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To understand the contribution of animal- and human-derived fecal pollution sources
in shaping integron prevalence and diversity in beach waters, 414 Escherichia coli
strains were collected from beach waters (BW, n= 166), seagull feces (SF n=179),
and wastewaters (WW, n=69), on the World Biosphere Reserve of the Berlenga
Island, Portugal. Statistical differences were found between the prevalence of integrons
in BW (21%) and WW (10%), but not between BW and SF (19%). The majority of
integrase-positive (int/*)-strains affiliated to commensal phylogroups B1 (37%), AQ (24%),
and A1 (20%). Eighteen different gene cassette arrays were detected, most of them
coding for resistances to aminoglycosides, trimethoprim, chloramphenicol, and quaternary
ammonia compounds. Common arrays were found among strains from different sources.
Multi-resistance to three or more different classes of antibiotics was observed in
89, 82, and 57% of int/*-strains from BW, SF and WW, respectively. Plasmids were
detected in 79% of strains (60/76) revealing a high diversity of replicons in all sources,
mostly belonging to IncF (Frep, FIA, and FIB subgroups), Incl1, IncN, IncY, and IncK
incompatibility groups. In 20% (15/76) of strains, integrons were successfully mobilized
through conjugation to E. coli CV601. Results obtained support the existence of a diverse
integron pool in the E. coli strains from this coastal environment, associated with
different resistance traits and plasmid incompatibility groups, mainly shaped by animal
fecal pollution inputs. These findings underscore the role of wild life in dissemination of
integrons and antibiotic resistance traits in natural environments.

Keywords: environmental reservoirs, microbial risk assessment, multi-resistance, integron diversity, replicon

typing, Enterobacteriaceae

INTRODUCTION

Environmental antibiotic resistance reservoirs are known to rep-
resent the origins of the resistance determinants that nowadays
constitute major clinical threats (Davies and Davies, 2010; Tacdo
et al., 2012, 2013; Perry and Wright, 2013). In the recent years
much attention has been given to marine environments and
migratory birds with increasing evidence of their role in the
dissemination of antibiotic resistant Enterobacteriaceae, partic-
ularly Escherichia coli (Dolejska et al., 2007, 2009; Poeta et al.,
2008; Radhouani et al., 2009; Poirel et al., 2012; Hernandez et al.,
2013; Kmet et al., 2013; Santos et al., 2013; Veldman et al.,
2013). E. coli is the predominant facultative anaerobe in gas-
trointestinal tract of humans and animals (Tenaillon et al., 2010).
Although most E. coli are commensal, some can be pathogenic
and may be transmitted through contaminated water or food,
or through contact with animals and people. Pathogenic E. coli
has been reported as a major cause of mortality as a result of
infant diarrhea, extra-intestinal and urinary tract infections, thus
constituting an important hospital- and community-acquired
pathogen (Guentzel, 1996; Touchon et al., 2009). Due to their
genetic flexibility and adaptability to diverse stress conditions,
both commensal and pathogenic E. coli strains have the ability

to persist in terrestrial and aquatic habitats (Van Elsas et al,
2011).

Integrons are bacterial site-specific recombination platforms
of acquisition and expression of mobile genes, called gene cas-
settes (Stokes and Hall, 1989). It has been shown that the per-
sistence of antibiotics in the environment at sub-therapeutic
concentrations contributes to the acquisition of antibiotic resis-
tance genes between different strains, mediated by integrons, as
a result of the activation of bacterial SOS responses (Baharoglu
etal,, 2010; Andersson and Hughes, 2011). In addition, integrons
are often associated with conjugative plasmids which contribute
to their mobilization and wide dissemination (Moura et al.,
2012a). The spread of such determinants can constitute serious
environmental risks, compromising both ecosystem and human
health.

In this study, we aimed to understand the involvement of
animal- and human-derived fecal pollution sources in shap-
ing integron prevalence and diversity in beach waters. Sampling
was performed in the World Biosphere Reserve of Berlenga
Island, located in the Atlantic Ocean, because here the sources
of fecal pollution are limited and well-identified, consisting of
both animal- and human-derived origins. The Berlenga Island
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constitutes an important nesting area of sea birds, in particular
the yellow-legged gulls (Larus [cachinnans] michahellis), which
are, by far, the dominant local fauna and a major source of fecal
pollution in the island (Aratjo et al., 2014). This island is only
circumstantially inhabited by tourists in the summer season, and
human-derived wastewaters are discharged near the coastline of
the island without prior treatment (Aratjo et al., 2014).

To address our aims, we examined the prevalence and diversity
of integrons in E. coli strains collected from beach waters, as well
as from seagull feces and raw wastewaters in the Berlenga Island.
The association of integrons and plasmids was also assessed in
order to determine the extent of the environmental risk at play.

MATERIALS AND METHODS

SAMPLING, E. COLI ISOLATION AND MOLECULAR TYPING

In a previous study, a collection of 939 E. coli isolates was obtained
from samples collected between May and September 2011 at the
Berlenga Island (Latitude: 39° 24’ 52” N; Longitude: 9° 30" 22
W), located 5.7 miles northwest of Cape Carvoeiro, Portugal.
Samples consisted of: (i) beach waters; (ii) composite seagull
(Larus [cachinnans] michahellis) fresh fecal samples; and (iii)
human-derived raw wastewaters (Aradjo et al., 2014). Isolates
were selected in Chromocult Coliform Agar, confirmed by plating
in MacConkey and mFC agar and 16S rRNA gene sequencing, as
previously described (Aradjo et al., 2014). Molecular typing was
performed by BOX-PCR (Araujo et al., 2014), resulting in a total
of 414 different E. coli strains that were used in this study.

INTEGRON SCREENING DETECTION AND CHARACTERIZATION

E. coli strains were screened by PCR for the presence of class 1 and
class 2 integrase genes (intl1 and intl2, respectively), as previously
described (Moura et al., 2012b). Integrase-positive (intl*)-strains
were further characterized. Class 1 and class 2 integron variable
regions were amplified using primers targeting flanking regions
of gene cassette arrays (class 1: intll or a#tll at 5 region and
tniC, qacE/sull, or sul3 at 3’ region; class 2: intI2 or attl2 at 5’
region and ybeA at 3’ region), using the Extensor Long Range
PCR Master Mix (Thermo Scientific, USA), as described before
(Moura et al., 2012b). Specific primers for gene cassettes were
also used in primer walking. All primer sequences are listed in
Table 1. Sequences obtained were subjected to BLAST (Altschul
et al., 1997) searches against the INTEGRALL database (http://
integrall.bio.ua.pt; Moura et al., 2009). Insertion sequences were
compared against ISFinder database (http://www-is.biotoul.fr;
Siguier et al., 2006) to confirm identity. Gene cassette promoters
were annotated according to Jové et al. (2010).

PHYLOGROUPING AND ANTIBIOTIC SUSCEPTIBILITY PROFILES

E. coli phylogenetic groups (A0, Al, Bl, B2, D1, D2) were
determined by PCR using the NZYTaq Green Master Mix
(NZYTech, Portugal) and primers and conditions described
before (Clermont et al., 2000; Figueira et al., 2011). Antibiotic
susceptibilities were tested by disc diffusion agar according to the
Clinical and Laboratory Standards Institute recommendations
(CLSI, 2012) and using E. coli ATCC 25922 as control strain. The
following antibiotics were tested: ampicillin (AMP, 10 pg), amox-
icillin (AML, 10 pug), amoxicillin 4 clavulanic acid (AMGC, 30 pg),

piperacillin (PRL, 100 pg), piperacillin + tazobactam (TZP,
110 g), cefalothin (CEF, 30 pug), ceftazidime (CAZ, 30 ug), cefo-
taxime (CTX, 30g), gentamicin (GEN, 10pg), streptomycin
(STR, 10g), imipenem (IPM, 10g), nalidixic acid (NAL,
30 pg), ciprofloxacin (CIP, 5 pg), tetracycline (TET, 30 ug), chlo-
ramphenicol (CHL, 30 Lg) and trimethoprim/sulfamethoxazole
(STX, 25 g) (Oxoid, Basingstoke, UK).

GENOMIC LOCATION OF INTEGRONS AND PLASMID
CHARACTERIZATION

To determine the genomic location (plasmid/chromosomal) of
integrons, genomic DNA and plasmid DNA were extracted and
purified using the Silica Bead DNA Extraction Kit (Thermo
Scientific, USA) and the E.Z.N.A. Plasmid Mini Kit II (Omega
Bio-tek, GA, USA), respectively. Aliquots were loaded onto 0.9%
agarose gels and separated by electrophoresis at 80 V for 80 min.
Gels were then stained with ethidium bromide and documented
with the Molecular Imager® Gel Doc™ XR System and Image
Lab™ Software (Bio-Rad, Hercules, CA, USA). DNA was trans-
ferred under vacuum onto positively charged nylon membranes
(Hybond N+; Amersham, Freiburg, Germany) and subsequently
cross-linked under UV irradiation for 5min. Hybridizations
with intl1- and intI2-digoxigenin (DIG) labeled probes (Moura
et al, 2007, 2012b) were performed overnight in 50% for-
mamide hybridization buffer at 42°C. Detections were carried out
using the DIG Nucleic Acid Detection Kit (Roche Diagnostics,
Germany) following instructions provided by the manufacturer.
Positive and negative controls were included in all experiments to
confirm the specificity of detection.

In addition, intI™-strains were included as donors in mat-
ing assays using rifampicin-resistant E. coli CV601-GFP (Smalla
et al., 2006) as recipient strain, using previously described pro-
cedures (Moura et al., 2012a). Briefly, liquid cultures of donor
and recipient strains were prepared separately in 10 mL Luria—
Bertani broth (LB) without antibiotics and grown overnight with
gentle shaking at 28°C. Recipient and donor strains were mixed
(ratio 1:1) and centrifuged for 5min at 6700g to precipitate
cells. Supernatants were discarded and replaced by 1 mL fresh LB.
Mixtures were incubated overnight at 28°C without shaking. Cells
were then precipitated by centrifugation for 5 min at 6700 g and
washed in 0.9% NaCl solution. Serial dilutions were prepared in
0.9% NaCl and aliquots of 100 L were spread on Plate Count
Agar plates supplemented with rifampicin (50 mg.L~!) and strep-
tomycin (50mg.L™!). Putative transconjugants were grown at
28°C for 48 h. Assays were run in duplicate. Donor and recipi-
ent were also placed on the selective plates for mutant detection.
Putative transconjugants growing in plates were confirmed by
BOX-PCR typing by comparison with donor and recipient band-
ing profiles. BOX-PCR reaction mixtures of 25 uL consisted of
0.5 x NZYTaq Green Master Mix (NZYtech, Portugal), 0.8 uM
of primer BOXAIR (5'-CTACGGCAAGGCGACGCTGACG-3;
Versalovic et al., 1991) and 1 wL of cell suspension prepared in
100 uL of distilled water (~1.0 McFarland turbidity standard).
Amplification was carried out as follows: initial denaturation for
7 min at 94°C, then 30 cycles of denaturation at 94°C for 1 min,
followed by annealing at 53°C for 1 min and extension at 65°C for
8 min, and a final extension at 65°C for 16 min. Generated profiles
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Table 1| Primers used in this study in the characterization of integrons.

Primer name? Target Sequence (5'-3') References
INTEGRASE GENES

intl1F intl1 CCTCCCGCACGATGATC Kraft et al., 1986
intl1_894F(ER.1.6F) intl1 CCCAGTGGACATAAGCCTG Moura et al., 2012b
intl1R intl1 TCCACGCATCGTCAGGC Kraft et al., 1986

intl2F intl2 TTATTGCTGGGATTAGGC Goldstein et al., 2001
intl2R intl2 ACGGCTACCCTCTGTTATC Goldstein et al., 2001
FLANKING REGIONS

5'-CS attl1 GGCATCCAAGCAGCAAG Levesque et al., 1995
3'-CS 3’ conserved segment AAGCAGACTTGACCTGA Levesque et al., 1995
gacE-F qacE/qacEdeltal ATCGCAATAGTTGGCGAAGT Sandvang et al., 1997
gacE-R qacE/qacEdeltal CAAGCTTTTGCCCATGAAGC Sandvang et al., 1997
sul1F sull CTGAACGATATCCAAGGATTYCC Heuer and Smalla, 2007
sul1R sull AAAAATCCCATCCCCGGRTC Heuer and Smalla, 2007
sul3F sul3 AAGAAGCCCATACCCGGRTC Heuer and Smalla, 2007
sul3R sul3 ATTAATGATATTCAAGGTTTYCC Heuer and Smalla, 2007
RH506 tniC TTCAGCCGCATAAATGGAG Post et al., 2007
orf513_6F ISCR1 ATGGTTTCATGCGGGTT Arduino et al., 2003
orf513_7R ISCR1 CTGAGGGTGTGAGCGAG Arduino et al., 2003
agnrS_rev2 gnrS CAAATTGGCGCGTAGAGCGCC This study

hep74 attl2 CGGGATCCCGGACGGCATGCACGATTTGTA White et al., 2001

hep51 ybeA GATGCCATCGCAAGTACGAG White et al., 2001

GENE CASSETTE PRIMER WALKING

aadA1_F aadA1 TATCAGAGGTAGTTGGCGTCAT Randall et al., 2004
aadA1_R aadA1 AATGAAACCTTAACGCTATGGAAC Randall et al., 2004
aacA4F (ER.1.17F) aacA4 CGAGCGAACACGCAGTG Moura et al., 2012b
dfrA12_F dfrA12 CCCACTCCGTTTATGCGCG This study
dfrA17_F dfrA17 CACGTTGAAGTCGAAGGTGA This study

estXF (MM.2.11F) sat/estx GGCCGAGGATTATCCA Moura et al., 2007
cmlA_F cmlA GGACATGTACTTGCCAGCA This study

cmlA_R cmlA GGGATTTGAYGTACTTTCCGC This study

gacH_F gacH GAGGTCRTCGCAACTTCC This study

gacH_R gacH GCGCTGACCTTGGATAGC This study

linF_F linF CGCTTGAGGCGGCTGTTTTG This study

psp_F pSp CCGGATTTTGTGCGGCGGTC This study

orfF_F orfF GGCGTTATTCAGTGCCTGTT This study

IS1_F IS7 CGGTAACCTCGCGCATACAG This study
ISUnCu_F ISUnCu1 GGACTCTCCCCACAAGTAGTG This study

af. forward; R, reverse.

were separated in 1.5% agarose gels in TAE buffer 5x (50 mM
Tris, 50 mM boric acid, 0.5 mM EDTA), at 50V for 95 min, and
stained with ethidium bromide. Plasmid DNA from transconju-
gants were extracted using E.Z.N.A. Plasmid Mini Kit IT (Omega
Bio-Tek, Georgia, USA), according to the manufacturer’s instruc-
tions. Among transconjugants, diversity of plasmids was evalu-
ated by PstI/Bst1770I restriction analyses and replicon typing, as
previously described (Carattoli et al., 2005; Moura et al., 2012a).
The antibiotic susceptibilities patterns of transconjugants were
determined by the disc diffusion method as described above.

STATISTICAL ANALYSES
Pearson Chi-squared test (x?) was used to test the statistical sig-
nificance (P) of the distribution of integrons and replicons in the

different sample sources. Associations were considered significant
when P was <0.05.

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS
All integron sequences determined in this study were deposited in
GenBank under the accession numbers KF921520 to KF921601.

RESULTS AND DISCUSSION

In this study, we investigated the occurrence of integrons and
associated plasmids in E. coli strains (N = 414) from the World
Biosphere Reserve of the Berlenga Island. Our goal was to under-
stand whether the source of pollution, i.e., seagull feces (SF) and
human-derived wastewaters (WW), influenced integron preva-
lence and diversity in E. coli from beach waters (BW).
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FIGURE 1 | Prevalence of intlt -E. coli detected in the Berlenga Island among different sources (A) and phylogroups (B). Statistical significance:

—
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(N=76)
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(n=T7)

Overall, nearly 20% (76/414) of strains harbored intI genes
(Figure 1A). Prevalence of class 1 and class 2 integron integrases
was 18 and 2% in BW, 19 and 0.5% in SF and 10 and 0% in WW,
respectively. Previous studies targeting antibiotic resistant bacte-
ria in similar environments (Dolejska et al., 2009) have reported
comparable prevalence of class 1 integrons in E. coli from surface
waters (21%) and black-headed gulls (Larus ridibundus) nesting
nearby (15%), although with higher prevalence of intl2 in gulls
(11%). Prevalence found at the untreated effluent of Berlengas
was also similar to those found in raw human- and animal-
derived wastewaters (Moura et al., 2007, 2012b). In this study,
differences between prevalence of intI genes in BW and WW were
statistically different (x% = 3.98; P < 0.05), but not between BW
and SF (x% = 0.261; P > 0.05). These results confirm the signifi-
cant contribution of seagull microbiota in shaping the prevalence
of integrons in this ecosystem.

Phylotyping showed a wide intraspecific diversity among
integron carrying (intI*)-E. coli. As shown in Figure 1B, the
majority of intI*-strains affiliated to commensal phylogroups
Bl (37%), A0 (24%), and Al (20%). The prevalence of intl
genes among phylogroups was not statistically significant (x2 =
4.70; P > 0.05), being more constraint by the association of the
different E. coli phylogroups to the different ecological niches
(Figure 1B).

Table 2 provides the detailed characterization of the 76 intI™-
E. coli strains obtained in this study. Up to 18 different gene
cassettes were found organized into 18 distinct arrays (summa-
rized in Table 3). Common arrays were found among strains
from different sources. Gene cassettes detected coded for resis-
tance to aminoglycosides (aadAl, AaadAl, aadA2, aadA5, aadB,
aacA4, sat2), trimethoprim (dfrAl, dfrA12, dfrA14, dfrA17), chlo-
ramphenicol (cmlA1l, catB3), lincosamides (linF) and quaternary
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Table 3 | Overview of the gene cassette arrays and Pc promoter variants present in the 82 integron structures detected in this study among

intl*-E. coli strains isolated from beach waters (BW), seagull feces (SF) and wastewaters (WW).

Structure

No. integrons

Pc variants (no. integrons) Total

BW SF
Class 1

Cintin | 3cs | PCcW-P2 (3); PcW (1) 4 4
intin | < wic | PcS (2); PcWigy.10 (6); PCW-P2 (2); PcH1 (1) 5 4 2 1
=K PeH1 (1) 1 1
Cintin_| [ s | PcW (1) 1 1
PcH1 (1) 1 1
PcH1 (1) 1 1
Pow (12 1o 12
BCHIIR) 2 )
EED Pes (1) T
aads aadA1 1SUnCu1 PcW-P2 (1) 1 1
aadA2 linF 1515 1SKp19 PcH1 (1) 1 1
PCH1(1) 1 1
| psp 4 aadA2 4 cmiAl 4 aadAl J qacH 15440 PcH1 (8); PcW (4) 8 2 3 13
| coda2 4 cmiAl 4 aodAl J qocH g 15440 Pes (1); PeWrano (1) 2 2
TS T T I T T | PeWrawn (1) 1 1

nd. PCW-P2 (1); PcWray1o (1); PcH1 (9); PcW(7) 4 12 2 18

Class 2

sat2 aadA1 Pc2A 1 1
sat2 aada1 Pc2A; Pc2A-Pc2B 5 2 7
m sat2 aadAl ybeA nd. 3 3

ammonia compounds (qacH). In addition, gene cassettes coding
for putative esterases (estX) and phosphoserine phosphatases
(psp), as well gene cassettes of unknown function (orfF) were also
present. Though not as part of gene cassettes, genes coding for
quinolone resistance (qnrS1), quaternary ammonia compounds
(qacEdeltal) and sulfonamides (sull, sul3) were also associated
with the integrons found.

Thus, integron structures detected contained genes involved
in diverse resistance mechanisms, including enzymatic antibi-
otic modification (aadA, aadB, aacA, catB, sat, sul), efflux pumps
(qacH, qacE) and target protection proteins (gnrS). This diver-
sity of resistance mechanisms largely contributed to the high
prevalence of multiresistant intI*-E. coli (64/76, 83%; consid-
ering simultaneous resistance to 3 or more different classes of
antibiotics), although the presence of additional mechanisms of
resistance besides those within integrons cannot be excluded.
Prevalence of multi-resistant strains in BW (89%) was statisti-
cally different from that observed in WW (57%), but not to the
one observed in SF (82%). Overall, the most frequently resis-
tances detected were against tetracycline (87%), streptomycin
(79%), ampicillin (70%), amoxicillin (70%), trimethoprim-
sulfamethoxazole (70%), piperacillin (53%), and chlorampheni-
col (45%) (Figure?2). Differences among sources were not
statistically significant, except for resistances against amoxi-
cillin+clavulanic acid and imipenem, that were more prevalent in
wastewaters (P < 0.01). The prevalence and risk of dissemination
of resistant strains to last-resort antibiotics, such as imipenem, is
nowadays a matter of great concern, reducing treatment options
for infectious diseases. Imipenem resistance if often associated
to the presence of integron-borne carbapenemase gene cassetes,
such as blayim, blapvp, and blaggs INTEGRALL database, Moura
et al, 2009) and/or plasmid-borne carbapenemases, such as
blagpc, blapxa-as, and blaypm-1 (Carattoli, 2013). Nevertheless,

none of these mechanisms have been detected in these strains
(Alves et al., 2014). Further investigations will allow to eluci-
date the mechanisms of carbapenem resistance present in these
strains as well their potential risk of dissemination into natural
environments.

Different insertion sequences (ISI, IS10, 1S15, 1S26, 1S440,
ISKp19, ISUnCul) were also found within 50% (9/18) of the
different arrays (Tables 2-3). Comparative analyses of 20 E. coli
genomes have also shown the presence of a large number of IS-
like elements, constituting 21% of all genes annotated (Touchon
etal., 2009) and likely to contribute to the high genome dynamics
and adaptation seen in E. coli.

Class 1 integrons lacking the 3’-conserved segment
(qacEdeltal/sull) represented nearly half of intlIT-E. coli
strains (33/71; 46.5%). These included sul3-type (n=17)
integrons and Tn402-derivative integrons containing niC
(n = 11). Dissemination of sul3-containing elements linked to
class 1 integrons with an unusual 3’CS region has been reported
among clinical and meat-associated Salmonella and E. coli
isolates, including in poultry, often as large platforms with the
structures  intl1-dfrA12-orfF-aadA2-cmlAl-aadAl-qacH-1S440-
sul3  or intll-estX-psp-aadA2-cmlAl-aadAl-qacH-1S440-sul3
(Antunes et al., 2007; Sdenz et al., 2010; Curiao et al., 2011;
Pérez-Moreno et al., 2013), as observed in this study. Although
some variations in these array structures may occur, such as
additional IS insertions (e.g., ISI0 in intlI-dfrAl12-orfF-aadA2-
cmlAl-aadAl-qacH-1S440-1S10-sul3, Tables 2-3) or gene cassette
deletions (e.g., cmlAl-aadAl in the structure intll-estX-psp-
aadA2-qacH-1S440-sul3, Tables 2-3), the apparent conservation
and dissemination of these arrays among isolates from different
sources and countries, suggest their mobilization through
horizontal gene transfer or specific clone dissemination and
diversification, rather than cumulative gene cassette acquisition.
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L.
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'S

FIGURE 2 | Prevalence of antimicrobial resistance in intf*-E. coli
strains. Antibiotic abbreviations: AMP ampicillin; AML, amoxicillin; AMC,
amoxicillin 4+ clavulanic acid; PRL, piperacillin; TZP piperacillin +
tazobactam; CEF, cefalothin; CAZ, ceftazidime; CTX, cefotaxime; GEN,

0% ¥—— a—-__am ___am___am a4
Q v N < < Ul > Q& S 4 4
R & & ¢ & &S LY SLEe S

Antibiotic

= Wastewater (n=7)

gentamicin; STR, streptomycin; IPM, imipenem; NAL, nalidixic acid; CIR
ciprofloxacin; TET, tetracycline; CHL, chloramphenicol; STX,
trimethoprim/sulfamethoxazole. Only statistical significant differences are
shown: *P < 0.05; *P < 0.01.

Tn402-derivative integrons are thought to be the progeni-
tors of classical class 1 integrons that contain the 3’-conserved
segment (Post et al., 2007). Integrons derived from Tn402 are
flanked by the tniC gene (also called tniR) that makes part of the
transposition tmiABQC module. Reports of miC-like integrons
are scarce likely because gene cassette characterization usually
relies only on the amplification of 3'-CS conservative region (Post
et al., 2007). At INTEGRALL database, tniC-integrons have been
identified in few Pseudomonas putida, Pseudomonas aeruginosa,
Aeromonas caviae and IncP-1 plasmids, many of those contain-
ing gene cassettes coding resistance against beta-lactams (blayym,
blaoxa, blanps-1), aminoglycosides (aacA4, aacA7, aacC5, aadAl,
aadAll) and trimetophrim (dfrB5). In this study, all tmiC-
integrons carried the dihydrofolate reductase dfrAI2 gene cas-
sette, coding for resistance to trimethoprim, and it constitutes the
first report on tniC-like integrons in E. coli.

No significant differences were found on promoter distribu-
tion accordingly to sample origin (x2, = 16.25; P > 0.05), con-
trarily to what has been observed in animal- and human-derived
wastewaters (Moura et al., 2012c). The majority of integrons
detected possessed weak Pc promoter variants (PcW and PcH),
which are known to be associated to weak expression of gene
cassette arrays (Jové et al., 2010). PcH1 and PcW variants were
more prevalent among A0 and B1 phylogroups (x3, = 36.56; P <
0.01). Previous studies concerning aquatic environments have
also reported higher prevalence of weaker promoters among envi-
ronmental strains (Moura et al., 2012¢; Tacao et al., 2014), as well
as studies concerning commensal microbiota (Soufi et al., 2009).
Weaker Pc variants are associated to a higher capacity for gene
cassette rearrangements, leading to more dynamic arrays (Jové
etal., 2010). Interestingly, among tniC-type integrons stronger Pc
variants were identified: PcS (n = 2), PcWrgg-10 (n = 6), PcW-
P2 (n = 1). These results corroborate that integron platforms had

probably evolved to favor high rate of gene cassette recombination
compensating low expression levels and contributing to genome
plasticity, as discussed before (Moura et al., 2012c¢).

Similar to previous reports on plasmid diversity among int -
strains (Moura et al., 2012a), a wide and diverse plasmid pool
was present in these E. coli (Figure 3A). Replicons were detected
in 80% (60/76) of strains (Figure 3A; Table 2), though differ-
ences among BW, SE, and WW were not statistically significant.
Replicons detected belonged to IncF (Frep, FIA, and FIB sub-
groups), Incll, IncN, IncY, and IncK incompatibility groups.
More than one replicon type was detected in 41% (31/76) of
strains. In strains from phylogroups A0 and Bl1, up to 5 dif-
ferent replicon types were detected (Figure 3B). Integrons were
successfully mobilized through IncF (Frep and FIB subgroups)
and IncIl conjugative plasmids into E. coli CV601 in 20%
(15/76) of strains, using streptomycin as selective marker. The
majority of intl-transconjugants displayed the resistance patterns
observed in donor strains (Table 2), highlighting the importance
of co-selection in the spread of multi-resistance traits through
horizontal gene transfer. Plasmid DNA from transconjugants
showed different restriction patterns (data not shown), includ-
ing in transconjugants from donors that shared identical integron
structures. These results may be explained by the presence of
identical integron platforms in different plasmids. Nevertheless,
the co-mobilization of multiple plasmids and/or the occurrence
of genetic rearrangements in transconjugants resulting in differ-
ent restriction patterns cannot be excluded. It is also noteworthy
that plasmid prevalence and diversity, as well as their transfer abil-
ity may be, however, under-estimated due to biases introduced
by the technical approaches. Alkaline extraction of plasmid DNA
may affect the efficiency to recover larger plasmids, and the mat-
ing conditions used may favor the transfer the plasmids of IncF
and Incl complexes, which are liquid maters.
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FIGURE 3 | Prevalence of replicon types detected in intf* -E. coli among different sources (A) and phylogroups (B). Abbreviations: n.d., not detected;

D2

(n=6)

D1
(n=9)

TOTAL
(N=76)

In conclusion, results obtained confirmed the existence of a
diverse integron pool in this coastal environment, associated with
different resistance traits and plasmid incompatibility groups.
The prevalence and diversity of integrons, as well as of multi-
drug resistance phenotypes, found in beach waters were more
influenced by animal-derived fecal inputs rather human-derived
wastewaters. Results obtained thus reinforce the important input
of commensal E. coli from wild animals in this ecosystem, largely
dominated by seagulls. These findings underscore the role of wild
life in dissemination of integrons and antibiotic resistance traits
in natural environments.
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