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The majority of microorganisms live in complex communities under varying conditions.
One pivotal question in evolutionary biology is the emergence of cooperative traits and
their sustainment in altered environments or in the presence of free-riders. Co-occurrence
patterns in the spatial distribution of biofilms can help define species’ identities, and
systems biology tools are revealing networks of interacting microorganisms. However,
networks of inter-dependencies involving micro-organisms in the planktonic phase may
be just as important, with the added complexity that they are not bounded in space. An
integrated approach linking imaging, “Omics” and modeling has the potential to enable
new hypothesis and working models. In order to understand how cooperation can emerge
and be maintained without abilities like memory or recognition we use evolutionary game
theory as the natural framework to model cell-cell interactions arising from evolutive
decisions. We consider a finite population distributed in a spatial domain (biofilm), and
divided into two interacting classes with different traits. This interaction can be weighted
by distance, and produces physical connections between two elements allowing them to
exchange finite amounts of energy and matter. Available strategies to each individual of
one class in the population are the propensities or “willingness” to connect any individual
of the other class. Following evolutionary game theory, we propose a mathematical model
which explains the patterns of connections which emerge when individuals are able to find
connection strategies that asymptotically optimize their fitness. The process explains the
formation of a network for efficiently exchanging energy and matter among individuals and
thus ensuring their survival in hostile environments.

Keywords: microbial communities, bacterial social networks, evolutionary games, graph theory, evolutive

decisions, hostile environmental conditions

1. INTRODUCTION
How spatial and temporal organization in cell-cell interactions
are achieved remains largely elusive. The central hypothesis of
this unique topic is that a broad range of interactions and con-
nections forming networks across species define strategies for
co-evolution, and the display of adaptive strategies from micro-
bial networks as a response to altered environments (Ben-Jacob
and Cohen, 1997; Ben-Jacob et al., 2000; Dwyer et al., 2008).
These are questions of great interest in a rapidly evolving area of
science.

Surfaces concentrate nutrients, and it is generally assumed
that planktonic cells were the first to take advantage of the cat-
alytic and protective advantages offered by surfaces—a first step
in the development of biofilms. Likely the first complex systems
to achieve homeostasis in response to fluctuations in the primitive
Earth environment, biofilms facilitated the development of com-
plex interactions between individual cells and the development
of signaling pathways and chemotactic motility (Hall-Stoodley
et al., 2004; Fuhrman, 2009; Gure, 2009; Shimoyama et al., 2009).
Interactions between two species of microbes that affect their
coexistence and evolution have been studied in a laboratory
system of two species (Hansen et al., 2009). Direct cell-cell

interspecies interactions have been reported for laboratory cul-
tures (Dubey and Ben-Yehuda, 2011) and for intact microbes in
natural communities (Comolli and Banfield, 2014).

New metagenomics data from environmental microbial com-
munities (e.g., Wrighton et al., 2012; Kantor et al., 2013) is
showing that novel, small microorganisms lack the full metabolic
potential to have a truly independent lifestyle. In other work
(Baker et al., 2010; Comolli and Banfield, 2014) linking genomics
and imaging, one novel nanoarchaea named ARMAN has been
found establishing connections with archaea of different species.
Therefore, we start with microbes of different classes or species
assuming they lack the full metabolic potential necessary for sur-
vival under certain conditions; we also assume the two species
complement the needs of each other, so that individual of one
species seek the complement provided by individuals of the other
species.

Evolutionary game theory (Weibull, 1995; Hofbauer and
Sigmund, 1998; Nowak, 2006b) provides a rather intuitive frame-
work to model interactions and decisions among co-evolving
members of a population. It has been successfully used to
describe relevant mechanisms of cooperation in biology (Nowak,
2006a; Frey, 2010) as the result of collective behavior induced by

www.frontiersin.org August 2014 | Volume 5 | Article 407 | 1

http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00407/abstract
http://community.frontiersin.org/people/u/111782
http://community.frontiersin.org/people/u/102246
http://community.frontiersin.org/people/u/104087
mailto:mocenni@dii.unisi.it
http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Madeo et al. Emergence of microbial networks

altruistic decisions, which allows a population to increase its own
fitness.

The present study is an attempt to model the activation of con-
nections among the members of a population of microorganisms
accounting for the new findings on microbial communities for-
mation. Starting from evolutionary game theory we are interested
in understanding the conditions (for the simplified variables and
parameters of our model) allowing the onset of cooperative inter-
action between two or more individuals, and their sustainment in
the most efficient networks. Specifically the formation of suitable
physical connections will eventually allow them to exchange a cer-
tain amount of energy and matter. The activation of links among
microorganisms gives rise to the formation of a network, which
increases the probability that any single individual and the whole
population will survive.

The proposed approach is based on a recent paper (Madeo
and Mocenni, under revision) where evolutionary game theory
is extended to model the behavior of a finite population in which
members are organized according to a network of relationships
between them, such as friendship, spatial proximity, sharing, etc.
The model introduced in that paper describes decisions of single
individuals rather than average strategies of the whole population,
and provides a natural tool to deal with the problem of con-
nection formation among couples of bacteria from a single-cell
fitness perspective—we will use the term “bacteria” for simplic-
ity, but they could also be archaea or protists. The main idea
motivating the present paper is that two microorganisms estab-
lish a connection when it provides a significant gain to both.
This paradigm assumes that two classes of bacteria with differ-
ent biological characteristics are present in the system, and under
averse environmental conditions members of one class may need
to access resources that only the individuals of the other class are
able to produce, and viceversa.

In terms of game theory the propensity of a bacterium to
establish a connection with another one is a behavioral strat-
egy, namely a game strategy. Each strategy provides a certain
payoff which accounts for natural constraints, such as distance
and available energy. A connection strategy becomes effec-
tive if both involved individuals take an enough great advan-
tage from it. This process can be described as a game where
available strategies to the players are decisions to connect.
Evolutionary games and the replicator equations introduced
in Madeo and Mocenni (under revision) provide the mathe-
matical models allowing us to follow the system dynamics of
connections of a single bacterium and network formation at
a global level. As a result, if the environmental conditions are
favorable, the bacteria spend their energy only on surviving
and reproducing. To the contrary, under averse conditions they
acquire/transfer a certain amount of available energy from/to the
connected bacteria. A similar phenomenon is the well known
mechanism of coordinated motion and aggregation shown by
the starving amoeba Dictyostelium discoideum (Eichinger and
Noegel, 2003). Moreover, we assume that the bacteria are not
allowed to move. Indeed, in the present work we are mainly
focused on introducing a methodology that will be leverage in
future works, and where the models will be compared with
experimental data.

The approach proposed in this paper implicitly incorporates
mechanisms of cell-cell recognition underlying interspecies inter-
actions, and uses theory and modeling to show the emergence of
counterintuitive patterns resulting, for example, from long term
communication mechanisms. Our results show that the formed
networks optimize the use of the available energy produced and
exchanged between microorganisms. We also find conditions or
regions of the parameter space which clearly enable or prevent
efficient outcomes.

The paper is organized as follows: Section 2 describes the com-
ponents of the mathematical model, such as bacteria, decisions
and payoffs, the model equations, and the basic mechanisms of
network formation. In Section 3 theoretical and experimental
results are reported. The results obtained are discussed in Section
4. Finally, Section 5. reports a detailed technical description of
the evolutionary game which is assumed to be the basis of system
dynamics.

2. MATERIALS AND METHODS
In this section we introduce the mathematical model describ-
ing the mechanism for which the individuals of a population
of bacteria are able to make the decision of establishing recip-
rocal connections aimed at maximizing their probability of sur-
vival in a hostile environment. More precisely, cooperation yields
the activation of a physical connection between two or more
organisms, such as the extensions visible in Figure 1 where the
Cryogenic-electron microscopy image of a biofilm revealing the
existence of connections among archaea of different species are
reported.

2.1. INDIVIDUALS, STRATEGIES, DECISIONS, AND REWARDS
We assume that a population of N bacteria is located in a spa-
tial domain and that it is composed of two subclasses. The classes
differ only for genetic and phenotypic characteristics, and not for
their members behavior or decisions. Elements of different classes
can create links to exchange genetic material, proteins, metabolic
intermediates, etc. The formation of links is assumed to stem from
the need to obtain elements allowing bacteria to better resist hos-
tile external conditions (Ben-Jacob et al., 2000). Analogously two
elements of the same class are not allowed to create any link.
The original conditions are restored once the external situation
becomes favorable again and the bacteria are able to reproduce.

In order to be willing to create a link, a microorganism must
have enough (finite) available energy to exchange with one or
more organisms of another class. The level of energy that bacteria
decide to share depends on how averse the environmental condi-
tions are. Moreover, energy transfer is dissipative, because a part
of the energy is lost due to distance and effort of linking.

The model developed in this paper assumes that the connec-
tions are bilateral; although, one can allow monodirectional links
as explained in Section 2.3.

The processes and assumptions described above can be mod-
eled by introducing the following variables:

• V is the set of all considered bacteria (|V| = N);
• V1 ⊂ V and V2 ⊂ V are the subclasses, where V = V1 ∪ V2

and V1 ∩ V2 = ∅;
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FIGURE 1 | Cryogenic-electron microscopy image of a small region of a

biofilm. In red, a 50-voxel-thick slice through a tomographic reconstruction
overlaid onto a one-voxel-thick slice in gray scale. There is a round cell at
the center and what appears to be an extension from a different cell type
into it from the bottom, and another at the top. Previous work (see Baker
et al., 2010 and references therein) established they belong to different
species of archaea. Arrows indicate tubular extensions or appendages
connecting the microbial cell in the center to microbial cells of different
species. This is established by their typical, clearly different cell walls. For
more information see Comolli and Banfield (2014) in this Special Topic.

• ρv,w > 0 is the distance between bacteria v and w;
• Tv > 0 is the maximum amount of energy that organism v can

transfer to others.

The decision of an individual to establish a connection with other
individuals is modeled using an evolutive game. In the game the
players (bacteria) are allowed to choose a strategy in set S . The
strategies available to each player consist of the will of being
connected to another player. The number of feasible strategies
to each player is N and we can state a relationship of equiva-
lence between players and strategies. For simplicity of notation,
we indicate players and strategies by means of their labels, thus
V = S = {1, . . . , N}, and, when needed, players will be labeled
by the letters v, w, . . . and their strategies by the symbols sv,
sw, . . . . For example, if player v ∈ V uses strategy sv ∈ S with
v �= sv, he wishes to connect to player w ∈ V , which is such that

FIGURE 2 | Mechanism of network formation in the population of

bacteria: couples of individuals may decide to reciprocally share a

certain amount of energy in order to be able to resist environmental

disturbances.

w = sv. On the contrary, if v = sv, then v is connected only to
himself. Since self energy transfers are not meaningful, circular
connections correspond to the activation of any connection.

Consider two individuals, v ∈ V1 and w ∈ V2, and suppose
that v chooses pure strategy sv ∈ S and w chooses pure strategy
sw ∈ S . At this point, v will receive energy from w if and only if
sv = w and sw = v. The same holds for w. This means that indi-
vidual v is effectively connected to w if and only if w is also willing
to be connected to v.

A pictorial representation of the physical mechanisms
described by the model is reported in Figure 2.

The effective energy E(w, v) received by v when it is connected
to w depends on the reciprocal decisions of the two individuals
to be connected and on their physical distance. More specifically,
energy is defined by:

E(w, v) = Twγ (ρv,w), (1)

where γ (ρ) is a monotonically decreasing function allowing
to quantify the effective available energy after dissipation due
to distance. Although multiple specifications are possible, the
properties that γ (ρ) should satisfy are the following:

(i) γ (ρ) ≥ 0 ∀ρ ∈ [0, +∞);
(ii) γ ′(ρ) ≤ 0 ∀ρ ∈ [0, +∞);

(iii) γ (0) = 1;
(iv) γ ( + ∞) = 0.

Moreover, E(w, v) = 0 if v and w belong to the same set.
Notice that since Tv is generally different from Tw, E(w, v)

can be different from E(v, w), i.e., the two individuals may earn
different rewards from connection.

To develop the model equations describing the biological
mechanism of cooperation, we assume that the members of the
population are allowed to play suitable games, the strategies of
which are the propensity to form connections. The members of
the population will be interchangeably called individuals, bacteria
or players.

2.2. THE REPLICATOR EQUATION OF CONNECTIONS
The state variable of the model is the propensity xv,sv of a player to
connect to another player. More specifically, the quantity xv,sv can
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be read as a percentage indicating the share of energy that player
v is available to transfer to player w. According to our previous
notation, we can also indicate the second player w as the strategy
that player v adopts when he is looking for a connection with him
(w = sv). The distribution of strategies of a single individual v of
the population is accounted by vector

xv = (xv,1, . . . , xv,N ),

where

N∑
sv=1

xv,sv = 1 ∧ xv,sv ∈ [0, 1] ∀v, sv.

In general, xv,sv �= xsv,v, because two individuals starting the
process of connection are allowed to independently choose the
amount of sharable energy—although both are required to share
a minimum energy to make effective connections.

An individual can decide to share his energy with more than
one, at which point the vector representing strategy distribution
xv may include components strictly less than 1. In this case, it is
called mixed strategy distribution. On the other hand, solutions
with N − 1 null and only one unitary component are called pure
strategies in the underlying game. It is clear to see that mixed
strategies include pure strategies.

From a biological point of view pure and mixed strategies indi-
cate that an individual is willing to connect with strictly one or
more bacteria, respectively.

The complete distribution of the chosen strategies for the
whole population is represented by the variable

X = (x1, . . . , xN ),

which includes N2 components, namely xv,sv . There are N com-
ponents for each bacterium belonging to each of the two classes
V1 and V2.

The above statements allowed us to define the reward, or
payoff, pGv,sv

, obtained by player v when it connects to sv, as
follows:

pGv,sv
= E(sv, v)xsv,v, (2)

where the superscript G indicates the presence of a graph.
Consequently, the average payoff for player v over the graph is:

φG
v =

N∑
sv = 1

xv,sv pGv,sv
. (3)

According to the well known theory on evolutionary games
(Weibull, 1995; Hofbauer and Sigmund, 1998) and to the same
theory extended to networked populations (Madeo and Mocenni,
under revision), we can write the replicator equation of the game
accounting for the graph under construction by bacteria. This
equation describes the evolution over time of the distribution of
pure/mixed strategy vectors xv, and reads as follows:

ẋv,sv = xv,sv (pGv,sv
− φG

v ). (4)

The corresponding Cauchy problem can be obtained from
Equation (4) by setting an additional constraint on initial con-
ditions, namely xv,sv (t = 0) = x0

v,sv
. It is well known from the

theory on ordinary differential equations (ODEs), that this prob-
lem has a unique solution, xv,sv (t), t ∈ [0, T], In the specific
system developed here this solution represents the evolution over
time of the distribution of the propensities of each bacterium to
be connected to any other bacterium present in the systems. Some
examples of the evolution of these variables over time are shown
in Figure 6 reported below and in Supplementary Movie 1.

2.3. THE GRAPH TOPOLOGY
The solution X(t) = (x1, . . . , xN ) of Equation (4) allows us to
calculate the effective connection graph GE(t), by defining its
adjacency matrix AE(t) = {aE

v,w(t)}v,w∈V as follows:

aE
v,w(t) =

{
1 if xv,sv (t) > η ∧ xw,sw (t) > η

0 otherwise
, (5)

where sv = w, sw = v and η ∈ [0, 1] is a given threshold.
The model can also be developed assuming that the effective

connection graph GE(t) is directed, in order to take into account
monodirectional connections, arising, for example, when bac-
terium v shares energy with w, but w does not send anything back.
Indeed, one can rewrite graph (5) as follows:

aE
v,w(t) =

{
1 if xv,sv (t) > η

0 otherwise
, (6)

where sv = w. The latter approach goes beyond the scope of the
present study, and in the following we only use the bidirectional
graph defined by Equation (5).

The parameter η in Equation (5) represents the threshold
above which the will to connect becomes an effective link. From
a mathematical point of view η is a way of selecting optimal con-
nections, but it also has an interesting biological interpretation
because it is correlated to the maximum number of connections
that a bacteria is allowed to have. Suppose that bacterium v is the
most connected in the graph, and let nv be the number of its con-
nections. Then there are at least nv components xv,sv of vector xv

greater than η. Since the sum of all these components is at most 1,
each of them is at least 1

nv
and hence η < 1

nv
. Thus, η is inversely

correlated to the number of connections of the most connected
bacterium in the graph.

In order to ease the explanation of the model and the mech-
anism of link formation we report a schematic representation
of possible connections and state variables for a prototypical
system composed by the two sets V1 = {v1} and V2 = {w1, w2}
in Figure 3A. This system is deeply analyzed in the following
Subsection 2.3.1.

2.3.1. The system of equations for a simple case
Here we report some theoretical results obtained by developing
the mathematical model for a simple example involving N = 3
bacteria divided into 2 classes, in particular, V1 = {v1} and V2 =
{w1, w2}), as shown by Figure 3. For the sake of simplicity in the
following equations the individuals are simply enumerated from 1
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FIGURE 3 | Schematic representation of the connections among

the bacteria in a simple system composed by only three

microorganisms divided in the two classes V1 and V2.

(A) shows all possible connections, (B,C) report the effective

formation of a single connection and (D) represents the onset of
multiple connections. The state variables xv,w describing the
dynamics of the system according to Equation (7) are also reported
as labels of arcs of the graph.

to 3, specifically V1 = {1} and V2 = {2, 3}. In this case the system
is composed of N2 = 9 ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = −x1,1φ
G
1

ẋ1,2 = x1,2(x2,1E(2, 1) − φG
1 )

ẋ1,3 = x1,3(x3,1E(3, 1) − φG
1 )

ẋ2,1 = x2,1(1 − x2,1)x1,2E(1, 2)
ẋ2,2 = −x2,2x2,1x1,2E(1, 2)
ẋ2,3 = −x2,3x2,1x1,2E(1, 2)

ẋ3,1 = x3,1(1 − x3,1)x1,3E(1, 3)
ẋ3,2 = −x3,2x3,1x1,3E(1, 3)
ẋ3,3 = −x3,3x3,1x1,3E(1, 3)

, (7)

where φG
1 = (x1,2x2,1E(2, 1) + x1,3x3,1E(3, 1)).

As described in Madeo and Mocenni (under revision), pure
strategy profiles are always stationary points for system (7). In
particular, concerning players 2 and 3, the strategies x∗

2 = x∗
3 =

[1 0 0]T are attractive, since ẋ2,1 ≥ 0, ẋ3,1 ≥ 0, ẋ2,2 ≤ 0, ẋ2,3 ≤ 0
and ẋ3,2 ≤ 0, ẋ3,3 ≤ 0 ∀X. As expected, both players 2 and 3 nat-
urally want to connect to player 1. Moreover, φG

1 ≥ 0 and hence
ẋ1,1 ≤ 0. This means that x∗

1,1 = 0 is attractive and x∗
1,2 + x∗

1,3 =
1. Using these stationary state values, we can rewrite the second
and third equations as follows:{

ẋ1,2 = x∗
1,2(1 − x∗

1,2)(E(2, 1) − E(3, 1))

ẋ1,3 = x∗
1,2(1 − x∗

1,2)(E(3, 1) − E(2, 1))
. (8)

Clearly, x∗
1 = [0 1 0]T and x∗

1 = [0 0 1]T are stationary points.
These two cases represent situations in which bacterium 1 con-
nects only to bacterium 2 or 3, respectively (see Figures 3B,C).
If E(2, 1) = E(3, 1), then x∗

1 = [0 x∗
1,2 1 − x∗

1,2]T represents an
infinite set of stationary points, with x∗

1,2 ∈ (0, 1) and 1 − x∗
1,2 ∈

(0, 1). This means that player 1 can potentially establish connec-
tions with both players 2 and 3. This happens when x∗

1,2 and
1 − x∗

1,2 are also greater than η. This result shows that in the par-
ticular case in which there are players able to transfer the same
amount of energy to a single bacterium, multiple connections are
allowed (see Figure 3D).

3. RESULTS
In this section we provide some numerical simulation results of
the model developed in this paper.

As described in the Materials and Methods Section, the func-
tion γ in Equation (1) accounts for the assumption that the
mechanism of connection formation depends on the distance
between bacteria. The simulations reported in this section have
been obtained by using the following specification of γ :

γ (ρ) =
{

1 − ρ
μ

0 ≤ ρ ≤ μ

0 ρ > μ
. (9)

According to Equation (9), in the definition of γ the parameter μ

represents a distance threshold for feasible connections; indeed,
for each couple of bacteria v and w that are separated by a distance
ρv,w > μ, γ (ρv,w) = 0 and hence E(w, v) = 0. In other words,
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connections over distances greater than μ do not allow any energy
exchange and are thus not convenient.

In order to evaluate quantitatively the simulation results we
introduce the following indicator of efficiency:

IG(t) =
∑N

v̄ = 1

∑N
sv̄ = 1

pGv̄,sv̄∑N
v̄ = 1 maxz E(v̄, z)

, (10)

where v̄s are all the connected bacteria and z are all bacteria.
The indicator evaluates the instantaneous ratio between the total
payoff of connected bacteria and the total energy available to bac-
teria for establishing connections. Notice that the IG changes
over time. The payoff and the number of connected bacteria vary
in time.

3.1. EXPERIMENTAL RESULTS
The results of several numerical experiments developed over a
population of 30 bacteria organized into two different classes
are reported. The energy available to each bacterium is assigned
randomly at the beginning of the simulation.

The net energy E that each bacterium is available to share
with other bacteria is initial energy T scaled by distance through
γ . In other words, this quantity represents the energy that each

bacterium is available to send (sender) to another bacterium
(receiver). Sender and receiver bacteria are reported as rows
and columns of the grid shown in Figure 4, respectively. The
stars indicate the presence of a connection among bacteria that
has been permanently established according to the mechanisms
described by Equation (5).

It is interesting to note that effective connections are possi-
ble only when both linked bacteria have enough available energy
to share with the other. The antisymmetric parts of the matrix
are not involved in the mechanism of energy sharing because
the connections are allowed only among individuals belonging to
different classes.

When the steady state is reached, we find the presence of effec-
tive stable connections reported in Figure 5 for a run with 30
bacteria over 100 time steps. The colors of the nodes correspond
to the value of the payoff described by Equation (2), calculated
at the steady state. With parameter values η = 0.2 and μ = 0.2,
we can see that some bacteria are able to activate multiple con-
nections. Connections involving more than 3 bacteria are also
possible for different values of the parameters, as reported by the
following figures. The interplay between Figures 4 and 5 is shown
by Supplementary Movie 1, where the dynamics is reproduced,
and the onset of links can be followed over time (left inset of the

FIGURE 4 | Energy initially available for exchange among a network

of 30 bacteria. Each bacterium has a quantity of energy available it
wants to transfer to the others and it will be allowed to receive an
amount of energy from them. These two energies are represented by
different colors in the rows and columns of the grid. For example,
bacterium 23 wants to share a large amount of energy with bacterium

1; on the contrary, the quantity of energy that bacterium 1 is available
to transfer to bacterium 23 is much lower. Nonethelss, the two
bacteria will be able to establish an effective connection, although with
different intensities, because the corresponding state variables x1,23 and
x23,1 lie above threshold η. The stars correspond to effective
connections and energy exchanges.
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FIGURE 5 | Final configuration of the network composed of 30 bacteria at

steady state (t = 100). Bacteria belonging to the two classes are
represented by different shapes, such as squares and circles. The color
associated to each bacterium represents the effective quantity of energy it

receives thanks to the established connections. Multiple connections are
present, for example bacteria 3 and 23 established connections with bacteria
29–18 and 1–10, respectively. See also Supplementary Movie 1, which reports
the whole dynamics and provides the connection between Figures 4 and 5.

movie). The inset on the right part of the movie reports the state
variable xv,w for each bacterium.

Furthermore, the complete dynamics of the energy received by
each bacterium is reported in Figure 6.

Figure 7 shows the values of the efficiency indicator (10)
and the number of connections arising in the evolutive process.
Both efficiency and number of connections have a monotonically
increasing and saturating dynamics, showing that the process
reaches a steady state quite fast.

More details on the state variables and solutions of Equation
(4) are provided in Figure 8. In particular, the time course
of the dynamics of two bacteria is reported and compared to
threshold η. One can observe that the first link between the
two bacteria is formed at approximately t = 70, when both
variables exceed threshold η. Nevertheless, the connection is
removed later on at approximately t = 125, when one of the
two components falls below the threshold. It is interesting to
note that the bacteria try to activate several connections before
they are able to reach a steady state, i.e., a stable and permanent
configuration.

Figure 9 shows the time course of the efficiency indicator on a
time interval of 400 time instants for different values of parame-
ter η. The increase of efficiency over time indicates that the system
is moving toward a more efficient state. Moreover, for small val-
ues of μ (solid lines) efficiency is higher for larger ηs, while for
large values of μ (dashed lines) the asymptotic values reached
by efficiency are independent of η. Recall that μ is related to
the amplitude of the spatial region to which each bacterium is
allowed to look for connections with others. The independence
of the final configuration of the network on parameter η sponta-
neously resulting from the model is very important because there
are presently no guidelines for choosing appropriate values of the
threshold η.

Another significant result emerging from the inspection of
Figure 9 is that for small μs values of η exist for which efficiency

increases more quickly. In particular, for η = 0.5, the asymptotic
stable value of efficiency is reached much faster than for any other
value.

The inset of Figure 9 reports the histogram of the differ-
ent kinds of connections that can be established by bacte-
ria with respect to η and for different μ. As one can see,
for small μ multiple connections are feasible while for high
μs only one to one connections are effectively possible. As
mentioned system efficiency reduces for small values of μ

the system efficiency reduces. This result confirms that single
connections are more efficient and robust. One should also con-
sider that in these present simulations we assume to have only
two classes of bacteria, and multiple connections would involve
more that one bacterium belonging to the same class, i.e., pro-
viding the same information content. In this sense, it seems
obvious that single connections are more efficient than multi-
ple ones. Future works will be devoted to compare the solu-
tion provided by the proposed model with optimal connection
networks.

In Figure 10 the values of efficiency are reported as a function
of time for different values of parameter μ. Notice that in this case
both the efficiency and its derivative are independent on param-
eter μ except for μ = 0.1. The curves have the same dynamics
for μ = {0.3, 0.5, 0.6}, while for μ = 0.1 the system takes more
time to reach steady state. This mechanism is even stronger for
smaller ηs, reported as solid lines in the figure. Moreover, in the
latter case, the inset of Figure 10 shows that for small η bacteria
are allowed to establish multiple connections with approximately
the same efficiency.

Figure 11 reports the time course of the number of connec-
tions for different values of η and μ, where solid lines correspond
to small and dashed lines to large values of μ, respectively. It is
worthwhile to note that the number of connections is indepen-
dent on both parameters η and μ except for the case of η = 0.01
and μ = 0.1. In this case the number of connections is higher,
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FIGURE 6 | Dynamics of the energy received by each member of a

network composed of 30 bacteria. The colors reported in each row
represent the energy received by a single bacterium over time. The energy

received initially is null for all bacteria. The presence of oscillating behaviors,
such as the one shown by bacterium 1, shows that the final configuration is
also the result of transient activated/deactivated connections.

FIGURE 7 | Time course of efficiency (blue) and number of effective connections (green) of a network composed of 30 bacteria. The data are plotted
with different scales and the model parameters are set as follows: η = 0.2 and μ = 0.2.

even though efficiency is lower, shown by the solid red line of
Figure 9. A small value of η means that almost any connection
is possible and a small value of μ means that the spatial horizon
where the bacteria are allowed to look for connections is also very
small. Thus, the bacteria will be only allowed to establish mul-
tiple one to one short range connections and probably lose the
more efficient ones.

Notice that for small values of η some connections already exist
at t = 0. In fact, the initial values of the state variables assigned
randomly to some couples of bacteria may fall below the threshold
from the beginning.

In Figure 12 we report the same results of Figure 11, but with
respect to parameter μ. The most important thing to notice in
this case is that the number of connections for small μ and
any η is less than any other parameter value. A further signif-
icant result is the transient behavior occurring for η = 0.1 and
μ = {0.3, 0.5, 0.6}, where groups of bacteria experiment with
connections after which they can decide to regress.

4. DISCUSSION
This paper is the first attempt to develop a mathematical model
describing the activation of suitable physical connections among
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FIGURE 8 | Time course of two components xv,w (t) (red) and

xw,v (t) (blue) of the system state X(t). When both components are
greater than η (dashed black line), a link between v and w is

formed. The link disappears when component xv,w (t) falls below the
threshold η. This transient behavior is in agreement with the results
shown in Figure 6.

FIGURE 9 | Time course of efficiency for different values of threshold η = {0.01, 0.1, 0.5, 0.9} and parameter μ = {0.1, 0.5}. Solid lines correspond to
μ = 0.1 and dashed lines to μ = 0.5. The inset reports the histogram of connections for μ = 0.1 and μ = 0.5 at t = 200.

two or more bacteria experiencing hostile environmental con-
ditions. Contrary to standard ways of interpreting collaboration
and clustering among groups or subgroups of bacteria, the model
proposed in this study describes a mechanism based on the strate-
gies of individual players. Instead of interpreting patterns as a
result of macroscopic and collective behavior involving a large
part of the population of bacteria, our model allows two or more
bacteria to make the decision of connecting to another specific
bacterium of a different species.

An important result of this work is that bacteria (microor-
ganisms) prefer one to one rather than multiple connections
because the first ones are more efficient, optimal and robust.
This fact reproduces what has been experimentally observed in
biofilms, where interspecies interactions do not produce a “com-
mon good” such as the constituents of biofilm architecture, but

all associations are cell-to-cell (see Comolli and Banfield, 2014).
In our framework, these connections result from spontaneous
co-evolutive dynamics of groups of bacteria, and are the natural
consequence of the basic assumptions under evolutionary game
theory. Thus, the fact that we did not need to include any addi-
tional a priori assumption or information in the model to obtain
the above results suggests our model captures a fundamental
aspect of microbial life within biofilms.

When environmental conditions are very averse, and microor-
ganisms need the recruitment of diversified biological compo-
nents such as metabolites, proteins, defense mechanisms, nucleic
acids, etc. (see Mitri et al., 2011), we may suppose that each com-
ponent is provided by a bacterium belonging to a particular class.
At this point, we expect that multiple connections will be more
efficient than one-to-one. The present work can be powerfully
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FIGURE 10 | Time course of efficiency for different values of parameter μ = {0.1, 0.3, 0.5, 0.6} and threshold η = {0.1, 0.5}. Solid lines correspond to
η = 0.1 and dashed lines to η = 0.5. The inset reports the histogram of connections for η = 0.1 and η = 0.5 at t = 300.

FIGURE 11 | Time course of the number of connections for different values of η and μ. Here η = {0.01, 0.1, 0.5, 0.9} and μ = {0.1, 0.5}. Some connections
are present at the initial time when the threshold η is sufficiently low.

extended to account for the presence of more than two subclasses
of bacteria, and hence more than two kinds of energies available
for exchanges.

An additional significant result of the paper is that the asymp-
totic values of efficiency at the global level, and number of
connections are almost independent of the connection acti-
vating threshold η and distance threshold μ. Recall that two
bacteria belonging to different classes establish a link when
they are both willing to connect, i.e., their state variables are
greater than parameter η. The connection mechanism dissi-
pates a certain amount of energy and allows the system to
reach a certain level of efficiency. On the other hand, parame-
ter μ mostly influences the total number of connections, even
though at steady state the same level of efficiency is reached.
Put together, the above results indicate that the model has a

globally attractive steady state, which is optimum with respect to
the strategies’ distribution of the underlying game. Nevertheless,
parameter η significantly influences how fast the above steady
state is reached during the first phases of the process of network
formation.

The recruitment of the optimal network configuration needs
deeper investigation. For example, introducing suitable functions
to be optimized on the basis of the techniques presented in the
field of graph theory. This will substantially help the understand-
ing of still unknown biological mechanisms of structure forma-
tion associated with cell-cell interfaces, such the ones described
in Comolli and Banfield (2014) for arcahea.

In conclusion, our results show that since the environmen-
tal conditions constantly change microorganisms are responding
not just to the changes in external factors but in concomitance
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FIGURE 12 | Time course of the number of connections for different values of η and μ. Here η = {0.1, 0.5} and μ = {0.1, 0.3, 0.5, 0.6}.The presence of
initial connections and transient behavior are evident for η = 0.1.

with the changes adopted by the entire system of microbes. The
network thus provides a mechanism of resilience and robust-
ness. In addition, the network of connections we show, linking
organisms across a dynamic range of physical connections, should
provide the basis for linked evolutionary changes under pressure
from a changing environment.
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5. APPENDIX
The details of the game underlying the model presented in the
Materials and Methods Section are provided. In particular, the
strategies of the game correspond to the willingness of the play-
ers to become connected to one or more other players. For this
reason, the payoffs of the game are calculated on the basis of the
energy that each player is allowed to share. Thereupon, the payoffs
as well as energy are functions of time.

5.1 CALCULATING THE PAYOFFS OF THE GAME
According to the approach proposed in Madeo and Mocenni
(under revision), we need a matricial definition of payoff func-
tions pGv,sv

and φG
v in order to describe the model using the

replicator equation on a networked population. To this aim,
we define the payoff obtained by v when he plays with w and
strategies used are sv and sw, respectively:

bv,w
sv,sw

=
{E(w, v) if v = sw ∧ w = sv

0 otherwise
. (A11)

In other words, player v will earn a payoff (energy) when playing
with player w if and only if both v and w decide to connect to each
other(i.e., sv = w and sw = v). The total payoff (energy) obtained
by player v ∈ Vi is defined as the sum of all energy obtained from
players w �∈ Vi. Namely:

π̄v(s1, . . . , sN ) =
∑
w �∈Vi

bv,w
sv,sw

. (A12)

In the model developed in this paper, pure strategies are chosen by
players that are willing to connect to only one other player, while
mixed strategies are such that eventually an individual will share
its energy with more than one individual. Notice that in this case
sharing all the available energy with only one player corresponds
to adoption of a pure strategy. The pure strategy sv of player v
can be described by the unitary vector esv = (0, . . . , 1, . . . , 0),
where 1 is placed at the sv-th position. Using Equation (A11),

we can define the payoff matrix for each couple of bacteria
v and w:

Bv,w = {bv,w
s,r }s,r=1,...,N . (A13)

Thereafter, we can make use of Equation (A13) to rewrite
Equation (A12) in a matricial fashion:

π̄v(s1, . . . , sN ) = πv(es1 , . . . , esN ) =
∑
w �∈Vi

eT
sv

Bv,wesw , (A14)

where eT
sv

Bv,wesw = bv,w
sv,sw .

Mixed strategies describe how player v distributes his energy.
This distribution is described by vector xv = (xv,1, . . . , xv,N ),
where xv,sv ∈ [0, 1] and

∑N
sv=1 xv,sv = 1. Practically, xv,sv repre-

sents the percentage of Tv that v wants to share with sv �= v. xv,sv

can be also read as the propensity of v to create a link with a player
w = sv. xv,sv ∈ [0, 1], for which v = sv, is the fraction of energy
that v does not share. In this case xv,v can also be read as the
propensity of v to remain unlinked. The previous notation allows
us to calculate the payoff, hereafter indicated by pGv,sv

, that player
v obtains when he decides to use pure strategy sv against a player
that uses mixed strategy xw:

pGv,sv
= πv(x1, . . . , esv , . . . xN ) =

∑
w �∈Vi

eT
sv

Bv,wxw, (A15)

where the superscript G indicates the presence of a graph of possi-
ble connections. The model developed in this paper will be mainly
used to recover the graph topology.

The average payoff obtained by player v when it plays a mixed
strategy xv is:

φG
v = πv(x1, . . . , xv, . . . xN )

=
N∑

sv=1

xv,sv pGv,sv
=

∑
w �∈Vi

xT
v Bv,wxw.

(A16)
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