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The symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a
well-established model system in the legume–Rhizobium community. Despite its wide
use, the symbiotic efficiency of this model has been recently questioned and an alternative
microsymbiont, S. medicae, has been proposed. However, little is known about the physio-
logical mechanisms behind the higher symbiotic efficiency of S. medicae WSM419. In the
present study, we inoculated M. truncatula Jemalong A17 with either S. medicae WSM419
or S. meliloti 2011 and compared plant growth, photosynthesis, N2-fixation rates, and
plant nodule carbon and nitrogen metabolic activities in the two systems. M. truncatula
plants in symbiosis with S. medicae showed increased biomass and photosynthesis rates
per plant. Plants grown in symbiosis with S. medicae WSM419 also showed higher
N2-fixation rates, which were correlated with a larger nodule biomass, while nodule
number was similar in both systems. In terms of plant nodule metabolism, M. truncatula–S.
medicae WSM419 nodules showed increased sucrose-catabolic activity, mostly associated
with sucrose synthase, accompanied by a reduced starch content, whereas nitrogen-
assimilation activities were comparable to those measured in nodules infected with S.
meliloti 2011. Taken together, these results suggest that S. medicae WSM419 is able to
enhance plant carbon catabolism in M. truncatula nodules, which allows for the maintaining
of high symbiotic N2-fixation rates, better growth and improved general plant performance.
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INTRODUCTION
One of the most studied plant–microbe symbiosis is the one
established between members of the Leguminosae family and soil
bacteria from diverse genera collectively termed rhizobia. When
compatible symbiotic partners interact, the microsymbiont is
able to invade the host root hair cells, typically (but not exclu-
sively) through infection threads, reaching the root cortex, where
they are released and differentiate into nitrogen-fixing forms;
the bacteroids. In such differentiated forms, bacteria express an
enzyme complex, the nitrogenase, which catalyzes the reduction
of atmospheric dinitrogen (N2) to ammonium during the highly
energy-demanding process known as symbiotic N2-fixation. Dur-
ing this complex symbiotic interaction the plant provides a carbon
source, mainly in the form of malate (Udvardi et al., 1988), to
be used as a respiratory substrate to fuel the N2-fixation process
(Lodwig and Poole, 2003). Symbiotic N2-fixation is estimated to
contribute to nearly half of the global biological N2-fixation reac-
tions worldwide, representing a key process for sustainable natural
and agricultural systems (Gruber and Galloway, 2008).

In recent years Medicago truncatula (barrel medic) has been one
of the model legume species most widely studied by the symbiotic
community (Barker et al., 1990; Cook, 1999). The development of
mutant collections (Tadege et al., 2008; Calderini et al., 2011), opti-
mization of transformation techniques (Boisson-Dernier et al.,

2001) and availability of its genome sequence (Young et al., 2011)
have greatly contributed to progress in the field.

So far at least two Sinorhizobium [renamed Ensifer (Young,
2003)] species have been described to nodulate Medicago spp:
Sinorhizobium meliloti and S. medicae (Rome et al., 1996a).
Although M. truncatula is able to establish N2-fixing symbio-
sis with both symbionts, most plant molecular biology studies
have been carried out using the sequenced S. meliloti 1021 strain
(Galibert et al., 2001). In recent years, however, the suitability of
the M. truncatula–S. meliloti model has been questioned based on
evidences that suggest that N2-fixation in this model is only par-
tially effective (Moreau et al., 2008; Terpolilli et al., 2008). Instead,
S. medicae WSM419, for which genomic sequence is also avail-
able (Reeve et al., 2010), has been suggested as a more efficient
symbiont for M. truncatula (Terpolilli et al., 2008).

Phylogenetic analysis has shown that S. meliloti and S. medi-
cae form a tight cluster within the Sinorhizobium group (Gaunt
et al., 2001). Furthermore, application of several molecular mark-
ers to genetically analyze this relationship suggests that S. medicae
was originated from an ancestral S. meliloti population (Biondi
et al., 2003). Nowadays, these rhizobial species can be differenti-
ated both at the phenotypic and genotypic level: S. meliloti is more
specific for the tetraploid M. sativa and is preferentially found in
alkaline or neutral soils, while S. medicae prefers diploid Medicago
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species such as M. truncatula and is predominantly found in mod-
erately acid environments (Biondi et al., 2003; Garau et al., 2005).
These host and environment preferences may have been a conse-
quence of the various interspecific horizontal gene transfers that
occurred during species diversification (Bailly et al., 2007; Epstein
et al., 2014).

Nevertheless, to date, the physiological mechanisms underly-
ing the higher symbiotic efficiency in the M. truncatula A17–S.
medicae WSM419 association remain largely unknown. Compar-
ative genomic studies of multiple S. meliloti and S. medicae strains
have shed some light, suggesting that differences in gene con-
tent between the two species, particularly in genes involved in
sulfur assimilation, conjugation and secretion, can be related to
the differential symbiotic interaction and N2-fixation efficiency
(Sugawara et al., 2013). Understanding which are the factors that
underpin N2-fixation efficiency in legumes has potentially pro-
found implications for sustainable agricultural systems and the
environment.

In the current work, we analyzed the differences at the
physiological and metabolic levels between the currently estab-
lished model M. truncatula–S. meliloti and the more efficient M.
truncatula–S. medicae symbiosis. We hypothesized that plant nod-
ule metabolism may be enhanced in the S. medicae symbiosis
compared to less efficient strains. To test this hypothesis, two sets
of M. truncatula Jemalong A17 plants were grown under symbi-
otic conditions either with S. meliloti 2011 or S. medicae WSM419.
Plant growth parameters, photosynthesis, N2-fixation, and plant
nodule carbon and nitrogen metabolic activities were determined.
Results presented here show that S. medicae WSM419-derived
nodules generate a stronger sink in the plant, through the activa-
tion of sucrose-hydrolyzing enzymes. This allows the maintenance
of high N2-fixation rates, increased nodule growth, and, therefore,
a generally improved plant performance.

MATERIALS AND METHODS
GROWTH CONDITIONS
Medicago truncatula Gaertn cv. Jemalong A17 plants were grown in
1-L pots with a mixture of perlite:vermiculite (2:5, v/v) as substrate
under controlled environmental conditions (14 h day/10 h night;
450 μmol m−2 s−1 light intensity; 22◦C/16◦C day/night tem-
perature; 60–70% relative humidity). After germination, plantlets
were separated into two sets: one was inoculated with S. meliloti
strain 2011 (Meade and Signer, 1977) and the other was inoc-
ulated with S. medicae strain WSM419 (Rome et al., 1996b).
Bacterial cultures were grown on a rotary shaker (175 rpm)
at 28◦C for 48 h in yeast extract mannitol broth containing
(g L−1) K2HPO4 (0.5), 0.2 MgSO4·7H2O, NaCl (0.1), man-
nitol (10), and yeast extract (0.4), pH adjusted to 6.8, to an
OD600 of 0.7–0.8, which corresponds to ∼3 × 108 cells (Vincent,
1970). 1 ml of the cultures was inoculated onto each seedling at
sowing.

Plants were watered with a nutrient solution containing (val-
ues in mg L−1): MgSO4·7H2O (493), K2SO4 (279), K2HPO4

(145), CaCl2 (56), KH2PO4 (23), EDTA-Fe (17), H3BO3

(1.43), CaSO4·2H2O (1.03), MnSO4·7H2O (0.77), ZnSO4·7H2O
(0.22), CoCl2·6H2O (0.12), CuSO4·5H2O (0.08), NaMoO4·2H2O
(0.05). For the first 3 weeks, 0.25 mM ammonium nitrate

was added to the nutrient solution. Eight weeks after planting,
symbiotic N2-fixation was measured, nodules collected, divided
into aliquots, frozen in liquid N2 and stored at −80◦C for analyt-
ical determinations. Two nodule aliquots per plant were used for
nodule number estimation based on total nodule weight. Shoots
and roots were weighed for fresh weight (FW) determinations and,
subsequently, oven-dried at 80◦C for 48 h before dry weight (DW)
was measured.

NITROGEN FIXATION AND CHLOROPHYLL CONTENT DETERMINATIONS
Symbiotic N2-fixation was measured in intact plants as apparent
nitrogenase activity (ANA). H2 evolution from sealed roots sys-
tems was measured in an open flow-through system under N2:O2

(79%:21%, v/v) according to Witty and Minchin (1998) using an
electrochemical H2-sensor (Qubit System, Canada).

Photosynthesis was determined in the apical leaves with an
open system mode (model LC pro+; ADC BioScientific Ltd., Great
Amwell, UK) using an ADC PLC-7504 leaf chamber. To estimate
leaf chlorophyll content a Minolta SPAD-502 system was employed
(Konica Minolta Sensing Europe BV, UK).

NODULE PROTEIN EXTRACTION AND ENZYMES ASSAY
Nodules (100 mg FW) were homogenized in a mortar and
pestle with 500–600 μL of extraction buffer (50 mM 3-(N-
morpholino)propanesulfonic acid (MOPS), 5 mM MgCl2, 20 mM
KCl, 1 mM EDTA, 20% polyvinylpolypyrrolidone, pH 7) where
1.5 mg mL−1 of DTT, 0.7 μL mL−1 of β-mercaptoethanol and
20 μL mL−1 plant protease inhibitor cocktail (Sigma-Aldrich)
were freshly added. Homogenates were centrifuged at 12,000 g
and 4◦C for 15 min and supernatants were collected as nodule
plant fractions. The nodule plant fraction was desalted using Bio
Gel P6DG columns (Bio-Rad) equilibrated with 250 mM MOPS
(pH 7), 100 mM KCl and 25 mM MgCl2. The desalted extract
was used to measure the following enzyme activities according
to Gonzalez et al. (1998): sucrose synthase (EC 2.4.1.13), alka-
line invertase (EC 3.2.1.26), NADH-dependent glutamate synthase
(GOGAT; EC 1.4.1.14), and aspartate aminotransferase (AAT; EC
2.6.1.1). The protein content in crude and desalted extracts was
quantified using a Bradford-based dye-binding assay (Bio-Rad)
employing bovine serum albumin as standard.

CARBOHYDRATE AND STARCH DETERMINATION
100 mg-FW nodule aliquots were extracted in 80% (v/v) ethanol
and ultrasonicated in a water bath system. After sonication,
samples were centrifuged at 7,500 g and 4◦C for 5 min and super-
natants were collected. These steps were repeated three times.
Afterward the supernatants were dried in a Turbovap LV evapora-
tor (Zymark Corp, Hopkinton, MA, USA) and soluble compounds
were redissolved in 1 mL distilled water, homogenized and stored
at −20◦C. The ethanol-insoluble residue was extracted for starch
determination as in Macrae (1971). Carbohydrates were ana-
lyzed by high-performance capillary electrophoresis (Warren and
Adams, 2000) using 10 mM benzoate (pH 12) containing 0.5 mM
myristyltrimethylammonium bromide as a buffer under the fol-
lowing conditions: −15 kV potential, 50 μm-internal diameter
and 30/40.2 cm-long capillary tube, indirect UV detection at
225 nm.
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STATISTICAL ANALYSIS
All data are reported as mean ± standard deviation of n = 5 inde-
pendent measurements. Statistical analysis was conducted using
Student’s t-test and p ≤ 0.05 was considered as statistically sig-
nificant. The homogeneity of variances was tested using Levene’s
test.

RESULTS
In general terms, M. truncatula plants inoculated with S. med-
icae WSM419 outperformed those inoculated with S. meliloti
2011. Total plant biomass in the M. truncatula–S. medicae system
was more than two-fold higher than when using the S. meliloti
strain and the difference was most notable for shoots (Figure 1;
Table 1). Plants inoculated with the S. medicae strain maintained
a 1:1 shoot-to-root ratio, while this declined to ∼3:4 in plants
inoculated with S. meliloti 2011 (Table 1).

Regarding photosynthetic CO2 assimilation, M. truncatula–S.
medicae plants showed a 55.8% increase in photosynthesis when

FIGURE 1 | Medicago truncatula cv. Jemalong A17 plants 8 weeks after

inoculation with either Sinorhizobium meliloti 2011 (left) or

Sinorhizobium medicae WSM419 (right). Scale bar = 2 cm.

Table 1 | Plant biomass.

Biomass (g FW) M. truncatula–S.

meliloti 2011

M. truncatula–S.

medicae WSM419

Shoot 9.10 ± 1.81 26.48 ± 1.00*

Root 12.85 ± 2.55 25.70 ± 2.73*

Total plant 22.40 ± 4.43 52.95 ± 2.66*

Shoot:root ratio 0.71 ± 0.02 1.08 ± 0.13*

M. truncatula plant biomass values when grown in symbiosis with S. meliloti
2011 or S. medicae WSM419. Values are mean ± standard deviation of five bio-
logical replicates. An asterisk (*) denotes significant differences (Student’s t-test
at p ≤ 0.05). FW = fresh weight.

expressed on a plant basis (Figure 2A). However, when expressed
on a leaf area basis, M. truncatula–S. meliloti showed higher pho-
tosynthetic rates (86.37 ± 2.09 μmol CO2 s−1 cm−2) compared to
S. medicae-inoculated plants (67.19 ± 2.43 μmol CO2 s−1 cm−2).
These higher photosynthetic rates were, however, not correlated
with increased leaf chlorophyll content values, with both plant
systems presenting similar values (Figure 2B).

To accurately estimate the rates of N2-fixation, ANA was
measured as H2 evolution in intact plants (Witty and Minchin,
1998). The M. truncatula–S. medicae symbiosis showed increased
N2-fixation values both when expressed on a plant (+57%) and
nodule FW basis (Figure 3A). Plants inoculated with S. medi-
cae showed higher nodule biomass (Figure 3B), although the
number of root nodules was similar in both cases (Figure 3C).
The increase in nodule biomass was, therefore, correlated with
higher biomass per nodule. Plants inoculated with the S. medicae
strain presented larger and more frequently bifurcated nod-
ules compared to plants inoculated with the S. meliloti strain
(Figure 3D). Furthermore, the plant fraction of M. truncatula–
S. medicae nodules showed a significantly higher protein content
than that of nodules infected with S. meliloti (25.18 ± 3.32 vs.
20.53 ± 3.58 mg protein g FW−1, mean ± standard deviation,
respectively).

To better understand the metabolic differences in nodules fol-
lowing inoculation with the two microsymbionts, we measured the
activity of the two main sucrose-degrading enzymes in nodules,
sucrose synthase and alkaline invertase, as well as the activity of two
key enzymes involved in ammonium assimilation, GOGAT and
AAT. In both systems the specific activity of sucrose synthase was
on average more than 25-fold higher than that of alkaline invertase
(data not shown). Comparing the activity levels across systems,
only sucrose synthase showed a significant increase in S. medi-
cae-infected nodules (Figure 4A). In terms of nodule nitrogen
metabolism, neither GOGAT nor AAT activities showed signifi-
cantly different rates when comparing the two inoculants (data
not shown).

Given that nodule sucrose catabolism was found to be more
active in the M. truncatula–S. medicae symbiosis, the main car-
bon metabolites in nodules were quantified; sucrose and starch
(Figures 4B,C). As a general trend, S. medicae-infected nodules
presented lower levels of carbohydrates compared to those infected
by the S. meliloti strain, with significant differences found in terms
of starch content (Figure 4C).

DISCUSSION
The efficiency of a legume–Rhizobium symbiosis is usually eval-
uated by comparing plant growth parameters (e.g., biomass, N
content) of inoculated versus N-fed plants. These types of study,
mostly analyzed from the bacterial perspective, have demon-
strated that symbiotic efficiency varies depending upon the specific
bacterial strain used (Miller and Sirois, 1982; Mhadhbi et al.,
2005; Parra-Colmenares and Kahn, 2005; Heath and Tiffin,
2007; Rangin et al., 2008; Terpolilli et al., 2008; Oono and Deni-
son, 2010). However, the plant contribution to these variable
efficiencies has received much less attention.

In this work, we analyzed the effectiveness of the symbiosis
of M. truncatula A17 with two Sinorhizobium strains, S. meliloti
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FIGURE 2 | Photosynthesis rates (A) and chlorophyll content (B) in M. truncatula inoculated with either S. meliloti 2011 or S. medicae WSM419.

Values represent mean ± standard deviation (n = 5). An asterisk (*) denotes significant differences (Student’s t -test at p ≤ 0.05).

FIGURE 3 | N2-fixation rates measured as apparent nitrogenase

activity (ANA, A), total nodule biomass (B), nodule number (C) in M.

truncatula plants inoculated with either S. meliloti 2011 or S.

medicae WSM419. D, representative image of nodules sampled from

plants inoculated with S. meliloti 2011 (top) or S. medicae WSM419
(bottom). Scale bar = 500 μm. Values represent mean ± standard
deviation (n = 5). An asterisk (*) denotes significant differences
(p ≤ 0.05).
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FIGURE 4 | Sucrose synthase (A) enzymatic activity in M. truncatula

nodules inoculated with either S. meliloti 2011 or S. medicae WSM419.

Values are given in μmol NADH min−1 mg plant protein−1 and represent
mean ± standard deviation (n = 5). Sucrose (B) and starch content (C) in M.

truncatula nodules inoculated with either S. meliloti 2011 or S. medicae
WSM419. Values (in mg g NFW−1) represent mean ± standard deviation of
five biological replicates. An asterisk (*) denotes significant differences
(p ≤ 0.05).

2011 and S. medicae WSM419, with special emphasis on under-
standing the main differences at the nodule metabolic level. Under
our experimental growth conditions, M. truncatula plants grown
almost exclusively on fixed N upon inoculation with S. meliloti
2011 did not show symptoms of N deficiency, presenting leaf
chlorophyll contents comparable to those of plants inoculated with
the S. medicae strain (Figure 2B). We did, however, observe a gen-
eral outperformance of plants inoculated with the S. medicae strain
in terms of plant biomass (Figure 1; Table 1), photosynthesis per
plant (Figure 2A) and N2-fixation rates (Figure 3A). Interestingly,
this improved fixation performance was correlated with a larger
biomass per nodule, leading to a higher total nodule biomass per
plant, but not to increased nodule number (Figure 3).

Nodules are strong sink tissues due to the high-energy demand
that symbiotic N2-fixation represents for the plant (Silsbury, 1977;
Schuize et al., 1999). These high-energy requirements are met
by allocating photoassimilates from the aerial part to nodules,
mostly in the form of sucrose, where they are hydrolyzed by
either sucrose synthase or alkaline invertase (Morell and Copeland,
1984; Flemetakis et al., 2006). Sucrose synthase is considered to be
primarily responsible for sucrose metabolism in mature nodules
and its role has been shown to be essential for symbiotic N2-
fixation in legumes (Gordon et al., 1999; Baier et al., 2007; Horst
et al., 2007), while alkaline invertase appears to have a secondary
role (Welham et al., 2009). In this study, the predominant role of
sucrose synthase as the main sucrose-degrading enzyme in nodules
was corroborated, showing a significantly higher specific activity
than that of alkaline invertase in both symbiotic systems (>20-fold
higher in average). Nodules from plants inoculated with the more
efficient S. medicae strain showed higher sucrose synthase activity
compared to S. meliloti 2011 nodules (Figure 4A). Furthermore,
S. medicae WSM419-inoculated plants maintained nodule starch
at significantly lower levels compared to those inoculated with
the S. meliloti strain (Figure 4C), despite the higher photosyn-
thetic rates of the former (Figure 2A). This inverse correlation
between symbiotic efficiency and starch accumulation has been

similarly observed in alfalfa plants when inoculated with a fix −
strain (Aleman et al., 2010). Indeed, in non-fixing alfalfa nodules,
the products from sucrose breakdown are re-directed to starch
biosynthesis due to the lower energy demand. Taken together, these
results suggest that S. medicae WSM419 activates plant carbon
catabolic reactions in nodules to keep up with the high nitroge-
nase demand for ATP and, as a consequence, they become stronger
metabolic sinks in the plant (Sung et al., 1989). This positive feed-
back keeps N2-fixation rates high, promoting plant growth and,
therefore, increasing the plant photosynthetic capacity. A sim-
ilar mechanism has been described when bacteroid respiration
is enhanced in nodules by the overexpression of a cytochrome
oxidase (Soberon et al., 1999; Silvente et al., 2002; Talbi et al., 2012).

Despite the differences in N2-fixation rates, plants inoculated
with the S. meliloti strain did not show significant differences in
terms of nodule number (Figure 3C). Differences were, how-
ever, found in the plant protein fraction of nodules, most likely
related to the metabolic activation discussed above. It is inter-
esting, though, that these differences are mostly observed at the
level of carbon metabolism, while the specific activity of enzymes
involved in N assimilation did not differ significantly when the
two symbiotic systems were compared (data not shown).

In conclusion, results presented here suggest that at least one
of the factors contributing to the higher effectiveness of the M.
truncatula–S. medicae WSM419 symbiosis is the activation of plant
carbon catabolism in nodules, which allows the maintenance of
high N2-fixation rates and, ultimately, leads to an improved plant
performance. In agreement with previous studies (Moreau et al.,
2008; Terpolilli et al., 2008), the use of S. medicae WSM419 as
the partner of choice for M. truncatula symbiotic studies is highly
recommended.
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