
HYPOTHESIS AND THEORY ARTICLE
published: 25 August 2014

doi: 10.3389/fmicb.2014.00431

Hidden state prediction: a modification of classic ancestral
state reconstruction algorithms helps unravel complex
symbioses
Jesse R. R. Zaneveld* and Rebecca L. V. Thurber

Vega Thurber Laboratory, Department of Microbiology, Oregon State University, Corvallis, OR, USA

Edited by:

M. Pilar Francino, Center for Public
Health Research, Spain

Reviewed by:

Amparo Latorre, University of
Valencia, Spain
Anna Carolin Frank, University of
California Merced, USA

*Correspondence:

Jesse R. R. Zaneveld, Vega Thurber
Laboratory, Department of
Microbiology, Oregon State
University, 220 Nash Hall,
Corvallis, OR 97330, USA
e-mail: zaneveld@gmail.com

Complex symbioses between animal or plant hosts and their associated microbiotas can
involve thousands of species and millions of genes. Because of the number of interacting
partners, it is often impractical to study all organisms or genes in these host-microbe
symbioses individually. Yet new phylogenetic predictive methods can use the wealth of
accumulated data on diverse model organisms to make inferences into the properties
of less well-studied species and gene families. Predictive functional profiling methods
use evolutionary models based on the properties of studied relatives to put bounds
on the likely characteristics of an organism or gene that has not yet been studied in
detail. These techniques have been applied to predict diverse features of host-associated
microbial communities ranging from the enzymatic function of uncharacterized genes to the
gene content of uncultured microorganisms. We consider these phylogenetically informed
predictive techniques from disparate fields as examples of a general class of algorithms for
Hidden State Prediction (HSP), and argue that HSP methods have broad value in predicting
organismal traits in a variety of contexts, including the study of complex host-microbe
symbioses.
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BIOLOGICAL DIVERSITY OFTEN NECESSITATES TRAIT
PREDICTION
The immense scope of biological diversity limits detailed scientific
study to a relatively small number of well-characterized model
organisms. Because the technical and analytical capabilities needed
to catalog the vast number of diverse organisms are limited, impor-
tant scientific and regulatory decisions must often be made by
applying information from well-studied models onto less well-
understood organisms (Fagan et al., 2013; Guénard et al., 2013) or
genes (Eisen, 1998; Engelhardt et al., 2005).

In some cases, extrapolation of properties across diverse organ-
isms is needed because direct testing on the organism of interest
would be unethical, illegal, and/or infeasible. For example, in the
realm of ecotoxicology, direct toxicology tests on suitably large
cohorts of endangered or threatened species (e.g., spotted owls or
marine mammals) may better predict the lethal concentration of
a toxicant than tests on other model species, but would be legally
problematic and potentially counterproductive from the stand-
point of conservation. Instead, data from experiments on model
species must generally be extrapolated to predict impacts in rare
or hard to access relatives (Guénard et al., 2011).

These problems of vast diversity and limited ability to study
all species are particularly apparent in the context of complex
symbiotic assemblages like those between metazoans and their
associated microbial communities. The human gut lumen has
been estimated to contain ∼1000 prevalent microbial species and
∼3.3 million genes based on surveys of European populations

(Qin et al., 2010). The total microbial cell count on humans
(∼1014 cells) is even estimated to exceed that of human cells
(∼1013) by roughly an order of magnitude (Savage, 1977). The
connections between the human microbiota and a wide range
of variables including diet, autoimmune disease, obesity, and
cancer are being actively explored (see Lozupone et al., 2012 for
a recent review). Although the human microbiome is a heav-
ily studied system, the diversity of its constituents presents an
important challenge to gaining an ecosystem-level understanding
of the contribution of each member to the dynamics of the overall
system.

This immensity of microbial diversity presents an even larger
challenge when considering less well-studied microbial com-
munities. The Greengenes database (McDonald et al., 2012) of
microbial 16S ribosomal RNA gene sequences, a popular phyloge-
netic marker for bacteria and archaea, contains 99,322 microbial
operational taxonomic units (OTUs) at a 97% sequence similarity
threshold in the present version (13_8). Even if representatives of
100 OTUs per day could be cultured and assayed for a particular
trait (an effort that would require extensive resources and auto-
mated methods for high-throughput phenotyping), it would take
∼6 years to test this trait across known OTUs. Unfortunately, this
is slower than discovery of new OTUs, which tripled between 2012
and 2013. Thus even an impressive brute-force effort to study
microbial phenotypes by treating each OTU in isolation would
actually lose ground to the influx of newly uncovered micro-
bial diversity. Therefore, many conclusions about microorganisms
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found in the environment will rely on the properties of better-
studied model microorganisms for some time, especially if new
microbial diversity continues to be uncovered at high rates.

METHODS FOR PHYLOGENETIC PREDICTION
In this review, we discuss the utility of phylogenetic models for
predicting features of understudied organisms, and focus in par-
ticular on a group of methods for predicting unknown traits from
a phylogeny that we term Hidden State Prediction (HSP) algo-
rithms. These methods have recently been applied to a variety of
interesting problems in the study of host-microbe symbioses and
microbial ecology.

We define HSP algorithms as phylogenetic methods for predict-
ing unknown character states or character values (i.e., traits) based
on a collection of known character states and a phylogenetic tree
(Figure 1). Thus, HSP is similar to ancestral state reconstruction
(ASR) techniques, in which the properties of ancestral organisms
are inferred based on traits of their living descendants. However,
HSP methods differ from ASR methods in that the properties of
modern rather than ancestral organisms are predicted. That is,
these methods predict character states for the tips of a phylogeny
rather than for its internal nodes. These methods are also closely
related to phylogenetic comparative methods (PCMs), which also
examine the predictability of character values given a phylogeny,
but do so in order to remove phylogenetic signal when compar-
ing traits of interest (Harvey and Pagel, 1991; Garland and Ives,
2000). Although the two methods are closely related, we use HSP
to distinguish phylogenetic prediction per se from methods where
a phylogenetically corrected comparison of measured trait values
is the end goal. Finally, we should be clear that while HSP methods
are also sometimes called “phylogenetic predictive methods,” they
are distinct form standard phylogenetic inference: HSP methods
use an inferred phylogeny to predict traits at the tips of the tree
rather than vice versa.

HIDDEN STATE PREDICTION ALGORITHMS
Consider the case of predicting the copy number of a gene across
many organisms, of which only a portion have been characterized
(Figures 1A,B). HSP methods start with a set of reference anno-
tations (the gene copy numbers) and a phylogenetic tree relating
the entities that were annotated (here the organisms carrying the
genes). These reference annotations are mapped onto the cor-
responding tips of the tree. (Although this step is conceptually
simple, it can actually be surprisingly involved when reference
databases and the reference phylogeny use different conventions
and naming schemes.)

When the model of evolution is reversible over time (e.g., in
a Brownian motion model), it is possible to make phylogenetic
predictions for hidden states directly using ASR of a rerooted
version of the phylogeny (Garland and Ives, 2000). Because the
direction in which time moves is not important in such models,
the problem of prediction can be transformed into a standard
ASR by rerooting the tree on the parent edge for the node to
be predicted, and resolved using any standard ASR method.
Fast reconstructions using phylogenetic independent contrasts or
generalized least squares (which have been shown to be equiva-
lent for the Brownian motion model specifically) are a popular

FIGURE 1 | Hidden State Prediction (HSP). (A) Evolution of a simulated
trait following a Brownian motion model. For example, the copy number of
a gene family in each of several microbial genomes can be mapped onto a
phylogenetic tree and represented as a continuous trait. (The same method
could be used on any continuous evolutionary character.) Here, a trait
starting with a value of 4 evolves by a Brownian motion process within a
group of organisms A–F. Blue values above each edge of the phylogeny
indicate regions of the phylogeny where the trait takes on a value greater
than 4 (gain with respect to the ancestor of A–F). Orange values below the
edges indicate trait values lower than 4 (loss relative to the ancestor).
Numbers by the tips of the tree show the final value of the trait rounded to
the nearest integer, as when the trait is taken to represent the copy
number for a particular gene. (B) Observed Data. In general only a portion
of all modern organisms are sampled. In this example trait values have
been measured for tips A, C, and F but are unknown for tips B, D, and E.

(Continued)
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FIGURE 1 | Continued

The tips with unknown trait values differ in their proximity to characterized
relatives. Tip D is only distantly related to tips with known values. Note that
tip B is closely related to tips A and C for which trait values are known. Thus
for B the closest known tip is within 0.12 units of branch length, whereas
for D the closest tip is 0.63 units of branch length away. The task of HSP is
to estimate trait values for B, D, and F from the values for A, C, and E.
Examples of tips for which trait prediction will be more or less accurate are
shaded with blue or orange boxes, respectively. This task will be simplest in
cases like B in which several close relatives have been assayed and hardest
in cases like D where long branches separate unknown tips from known
references. (C) Ancestral State Reconstruction (ASR). The unknown tips are
dropped from the tree (most phylogeny programs cannot handle missing
character values) and ancestral character values are calculated for the
remaining internal nodes. (An alternative method for discussed in the text is
to repeatedly reroot the tree at each node of interest (here B,D,F) and
perform standard ASR (Garland and Ives, 2000). (D) Prediction of character
values. If prediction via tree rerooting is not used, the inferred ancestral
states and evolutionary model must be extended to the tips using another
method. For example, the predictive functional profiling software package
PICRUSt (which predicts metagenomic counts from marker gene data; see
main text) uses exponential weighting by branch length to extend
reconstructed states to the tips, and inflates the variance of the
reconstructed ancestral state to account for evolution between the ancestor
and the tip of interest (Langille et al., 2013). In this example, Tip B, with
close references A and C is assigned correctly. Tips D and F, where such
references are either missing (tip D) or available only in a sister group (but
not a closely related outgroup; F) are assigned less accurately (both off by
two copies). However, D is correctly inferred to have more copies than F.
Note that this example is intended to illustrate compactly the algorithm and
some examples of success or failure, and should not be taken to represent
the average accuracy of these methods, which have been studied in some
depth (see Factors Influencing the Accuracy of Hidden State Prediction
Algorithms for a summary of major findings).

choice (Grafen, 1989; Martins and Hansen, 1997; Felsenstein,
2004). However, due to technical limitations of most phyloge-
netic software, it may be necessary to prune all tip nodes with
unknown character values prior to prediction. The combined
rerooting and pruning operations may incur significant compu-
tational costs on extremely large reference phylogenies common
in microbial studies (e.g., 10s of 1000s of tips). Nonetheless, this
method has been used by several recent phylogenetic prediction
studies on large microbial trees (Kembel et al., 2012; Angly et al.,
2014).

Alternatively, a standard ASR can be performed on the pruned
tree (Figure 1C), then mapped back to the full tree, and the
inferred ancestral states and evolutionary model used to pre-
dict character values at nodes removed during pruning and the
tips of the tree (Figure 1D). Under maximum parsimony (Fitch,
1971), which seeks to minimize character state changes over
the tree, the most parsimonious hidden state is simply the trait
value reconstructed for the last common ancestor of a tip and
its closest annotated relative. As an example of this approach,
(Eisen, 1998) suggested the use of a parsimony-based HSP algo-
rithm to predict the gene function of unassigned orthologs within
gene families. In a maximum likelihood framework the most
likely prediction for the hidden state is the one that maxi-
mizes the likelihood of the observed character data given the
phylogeny and a particular model of evolution (alternative mod-
els may be tested using Akaike information criterion/Bayesian
information criterion approaches). For symmetrical models of
character evolution (such as the Brownian motion model), this

criterion implies that the ML estimate of a hidden state at the
tip of the tree will be the same as the ML estimate of the
ancestral state for the last common ancestor of the individ-
ual in question and an annotated relative. The variance in this
trait will be inflated by the product of the variance parameter
describing the Brownian motion process (σ2) and the branch
length to account for evolution along the branch from the last
common ancestor to the tip in question. If the model of evo-
lution is asymmetrical, then the maximum likelihood estimate
for a tip may differ from its last common ancestor with an
annotated tip.

Because HSP methods predict features of modern organisms,
the accuracy of these algorithms can be readily tested by cross-
validation. When a large number of directly observed character
values are known, the accuracy of an HSP method can be assessed
by limiting program input to a subset of observed character values,
and then testing the ability of the method to predict the rest.
(The key conclusions from several such cross-validation studies are
discussed in section “Factors Influencing the Accuracy of Hidden
State Prediction Algorithms,” below.)

Related prediction methods
Several related approaches bear mentioning that also aim to extend
information from characterized organisms to uncharacterized
relatives. Phylogenetic eigenvector maps (PEMs) translate a phylo-
genetic tree into a matrix of similarities, and then decompose these
similarities into orthogonal eigenvectors (Guénard et al., 2013).
Some or all of these eigenvectors are then used as predictor vari-
ables in statistical analysis. This approach is similar to performing
principal coordinates analysis (PCoA) on the similarity matrix of
organisms, and then using some or all of the resulting PC axes
as variables for statistical analysis. This method is implemented
in the MPSEM R package, and has been used to predict the sen-
sitivity of diverse animals to environmental toxicants (Guénard
et al., 2011). Other approaches average gene counts across taxa or
close phylogenetic relatives to estimate trait values. For example,
Okuda et al. (2012) used all neighboring taxa within an empir-
ically defined phylogenetic distance (0.10 16S rRNA subst./site
was recommended) to predict metagenome contents from DGGE
bands.

Finally, taxonomic binning approaches do not use a phylo-
genetic tree, but instead average values within taxonomic units
in order to estimate the chances that uncharacterized taxa share
that trait. For example, PanFP1 (Jun et al., Unpublished) seeks
to normalize 16S rRNA copy numbers and predict microbial
metagenomes from 16S rRNA data using this method. Care-
ful comparison of the performance of HSP and each of these
alternative methods in a variety of scenarios will be a valu-
able tool in guiding the development of methods for trait
prediction.

APPLICATION OF HIDDEN STATE PREDICTION TO
UNDERSTAND COMPLEX SYMBIOSES
In the remainder of the paper we will discuss applications of HSP
in the study of microbial symbioses, which range from correcting

1https://github.com/srjun/PanFP
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long-understood biases in 16S rRNA surveys to approximate pre-
dictions of the content of microbial genomes and metagenomes
from amplicon data.

By allowing more accurate estimation of the composition
of microbial communities (see Quality Control of Marker
Gene Surveys through Copy Number Normalization), and their
functional capabilities (see Phylogenetic Prediction of Microbial
Genomes and Metagenomes), HSP methods are being used to
study the interactions of complex communities of microrganisms
with hosts and one another.

QUALITY CONTROL OF MARKER GENE SURVEYS THROUGH COPY
NUMBER NORMALIZATION
Recently HSP methods have been used to address a long-standing
problem in microbial ecology. Enormous progress has been made
in exploring complex microbial communities through sequenc-
ing of phylogenetically informative marker genes. The 16S rRNA
is the most widely used marker gene for studies of bacteria and
archaea. However, bacteria and archaea vary in 16S rRNA gene
copy number from a mode of 1 copy (Angly et al., 2014) to
15 copies in Photobacterium profundum. Therefore the relative
abundance for certain species and broader taxa inferred from
qPCR or 16S rRNA sequencing can be inflated. Bias due to 16S
rRNA gene copy number is expected to affect some datasets
more than others, depending on the magnitude of differences
in 16S rRNA genomic copy numbers for the most abundant
organisms.

Recently, several publications have described the use of HSP
to correct bias due to variation in 16S rRNA copy number in
microbial datasets. Kembel et al. (2012) introduced a method for
predicting 16S rRNA copy numbers for uncultured microorgan-
isms, and used the prediction to normalize 16S rRNA marker gene
surveys. This method inserts reference taxa into a phylogenetic
tree for a particular community, and then uses HSP via rerooting
and ASR to estimate missing 16S rRNA copy numbers.

PICRUSt2, a newly developed program for prediction of micro-
bial genomes and metagenomes from 16S rRNA data (discussed
below), also corrects 16S copy number using HSP and either
PIC, ML, or parsimony reconstructions (Langille et al., 2013),
but precalcuates results on the Greengenes tree rather than using
tree-insertion on user datasets.

CopyRighter (Angly et al., 2014) is a third method for estimat-
ing and correcting 16S rRNA copy number which, like Kembel
et al. (2012) uses the method of phylogenetic contrasts and reroot-
ing to predict hidden states (Garland and Ives, 2000), but, like
PICRUSt, pre-calculates predictions for each OTU.

These and related methods will likely prove to be a com-
mon quality-control step in 16S rRNA-based microbial ecology
pipelines.

PHYLOGENETIC PREDICTION OF MICROBIAL GENOMES AND
METAGENOMES
The HSP methods used to predict 16S rRNA gene copy number for
normalization purposes have also been extended across all genes

2http://picrust.github.io/picrust/

in bacterial genomes to predict the genome contents of uncultured
bacteria and archaea.

By combining gene predictions for each OTU with 16S
rRNA copy number normalization it is possible to estimate the
metagenome contents of entire microbial communities. This
is useful because although metagenomic data can be collected
directly using shotgun sequencing, this is presently quite expen-
sive relative to surveys of a particular amplicon. (Metagenomic
sequencing is so expensive relative to amplicon sequencing in part
because sequencing depth must be sufficient to cover both genes
and taxa, rather than just taxa.)

The PICRUSt software package uses HSP to estimate the copy
number of each gene family across all OTUs in a reference phy-
logeny (by default the reference Greengenes 16S rRNA phylogeny).
PICRUSt can use several different ASR methods at the user’s dis-
cretion including Wagner parsimony, Maximum Likelihood or
phylogenetic independent contrasts. 16S rRNA copy numbers for
each OTU are also estimated using HSP.

The product of these initial steps is a table of predicted gene and
16S rRNA copy numbers for each microorganism in the reference
tree, including the many OTUs for which no genome sequence data
is available. 95% confidence intervals for these gene copy numbers
can also be constructed, based on the model of evolution for each
gene. The resulting estimates of gene family and 16S rRNA copy
number in each of the OTUs on the Greengenes tree can then
be combined to predict “virtual” metagenomes from 16S rRNA
data.

To do so, the observed count of 16S rRNA sequences in each
OTU from a 16S rRNA amplicon library is simply divided by the
predicted 16S copy number. As described above, this step produces
an estimate for the relative abundance of each microbial OTU. The
normalized counts for each OTU are then multiplied by the vector
of gene abundances to produce an estimate of the count of each
gene family in the metagenome.

Estimation of metagenome contents using HSP has already
been applied to several studies of host-microbial symbiosis.
McHardy et al. (2013) used PICRUSt to compare microbial diver-
sity, predicted gene function, and observed metabolomic profiles
in the human gut, and found PICRUSt predictions largely concor-
dant with bulk metabolite profiles obtained by mass-spectroscopy.
Rooks et al. (2014) applied PICRUSt to study gene families
enriched in the gut microbiome in colitis, and found significant
enrichment of several gene families previously implicated in the
literature. Davenport et al. (2014) examined the role of diet on the
gut microbiota in Hutterite populations. Summer diets contain-
ing more fruits and vegetables corresponded to higher levels of
genes in the Glycan biosynthesis and degradation KEGG category.
This increase was attributable to an increased relative abundance
of Bacteroidetes, consistent with previous dietary studies showing
tradeoffs between Firmicutes and Bacteroidetes in obese adults
(Ley et al., 2005) and children (Bervoets et al., 2013). Other stud-
ies have investigated functional shifts in the salivary microbiome
following probiotic administration (Dassi et al., 2014), differences
in the pulmonary microbiome of HIV patients in San Francisco vs.
Uganda (Iwai et al., 2014), and interplay between human mutation,
Crohn’s disease, and the functional repertoire of the gut micro-
biota (Tong et al., 2014). Finally, HSP methods are also being used
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to study non-model systems (Loudon et al., 2013; Polónia et al.,
2014). For example, significant differences in several gene cat-
egories, including tetracycline production, were inferred for two
sponge microbiotas vs. nearby seawater or sediment (Polónia et al.,
2014).

These examples illustrate how HSP methods are being used
in studies that seek to unravel the complex interactions between
host factors (genetics, immune function, diet), harmful or helpful
microbial symbionts, and downstream functional consequences
in diverse organisms.

FACTORS INFLUENCING THE ACCURACY OF HIDDEN STATE
PREDICTION ALGORITHMS
Hidden State Prediction algorithms will function best when traits
exhibit strong, positive phylogenetic autocorrelation (Figure 2).
Such correlations have been shown for many morphological
traits of ecological interest (Freckleton et al., 2002). Compara-
tive genomic studies have also shown phylogenetic autocorrelation
for the content of microbial genomes by linking organismal
phylogenetic divergence to both the collection of genes in bac-
terial genomes (Konstantinidis and Tiedje, 2005; Chaffron et al.,
2010; Zaneveld et al., 2010; Okuda et al., 2012) and gene order
(Tamames, 2001). Although convergent evolution of gene con-
tent within habitats (Chaffron et al., 2010; Zaneveld et al., 2010)
and local negative phylogenetic autocorrelation have also been
described (Zaneveld et al., 2010), these effects are generally of
smaller magnitude. Correlation between organismal and func-
tional diversity was also observed by the Human Microbiome
Project (HMP), which found richness of gene function to be
correlated with the taxonomic richness of microbial consortia
(Consortium, 2012).

Because HSP methods predict features of modern organisms,
they are readily testable by cross-validation. Tests have included
comparison of sequenced vs. predicted genome contents for
known genomes; prediction accuracy for synthetic metagenomes
constructed in silico from sequenced genomes; cross-validation
of annotated 16S rRNA copy numbers; and validations on cell
and DNA-based mock communities of known composition. Both
HSP and related methods (Okuda et al., 2012) have generally
reported high accuracy (Kembel et al., 2012; Langille et al., 2013;
Angly et al., 2014) with certain important exceptions summarized
below.

Specific features that have been shown to compromise the
accuracy of HSP methods in particular cases include: (a) low
availability of reference data for phylogenetically diverse organ-
isms (Okuda et al., 2012; Langille et al., 2013), (b) lineages that
follow an evolutionary process that differs strongly from the evo-
lutionary model used in inference (especially genome reduction in
intracellular endosymbionts; Zaneveld et al., 2010; Langille et al.,
2013). Other factors that have a more modest (though still sta-
tistically significant) effect on accuracy include: (a) differences
in classes of gene function thought to correspond to rates of
lateral transfer (Langille et al., 2013), (b) local error in the phy-
logeny (Stone, 2011; Langille et al., 2013); (c) the choice of ASR
method (Langille et al., 2013), and (d) substitution of detailed tax-
onomic trees (with unit length branches) instead of a phylogeny
(Angly et al., 2014). Finally, because HSP methods rely on the

structure of the phylogenetic tree rather than taxonomy at a par-
ticular rank, they are robust to taxonomic labels that in some cases
may not adequately reflect ecological strategy (Philippot et al.,
2010).

CONCLUSION
For many traits, phylogeny provides a useful framework for
summarizing knowledge gained by studying model taxa. While
methods that use phylogeny to predict traits have been available
for decades, it is only relatively recently that these methods have
been applied at high-throughput to summarize our understanding
of key players in microbial symbioses. Several exciting directions
are likely to both further improve the accuracy of HSP algorithms
in the domain of microbial trait prediction, and open new avenues
of research.

The strongest single factor limiting the accuracy of predic-
tions made by HSP is the availability of phylogenetically diverse
reference data. In the case of using HSP to predict genome fea-
tures, the relevant reference data are genome sequences. Genome
sequences are used to calculate counts of gene families across
microorganisms, which are then used as evolutionary charac-
ters in the algorithm. However, the vast majority of genome
sequences are incomplete, and therefore cannot be used with exist-
ing HSP techniques. For example, as of this writing the PATRIC
resource hosts 13,091 partial bacterial genomes vs. 2,544 com-
plete genomes (Wattam et al., 2014). Lack of complete sequencing
introduces uncertainty into the counts of gene families in that
organism, and thereby complicates use of these sequences as input
data for HSP. Statistical tests are needed to determine whether
read depth is sufficient to conclude that absence of evidence for
a particular gene family in the partial genome sequence repre-
sents genuine absence vs. missing data. Further extension of these
methods to single cell genomic data (most often incomplete)
could potentially allow incorporation of information from many
uncultured and understudied phyla (“microbial dark matter”;
Rinke et al., 2013). Algorithmic improvements that allow incor-
poration of information on gene content from partial genome
sequences will be an important direction for future HSP algo-
rithms in microbial ecology. For example, Bayesian HSP methods
might integrate over distributions of possible copy numbers in
partial genomes (derived from analysis of read depth). This is a
similar to existing strategies for incorporating uncertainty in the
parameters of the evolutionary model or the topology of the phy-
logenetic tree. Such methods would allow incorporation of much
more comprehensive input datasets, and thus will likely represent
an important advance in the accuracy of predictive functional
profiling with HSP.

In systems where many sequenced genomes are available, HSP
might be used to extend metabolic predictions of species interac-
tions (Levy and Borenstein, 2013) where sequence information
is lacking. This in turn may help to identify cases in which
co-occurrence patterns (i.e., correlated abundance across sam-
ples) between two microorganisms may be driven by syntrophic
mutualism. Recent advances suggest that this approach will be
fruitful. Functional profiles imputed using HSP have been cor-
related with metabolomics profiles (McHardy et al., 2013), and
metabolic modeling applied to test ideas about the processes
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FIGURE 2 | Common patterns in trait evolution. Several common,
non-mutually exclusive patterns of trait evolution are pictured. For many
traits, change over time tends to follow the evolutionary history of the
organism. This phenomenon is known as positive phylogenetic
autocorrelation (top). Phylogenetic autocorrelation has been observed in a
wide variety of traits (∼60% of 103 traits examined in (Freckleton et al.,
2002). For example, closely related mammals have more similar body sizes
than distantly related mammals (Gittleman et al., 1996). Phylogenetic
autocorrelations are often positive (top left), but may in some cases be
negative (top right). For example, closely related organisms inhabiting the
same niche may diversify traits to escape competitive exclusion and exploit
new resources. This may produce negative phylogenetic autocorrelation in
closely related, cohabiting species. In contrast, trait correlation occurs
when traits are linked to the evolution of other traits. For example, in RNAs
where secondary structure is important, some nucleotide positions must

match in order to form Watson–Crick base-pairs (e.g., in stems) or be
otherwise constrained to preserve pseudoknots (e.g., Savill et al., 2001).
Thus if each nucleotide in the gene coding for such an RNA is modeled as
a discrete trait, many of these traits will be correlated with one another.
Continuous traits may also be correlated with one another (bottom left).
Finally, some traits may have undergone convergent evolution (bottom
right). Examples of convergence are plentiful, ranging from the similar
morphology of cacti and euphorbia, which have independently adapted to
arid climates, to skull morphology in diverse herbivorous vs. carnivorous
lizards (Stayton, 2006). Existing HSP methods work best when traits exhibit
strong positive phylogenetic autocorrelation. Statistical methods that
account for observed convergent evolution of gene content within habitats
(Chaffron et al., 2010; Zaneveld et al., 2010) and negative phylogenetic
autocorrelation among co-occurring strains of the same OTU (Zaneveld
et al., 2010) remain an important topic for future development.

driving co-occurrence patterns in the human gut microbiome
(Levy and Borenstein, 2013). A key test of the utility of HSP meth-
ods for this application will be a comparison of the accuracy of
metabolic networks built from sequenced genomes vs. the HSP
prediction for the genes in that genome. If the loss in accuracy is
modest, then HSP could provide a rough outline of potentially
interesting metabolic interactions at the level of entire micro-
bial communities that could then be targeted for experimental
confirmation.
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