing microbes will
provide deeper insights into the defense
mechanisms these microbes deploy to
evade phage infection and killing.

Neither of the two strains features
any of the unique extracellular structures
such as sheaths or stalks often associated
with FeOB. Genome analysis revealed that
strain ES-1 feature a single large gene
cluster dedicated to exopolymer synthe-
sis, while ES-2 harbors two separate large
EPS clusters in addition to two gene clus-
ters possibly involved in cellulose syn-
thesis. The presence of exopolysaccharide
(EPS) gene clusters may provide clues how
those strains prevent self-encrustation by
iron-oxyhydroxides but further in vitro
research is required to unravel these
survival strategies.

Recently, the draft genome sequences
of Gallionella sp. SCGC AAA018-
N21 have been released (BioSample:
SAMNO02256456) and a future compar-
ative genomics analyses will undoubtedly
reveal further insights in lifestyle adap-
tation and contribute to a more robust
taxonomic framework.

The research presented by Emerson
et al. contributes significantly to our
understanding of neutrophilic freshwater
iron-oxidizing bacteria and their taxo-
nomic relations to each other. However,
the intriguing features found in both
genomes—either commonly shared or
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specific to the individual strains—have
created a large, new research space waiting
to be investigated.
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