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INTRODUCTION

Connecting molecular information directly to microbial transformation rates remains
a challenge, despite the availability of molecular methods to investigate microbial
biogeochemistry. By combining information on gene abundance and expression for key
genes with quantitative modeling of nitrogen fluxes, we can begin to understand the
scales on which genetic signals vary and how they relate to key functions. We used
quantitative PCR of DNA and cDNA, along with biogeochemical modeling to assess how
the abundance and expression of microbes responsible for two steps in the nitrogen
cycle changed over time in estuarine sediment mesocosms. Sediments and water were
collected from coastal Massachusetts and maintained in replicated 20 L mesocosms for 45
days. Concentrations of all major inorganic nitrogen species were measured daily and used
to derive rates of nitrification and denitrification from a Monte Carlo-based non-negative
least-squares analysis of finite difference equations. The mesocosms followed a classic
regeneration sequence in which ammonium released from the decomposition of organic
matter was subsequently oxidized to nitrite and then further to nitrate, some portion
of which was ultimately denitrified. Normalized abundances of ammonia oxidizing
archaeal ammonia monoxoygenase (amoA) transcripts closely tracked rates of ammonia
oxidation throughout the experiment. No such relationship, however, was evident between
denitrification rates and the normalized abundance of nitrite reductase (nirS and nirK)
transcripts. These findings underscore the complexity of directly linking the structure of
the microbial community to rates of biogeochemical processes.

Keywords: ammonia oxidizing archaea, denitrification, nitrification, nirS, amoA, estuarine sediments, nitrogen
cycle, quantitative PCR

The capacity of estuarine sediments to remove fixed nitrogen

In shallow estuarine ecosystems the biogeochemistry of sediments
and the overlying water column are tightly coupled (Howarth
et al.,, 2011). Human perturbation, however, has resulted in a
substantial increase in nutrient loading to coastal waters (Bowen
and Valiela, 2001; Galloway et al., 2003) resulting in a host
of deleterious effects, including increases in the frequency of
anoxic events (Diaz and Rosenberg, 2008) and other associated
symptoms of eutrophication (Valiela et al., 1992; Cloern, 2001;
Smith, 2003). Increased anthropogenic nutrient additions can
alter the biogeochemical coupling between estuarine sediments
and waters (Burgin and Hamilton, 2007), which can further
exacerbate eutrophic conditions (Howarth et al., 2011). The
microbial communities within estuarine sediments are respon-
sible for numerous geochemical processes that can remove
anthropogenic nitrogen, including canonical denitrification, cou-
pled nitrification and denitrification, and anaerobic ammonium
oxidation (anammox). As a result of these nitrogen removal
pathways, microbes help to ameliorate the threat of coastal
eutrophication.

depends on a suite of factors. Remineralization of organic mat-
ter in estuarine sediments typically results in reducing conditions
and high porewater ammonium (NHI) concentrations. When
estuarine bottom waters are oxic, some portion of NHZ formed in
the sediment is oxidized at the sediment water interface to form
nitrite (NO5 ) and then nitrate (NO3') through the microbially
mediated nitrification pathway. This oxidized NOj is then lost
as nitrogen gas from the adjoining suboxic sediments through a
coupling of the nitrification and denitrification pathways (Jenkins
and Kemp, 1984; An and Joye, 2001; Risgaard-Petersen, 2003). In
estuaries that have frequent summertime bottom water hypoxia
or anoxia, the coupling of nitrification and denitrification can be
interrupted as nitrification becomes inhibited by a lack of oxygen
and by the accumulation of sulfide (Joye and Hollibaugh, 1995).
Canonical denitrification has typically been considered the
dominant nitrogen loss process in estuarine sediments (Burdige,
2012). Rates of denitrification are controlled primarily by the
absence of oxygen and the availability of both organic matter and
oxidized nitrogen (Zumft, 1997). Anaerobic ammonia oxidation
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(anammox) can also be an important nitrogen loss process in
some environments (Dalsgaard et al., 2005) but tends to account
for a smaller proportion of fixed nitrogen loss in organic rich sys-
tems such as those found in the coastal zone (Dalsgaard et al.,
2005; Rich et al., 2008; Nicholls and Trimmer, 2009). A third
process, dissimilatory reduction of NO3 to NHZ (DNRA) can
also occur in estuarine sediments (Giblin et al., 2013). This pro-
cess does not remove nitrogen from the system, rather, it results
in a change in the oxidation state of the nitrogen such that it
remains bioavailable. Fixed nitrogen loss (both from anammox
and denitrification) can be limited by a lack of oxidized nitro-
gen substrates, competition for substrate by DNRA, and sulfide
inhibition (An and Gardner, 2002; Burgin and Hamilton, 2007).
Although these pathways have been fairly well documented in
estuarine sediments, how these important biogeochemical cycles
are regulated at the microbial genetic level has received consider-
ably less attention.

The exact nature of the coupling between geochemical rates
and microbial gene expression is complex (van de Leemput et al.,
2011) and appears to vary in space and time (Nogales et al., 2002;
Smith et al., 2007; Abell et al., 2010; Laverock et al., 2013). Directly
linking these biogeochemical processes to the genetic structure
and activity of the microbial community responsible for facilitat-
ing these processes has remained a challenge. A series of reciprocal
transplant experiments in estuarine sediments demonstrated that
changes in microbial community composition had a direct effect
on ecosystem function (Reed and Martiny, 2012), though it was
not possible to directly tie these ecosystem scale effects to changes
in relevant functional genes. Numerous correlational studies in
coastal systems have linked functional gene abundance or expres-
sion to environmental drivers (Bernhard et al., 2007; Mosier and
Francis, 2008; Abell et al., 2010), though far fewer studies include
examination of these patterns over time (Laverock et al., 2013)
or as a result of experimental manipulation. More quantitative
data directly linking microbial genetics to geochemical fluxes are
needed to improve the predictive capacity of geochemical models
(Treseder et al., 2011).

Defining the relationship between microbial genetic diversity
and ecosystem function is a central goal of microbial ecology
(Morales and Holben, 2010). Advances in molecular methods
have rapidly accelerated our understanding of microbial com-
munity structure and gene expression, yet translating shifts in
microbial community structure into changes in ecosystem func-
tion remains a challenge (Knight et al., 2012; Ottesen et al., 2013).
Metatranscriptomics approaches currently offer glimpses of how
transcription profiles of the dominant microbial taxa respond to
environmental changes (Ottesen et al., 2013) but do not allow
insight into the activity of low abundance phylotypes that may
also be active contributors to ecosystem function (Campbell
et al., 2011; Campbell and Kirchman, 2012). Metatranscriptomic
analyses are an even greater challenge in complex systems with
high taxonomic richness such as those that exist in estuarine
sediments.

In this study we examined the relationships among gene abun-
dance and expression, nutrient fluxes, and modeled rates of
nitrification and denitrification in a coastal sediment mesocosm
experiment. The intention of this experiment was not to mimic

processes as they occur in coastal sediments. Rather, it was to
set in motion a chain reaction of geochemical fluxes that also
occur in coastal systems, and to monitor changes in gene abun-
dance and expression that occur coincident with changes in the
mesocosm geochemistry. We hypothesized that because ammonia
oxidation is largely the only metabolic option for this phyloge-
netically constrained group of organisms, the abundance of the
ammonia monooxygenase (amoA) gene (and thus the ammo-
nia oxidizing bacteria and archaea) would closely track rates
of ammonia oxidation. If a tight coupling between amoA gene
expression and ammonia oxidation rates is observed, it suggests
that other ammonia loss processes (those that do not require
ammonia monooxygenase or, like anammox, that occur under
strictly anoxic conditions; Kartal et al., 2011), might not be
important contributors to nutrient cycling in the mesocosms.

Further, we hypothesized that the correlation between the
abundance of genes that encode nitrite reductase, a key enzyme
in the denitrification pathway, and associated rates of denitrifica-
tion would be more difficult to disentangle. Denitrifying bacteria
are capable of utilizing numerous electron acceptors, including
NO53, and therefore the presence of the nirS gene does not nec-
essarily indicate that active denitrification is occurring. However,
we predicted that gene expression, when normalized to the total
amount of the gene present in the samples, would roughly pre-
dict modeled rates, as it is only those bacteria actively expressing
the genes and synthesizing proteins that are responsible for the
biogeochemical process in situ. Establishing quantitative rela-
tionships between biogeochemical process rates of nitrification
and denitrification and the underlying genetic controls on these
processes could help increase the predictive power of biogeo-
chemical models and our understanding of the marine microbial
environment.

MATERIALS AND METHODS

EXPERIMENTAL DESIGN AND SAMPLE COLLECTION

We used a benthic grab deployed from a small boat to collect
surface sediment from five locations within Eel Pond in Woods
Hole Massachusetts (41° 31’33 N, 70° 40’12 W) on 28 September
2008. Sediments were collected from 3 to 4 meters of water with
a salinity of 28 ppt and a temperature of 19°C. None of the sedi-
ments collected exhibited signs of sulfide accumulation. Surface
sediments (1-2cm) from each grab were sectioned off with a
knife, pooled together, and stored on ice until arrival at Princeton
University, where they were then stored in a 12°C cold room until
processing. Additionally, we collected 120 L of site water from Eel
Pond, filtered it through a Whatman® GF/F filter and stored it in
the dark until the mesocosms were constructed.

Four replicate mesocosms were established on 1 October 2008,
each containing 3 kg of sediments overlain with 20 liters of fil-
tered site water. Sediments from the initial grabs were thoroughly
homogenized and visible macrofauna were removed. The 3 kg
of sediment was then distributed evenly over the 0.1 m? area of
the mesocosm to a depth of approximately 2 cm. 20 L of filtered
site water was then added to the mesocosm and sediments were
allowed to settle for 24 h prior to sampling. Each mesocosm was
fitted with a tightly sealed lid containing a two-port valve. One
port of the valve was fitted with an air stone to gently circulate
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air through the overlying waters. The other port contained a
sampling tube for removal of water for nutrient analyses. The
overlying waters of the mesocosm remained oxic throughout the
experiment and there was no evidence of sulfide accumulation.
The mesocosms were maintained in a darkened room for 45
days. Initial duplicate samples of sediment from the homoge-
nized pool were collected with a 5 cc syringe corer and stored
at —80°C. Two 15mL aliquots of initial water were also col-
lected for later nutrient analyses as described below. Every day
or every other day water was withdrawn for nutrient analysis
using a syringe to draw water through the sampling valve. pH
and dissolved oxygen were measured on 20 mL of the withdrawn
water using a YSI handheld meter. Two 15 mL aliquots were also
removed and were filtered through a Whatman® GF/F filter and
stored frozen for later nutrient analysis. Approximately once per
week each mesocosm was opened and a sterile 5 cc syringe corer
was used to remove an entire sediment column from the meso-
cosm. Sediment cores (3—4 cores taken through the entire depth
of the sediment column) were collected, homogenized, and split
between duplicate cryovials for immediate storage at —80°C.

NUTRIENT ANALYSES AND MODELED GEOCHEMICAL RATES

At each time point we measured duplicate water column concen-
trations of NHI, NO;, and NOj;. Colorimetric analyses were
used to measure NO, (Strickland and Parsons, 1972) and NHI
(Koroleff, 1983). NO3 concentrations were measured by chemi-
luminescence after vanadium reduction (Garside, 1982; Braman
and Hendrix, 1989). The measured nutrient concentration data
were used to derive modeled rates of ammonification, ammo-
nia oxidation, nitrite oxidation, and denitrification (Babbin and
Ward, 2013). Briefly, a simple box model linking the three
measured DIN species via these four biological processes was
implemented.

To calculate rates of sediment biological N transformation
from DIN measurements in the overlying water, we generated,
in a Monte Carlo fashion (n = 5000), random sets of DIN mea-
surements derived from the means and standard deviations of
our concentration measurements. We then smoothed the con-
centrations with time using a Savitzky-Golay filter to minimize
sampling noise. Time derivatives were numerically calculated for
each of the three DIN species, and a least squares non-negative
fit of rates was determined using the algorithm of Lawson and
Hanson (1974) in Matlab. The Monte Carlo simulation accounted
for the replicate variability in DIN concentration measurements,
and the means and standard deviations of the trials are reported.

DNA AND RNA EXTRACTIONS

DNA was extracted in duplicate from approximately 0.5g (wet
weight) of sediment using the MoBio PowerSoil® DNA Isolation
Kit (MoBio Laboratories, Carlsbad, CA) following manufacturer’s
instructions. Extracted DNA was purified via isopropanol pre-
cipitation and quantified using Quant-iT™ PicoGreen® dsDNA
Assay (Life Technologies, Grand Island, NY). RNA was extracted
from ~1g of sediment using the MoBio RNA Powersoil® Total
RNA isolation kit (MoBio Laboratories, Carlsbad CA), also
following manufacturer’s instructions. mRNA was quantified
using a NanoDrop ND-1000 UV-Vis spectrophotmeter (Thermo

Fisher Scientific, Pittsburgh, PA), and immediately reverse tran-
scribed to ¢cDNA using SuperScript® III First Strand Synthesis
System (Invitrogen™, now Life Technologies, Grand Island, NY).
Residual DNA was digested using DNasel (New England Biolabs,
Ipswich, MA) and removal of all DNA contamination was ver-
ified via PCR amplification and gel electrophoresis following
manufacturer’s instructions.

QUANTITATIVE PCR

Denitrifier nirS qPCR

We performed qPCR of the nirS gene in bacterial DNA and cDNA
using primers from Braker et al. (1998). The 25 wL reaction com-
prised 12.5 nL of SYBR®Green Brilliant I1I Ultra-Fast master mix
(Agilent Technologies, Santa Clara, CA), 2.5 uL each of 20 pM
nirS1F and nirS3R primer stocks (Braker et al., 1998), 1 WL of
1 ng/pL template DNA or cDNA, and 6.5uL H,O. The qPCR
reaction was carried out on a Stratagene MX-3000 (Stratagene,
La Jolla, CA) with an initial denaturation step at 95°C for 15 min,
followed by 40 cycles of 94°C for 15, 62°C for 30's, and 72°C for
30s. A melt curve was then performed to test the stringency of
the reaction, and resulting PCR products were examined via gel
electrophoresis to confirm specificity of product formation.

Denitrifier nirK gqPCR

We performed qPCR of the nirK gene in bacterial DNA using
the nirK1F and nirK5R primers from Braker et al. (1998). Each
25 wL reaction contained 12.5 WL SYBR®Green Brilliant III Ultra-
Fast master mix (Agilent Technologies, Santa Clara, CA), 8.7 L
MilliQ water 1.25 L each of the forward and reverse primers
(0.5 uM final concentration), 0.3 WL ROX dye, and 1 pL of 10 ng
pL~! DNA. The qPCR reaction was performed on an Agilent
MX3005p qPCR system, with an initial denaturing step at 94°C
for 5 min, followed by 35 cycles of 95°C for 30 s, 58°C for 40 s and
72°C for 40's. Melt curves were performed to test the stringency
of the reaction and the PCR product size was confirmed via gel
electrophoresis. Repeated attempts to quantify nirK in the cDNA
were unsuccessful.

Ammonia oxidizer amoA qPCR

We performed qPCR on the amoA gene in DNA and cDNA from
ammonia oxidizing bacteria (AOB) using previously published
AOB amoA primers (Rotthauwe et al., 1997). Briefly, in a 20 pL
reaction we added 1L of 12 ng/pL template DNA or cDNA,
10 oL SYBR®Green Brilliant IIT Ultra-Fast master mix (Agilent
Technologies, Santa Clara, CA), 0.3 nL ROX dye, 1 uL each of
10 M forward and reverse primers, 0.6 wL BSA (300 jLg/mL) and
6.1 pL water. To amplify the amoA gene from ammonia oxidiz-
ing archaea (AOA) we also used previously published primers
(Francis et al., 2005) in 20 uL reactions containing 1L of
12ng/wL DNA or cDNA template, 10 w.L SYBR®Green Brilliant
IIT Ultra-Fast master mix (Agilent Technologies, Santa Clara, CA),
0.3 L ROX, 0.2 L each of 0.2 uM forward and reverse primers,
0.6 LL BSA (300 pg/mL), 0.5 wL MgCl,(3 mM final concentra-
tion) and 7.2 uL water. Both AOA and AOB qPCR reactions
were performed on an Agilent MX3005p qPCR system with an
initial 5min denaturing step at 94°C, followed by 42 cycles of
94°C for 1min, 50°C for 1.5min, and 72°C for 1.5 min. Melt
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curves were again derived to test for amplification stringency, and
resulting PCR products checked for specificity of product via gel
electrophoresis.

Standards for all four genes (nirS, nirK, AOA, and AOB amoA)
were prepared from cloned gene fragments and were serially
diluted over six orders of magnitude to generate a standard curve.
Gene copy numbers were calculated from Quant-iT™ PicoGreen®
dsDNA Assay (Life Technologies, Grand Island, NY) quantifica-
tion of the most concentrated standard. All samples from each
mesocosm and for all dates for a specific gene were analyzed in
triplicate on a single 96-well plate to avoid plate-to-plate vari-
ability in quantification. All plates included triplicate standard
curves as well as triplicate no template controls. The Agilent soft-
ware automatically generated cycle threshold values (Cr) and, if
present in the no template controls, the Ct values were at least
five cycles higher than the Ct values for the lowest standard.
Amplification efficiencies ranged from 80 to 94% for nirS and
nirK DNA and ¢cDNA qPCR reactions and 75-84% for AOA and
AOB amoA qPCR reactions.

RESULTS

NUTRIENT CONCENTRATIONS

Each of the mesocosms followed a classic remineralization
sequence, with an initial rapid flux of NHI resulting from decom-
position of the ambient organic matter present in these rich
coastal sediments at the time of sampling (Figure 1, blue dia-
monds). This flux of NHZr was followed by a large flux of NO;
(Figure 1, green triangles), and a lower and more gradual increase
in NOj (Figure 1, red circles). The magnitude of the NH; con-
centration maximum varied from 20 to 37 wM and occurred
within the first 9 days of the experiment. In all tanks NH,
concentrations increased from approximately 3 uM in the ini-
tial water to over 10 uM within the first 2 days and remained
above 10 WM for up to 2 weeks. Subsequently, typically after 9—12
days, the concentration of NO, began to increase to peak con-
centrations ranging from 31 to 62 WM. The increase in NO;
concentration coincided with a relatively rapid decrease in NH .
The NO, peaks persisted in the mesocosms until NH; concen-
trations were depleted and then NO, concentrations decreased
to low levels (below 3 wM) for the remainder of the experiment.
The concentrations of NO3™ did not show the same sharp peak as
was observed with the concentrations of NH; or NO, . Rather,
the concentrations of NO; generally increased at a gradual rate
throughout the duration of the experiment, with the highest con-
centrations of NO3 evident at day 40 or later. All four mesocosm
experiments demonstrated the same general patterns, though the
timing and magnitude of peak nutrient concentrations varied
slightly from tank to tank.

RATES OF NITROGEN CYCLING

Calculated rates of both stepwise components of nitrification
(ammonia oxidation and nitrite oxidation) and denitrification
also exhibited patterns that varied with regard to the magnitude
and timing of their peaks (Figure 2), but that generally showed
the same basic pattern among the four replicates. Rates were
integrated over the entire sediment column and were calculated
based on the changes of each nutrient in the overlying water.
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FIGURE 1 | Water column concentrations (wM) of NH4, NO2, and NO3

during the 45 days of the experiment. (A) Tank 1, (B) Tank 2, (C) Tank 3,
(D) Tank 4.
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FIGURE 2 | Modeled rates of ammonia oxidation, nitrite oxidation, and
denitrification in each mesocosm. (A) Tank 1, (B) Tank 2, (C) Tank 3, (D)
Tank 4.

As expected, ammonia oxidation rates peaked first (Figure 2,
blue diamonds), typically around day 10-12. The highest rates of
ammonia oxidation were observed in tank 4, where they peaked
at 19 wM d~ . In all cases there was a lag of approximately 5 days
between peak ammonia oxidation rates and peak nitrite oxidation
rates (Figure 2, green triangles). The magnitude of the peaks in
nitrite oxidation rates was also consistently lower than the peaks
in ammonia oxidation rates. Nitrite oxidation either immediately
preceded or exactly co-occurred with peak rates of denitrification
(Figure 2, red circles) though denitrification rates were typically
slightly lower than nitrite oxidation rates. When each of the
rates was integrated over time, consistent patterns emerged across
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all mesocosms (Figure 3). The total amount of ammonification
(Figure 3, yellow bars) established the absolute amount of reac-
tive nitrogen in the system and amounts of ammonia (Figure 3,
blue bars) and nitrite oxidation (Figure 3, green bars) did not sur-
pass the amount set by ammonification. In each case, however, the
integrated amount of denitrification (Figure 3, red bars) never
achieved parity with other processes. Denitrification attained only
52-76% of the maximum possible, as estimated from the amount
of nitrate produced.

GENE ABUNDANCE AND EXPRESSION

We used qPCR to quantify the gene abundance (via DNA) and
gene expression (via cDNA) for key genes in the nitrification
and denitrification pathways. In all mesocosms the abundance of
AOA amoA in microbial DNA was around three orders of mag-
nitude higher than the abundance of AOB amoA (Figure 4A vs.
Figure 4C). For both AOA and AOB the abundance of amoA
was relatively uniform throughout the experiment, displaying no
temporal changes in the genetic capacity for ammonia oxidation
for either domain of ammonia oxidizers (Figures 4A,C). By con-
trast, amoA gene expression for both AOA (Figure 4B) and AOB
(Figure 4D) varied much more dramatically than in the DNA,
with AOA peaking on day 14, and AOB peaking on day 22. Rates
of AOB amoA gene expression were below the limits of detection,
except on Days 14 and 22. Both the nirS (Figure 4E) and nirK
(Figure S1) genes, which encode the two functionally redundant
dissimilatory nitrite reductases in the denitrification pathway,
when quantified in the DNA, were also relatively uniform. All
mesocosms contained roughly similar numbers of copies of the
nirS gene (108-10° copies per gram of sediment) and abun-
dances did not change systematically through the experiment
(Figure 4E). Similarly, there were no differences among the meso-
cosms with regard to the abundance of the nirK gene (Figure
S1), though it was present only in ~10° copies per gram of sedi-
ment, 3—4 orders of magnitude less abundant than the nirS gene.
There were, however, widely different degrees of nirS gene expres-
sion (Figure 4F) among the different mesocosms with a low of
1.9 x 10° copies per gram sediment in the cDNA of mesocosm #2

B Ammonia oxidation
M Denitrification

Ammonification
M Nitrite oxidation

100 1

75
50 -
25 1
0
i 2 3 4

Integrated amount of each rate (UM)

b

Mesocosm replicate

FIGURE 3 | Total integrated rates of ammonification, ammonia
oxidation, nitrite oxidation, and denitrification in each mesocosm.

to a high of 1.4 x 10° copies per gram of sediment in mesocosm
#3. We were unable to amplify nirK from the cDNA, suggesting
minimal expression of the nirK gene during this experiment.

Normalizing gene expression to the total gene abundance
present in DNA yielded trends that closely tracked rates of ammo-
nia oxidation (Figure 5, left panels) and that occasionally, though
not typically, tracked rates of denitrification (Figure 5, right pan-
els). In all of the mesocosms, NHZ concentrations peaked within
the first 10 days of the experiment. After a lag of approximately a
week, there was a simultaneous peak in both ammonia oxidation
rate and in the ratio of AOA amoA cDNA:DNA. NHZr concen-
trations were essentially depleted by the time both rates and
normalized gene expression values peaked. AOB amoA expres-
sion (and thus the cDNA:DNA ratio) was high only on day 22,
well after the decline of the peak in ammonium concentration.
The trend in normalized nirS gene expression occasionally mir-
rored denitrification rates (e.g., Figure 5A), but was considerably
offset from maximal rates in most mesocosms.

We assessed whether the normalized gene expression of
ammonia oxidizers and denitrifiers, calculated as the ratio of
cDNA to DNA for AOA amoA and nirS, was predictive of the
modeled rates of these processes by linear regression analysis
(Figure 6). Rates of ammonia oxidation did increase linearly as
a function of normalized gene expression (Figure 6A) with a
moderate coefficient of determination. There was no statistically
significant relationship between normalized gene expression and
rates of denitrification.
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FIGURE 4 | Gene abundance (A,C,E) and gene expression (B,D,F) for
ammonia oxidizing archaeal amoA (A,B), ammonia oxidizing bacterial
amoA (C,D), and nirS denitrifiers (E,F) during the time course of the
experiment.
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DISCUSSION

Our objective was to induce a series of biogeochemical reac-
tions that mimic the nitrogen remineralization sequence and to
determine whether changes in geochemistry would be mirrored
by changes in the expression of associated genes. The ultimate
goal was to determine quantifiable relationships between func-
tional gene abundance and geochemical change to help inform
geochemical models (Reed et al., 2014). The nitrogen cycle, how-
ever, is particularly complicated to model because of the numer-
ous functional genes involved and because different taxonomic
groups can dominate in different environments. For example,
research in the Gulf of California showed that ammonia oxidiz-
ing archaeal (AOA) but not bacterial (AOB) gene copy number
tracked ammonia oxidation rates quite closely, suggesting that
the relationship between gene expression and ecosystem func-
tion is quantifiable, and dominated by AOA (Beman et al., 2008).
However, in agricultural soils Jia and Conrad (2009) show that
changes in ammonia oxidation rates, upon addition of NHI, co-
occurred with changes in abundance of AOB gene copy number
but not AOA copy number, despite the fact that AOA were numer-
ically much more abundant. More data on what functional genes
are abundant and active under what environmental conditions are
needed to better constrain geochemical models.

We hypothesized that rates of nitrification, which is assumed
to be largely an obligate metabolism, would roughly track with
changes in total abundance of the amoA gene. In general, the
data confirmed this hypothesis. There was a significant linear
relationship between modeled rates of ammonia oxidation and
the normalized expression of the AOA amoA gene (Figure 6A).
Interestingly, despite the largely obligate nature of the pathway,
the abundance of amoA in the DNA of our samples, while vari-
able, did not systematically change throughout the experiment.
It is possible that some AOA in the sediments use alterna-
tive metabolisms that do not depend on amoA gene expression
(Mufimann et al., 2011), which would further obscure the rela-
tionship between the quantity of amoA in DNA and the rates
of ammonia oxidation. There was, however, a distinct pattern in
the expression of the AOA amoA gene, with peaks in expression
occurring about 2 weeks into the experiment. Gene expression of
AOB amoA showed a similar sharp peak shortly after the peak
in abundance of AOA amoA gene expression but the AOB tran-
scripts were at least three orders of magnitude less abundant than
the AOA transcripts. These results indicate that more emphasis
needs to be placed on analysis of gene expression, rather than
abundance, as inactive cells in the environment could obscure the
linkage between gene abundance and ecosystem function.
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These results highlight the importance of AOA in the nitrogen
cycling of estuarine sediments, as has been previously demon-
strated (Beman and Francis, 2006; Caffrey et al., 2007; Bernhard
etal., 2010). Although mesocosm experiments such as these can-
not be considered analogs for in situ processes, the results do
suggest that it is primarily the AOA that are carrying out ammonia
oxidation in these experiments. AOA in the initial (T0) sedi-
ments were three orders of magnitude more abundant than AOB
(Figures 4A,C), indicating that the estuarine conditions at the
time of collection strongly favored AOA. The numbers of AOA
and AOB stayed consistent throughout the experiment, but the
AOA gene expression peaked at much higher numbers and more
quickly, than AOB gene expression when a source of mineralized
NHI became available. AOB, by contrast, appear to only increase
expression of their amoA gene after the AOA amoA expression
decreased. It is worth noting, however, that although AOB amoA
gene expression was much lower than AOA amoA gene expres-
sion, the normalized gene expression (cDNA:DNA) of AOB was
approximately 0.1, compared to 0.01 for AOA, suggesting that
AOB may play a disproportionately large role, relative to their
total abundance, in the observed ammonia oxidation rates.

In contrast to the ammonia oxidizers, we hypothesized that
the facultative denitrification pathway would be more difficult
to disentangle. Since denitrifying bacteria are capable of utiliz-
ing a number of different electron acceptors, we expected that the
absolute abundance of nirS in sediments would not track rates of
denitrification, though we did expect to see a greater correlation

between denitrification rates and the number or nirS mRNA
transcripts in the sediments. In general the half-life of mRNA
is relatively short (Selinger et al., 2003; Frias-Lopez et al., 2008;
Steglich et al., 2010; Moran et al., 2013), and in experimental
studies of the denitrifier Pseudomonas stutzeri the half life of nirS
was approximately 13 min (Hartig and Zumft, 1999). The operon,
however, was shown to operate nearly continuously through the
3 h experiment until resources were depleted and nitrite reduction
ceased (Hirtig and Zumft, 1999). Based on these experimental
results we expected to see a stronger correlation between nirS
gene expression and rates of denitrification. Our data, however,
indicate that there was no consistent relationship between the
normalized gene expression of the nirS gene and modeled rates
of denitrification (Figure 6B).

Since #nirS is one of two functionally redundant nitrite reduc-
tases encoded by prokaryotes, we hypothesized that the relation-
ship between 7irS and denitrification rates could be obscured by
nitrogen loss by organisms containing the other nitrite reduc-
tase, nirK. We quantified nirK gene abundance in the mesocosm
sediments and determined that the abundance was at least three
orders of magnitude lower than the abundance of nirS (Figure
S1). Further, we were unable to amplify nirK from the cDNA. We
thus concluded that the abundance and activity of nirK denitri-
fiers is not likely sufficient to obscure the relationship between
gene expression and modeled rates of denitrification. Nitrogen
loss through the anammox reaction is another possible mecha-
nism that could obscure the relationship between denitrification
rates and nirS and nirK gene abundance. In general anammox
rates are low in carbon rich environments such as are found in
coastal sediments (Rich et al., 2008; Koop Jakobsen and Giblin,
2009). Furthermore, if anammox were an important process in
the mesocosms it would also obscure the relationship between
NH] oxidation rates and amoA gene expression because there
would be an additional unaccounted for loss of NHI. That we
see a relatively tight relationship between NHI and amoA gene
expression (Figure 6A), we can conclude that anammox rates are
not sufficiently high to account for the lack of a relationship
between nirS gene expression and denitrification rates. Instead we
can only conclude that the facultative nature of denitrifying bacte-
ria makes it challenging to directly link nirS gene expression with
rates of denitrification.

Measureable accumulation of NO; in coastal waters is rare,
although this may in part be a methodological artifact, as data
are most often recorded as NO3 +NO; . Differences in the reac-
tion rates between ammonia oxidation and nitrite oxidation,
however, can lead to transitory accumulation of NO; . Culture
experiments with Nitrobacter, a key nitrite oxidizer, demon-
strated that high concentrations of NHZ in the culture inhib-
ited nitrite oxidation and resulted in the accumulation of NO;
(Anthonisen et al., 1976). Additional modeling work indicated
that the threshold concentrations for the inhibition of nitrite
oxidation by free ammonia and free nitrous acid were much
lower than for ammonia oxidation (Park and Bae, 2009). In our
study, all four mesocosm tanks demonstrated a sharp increase
in NO; concentrations (Figure 1), and accumulation of NO;
in the overlying water began during times of high NHZ’ con-
centrations. NO, continued to accumulate in the mesocosms
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until ammonia oxidizers were able to reduce available NH con-
centrations sufficiently that inhibition of nitrite oxidizers was
released.

The inhibition of nitrite oxidation by initially high NHI con-
centrations provides one plausible explanation for the overall
reduced NO3 removal capacity that was evident in the meso-
cosms (Figure 3). Although nearly 100% of the ammonia gen-
erated from ammonification was oxidized to NO; and then to
NO3, only between 52 and 76% of the oxidized NO3 was ulti-
mately denitrified (Figure 7) and, unlike NHZ and NO;, NO3
concentrations remained high at the end of the experiment. Rates
of NO; removal via denitrification can be limited by, among
other things, the supply of NOJ or labile organic carbon. As there
was no initial NO3 in the overlying water, the only sources of
NOJ to promote denitrification are from oxidation of accumu-
lated NO; that then diffuses into the anoxic sediments, or from
direct coupling of nitrification and denitrification. The accu-
mulation of NHI in the overlying water and the inhibition of
nitrite oxidation suggests that, initially, denitrification was lim-
ited by NOj3 supply. Further evidence for this limitation comes
from the close coupling in time between rates of nitrite oxidation
and rates of denitrification in the first weeks of the experiment
(Figure 2).

Ultimately, however, it is likely carbon limitation that pre-
vents complete denitrification in the mesocosms, as eventually
complete oxidation of NO; to NO3 did occur and NOj con-
centrations persisted in the overlying waters through the end of
the experiment (Figure 1). Carbon limitation has been shown
to limit denitrification in coastal sediments both in mesocosms
(Babbin and Ward, 2013) and in biogeochemical models (Algar
and Vallino, 2014), and is likely to be the ultimate factor limiting
complete denitrification in this system. Regardless of whether it is
carbon or NOj3 limitation, the limitation was ultimately observed
at the genetic level. Although there was no direct relationship
between denitrification rate and nirS gene abundance (Figure 6),
when nirS gene expression was averaged over the time course of

9
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1x 108-

W nirS
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1x10

1x10°
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1x10

Average (+ sd) gene transcripts(g” wet sediment)

Mesocosm replicate

FIGURE 7 | Average (+ SD) number of gene transcripts found in each
mesocosm for the amoA and nirS gene. The numbers above each bar
refer to the % completion of the process facilitated by that gene.

the experiment (Figure 7), the mean abundance of transcripts
mirrored the differences in total NO3 removal capacity, such that
the mesocosm with the lowest NO3” removal capacity also had the
lowest average expression of the nirS gene.

Although it is difficult to extrapolate from mesocosm experi-
ments to rates and processes in coastal sediments more broadly,
these experiments bring us one step closer to understanding envi-
ronmental microbial processes than experiments done solely with
cultured organisms. The four mesocosms examined here repli-
cated fairly well, with each tank demonstrating a classic regener-
ation sequence. The variations in the timing and magnitude of
fluxes in each of the mesocosms, however, illustrate the small-
scale heterogeneity that exists in coastal marine sediments. These
experiments allowed us to establish a quantitative relationship
between microbial community structure and ecosystem function
for ammonia oxidizing archaea, but not for the much more genet-
ically diverse denitrifiers (Bowen et al., 2013). Additional work is
needed to see if the AOA/nitrification relationship is generalizable
to different systems, but it is a first step in providing quantita-
tive data on the role that these microbes play in coastal sediments
and can form a basis for incorporating microbial ecology into
geochemical models.
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