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Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and
metabolisms, biogeochemical cycling, and the impact of human activities on this ecosys-
tem. As this interest continues to grow, it is important to ensure that when subsurface
investigations are proposed, materials recovered from the subsurface are sampled and
preserved in an appropriate manner to limit contamination and ensure preservation of
accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014,
a workshop on “Trends and Future Challenges in Sampling The Deep Subsurface” was
coordinated in Columbus, Ohio by The Ohio State University and West Virginia University
faculty, and sponsored by The Ohio State University and the Sloan Foundation’s Deep
Carbon Observatory. The workshop aims were to identify and develop best practices for
the collection, preservation, and analysis of terrestrial deep rock samples. This document
summarizes the information shared during this workshop.
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INTRODUCTION
It has been estimated that up to 25 × 1029 bacterial cells are
present in the terrestrial subsurface, potentially accounting for
40–60% of all bacterial cells on Earth (Whitman et al., 1998;
McMahon and Parnell, 2014). The depth limit for life on Earth
is unknown, but likely tied to upper temperature limits and the
availability of water in terrestrial systems. Microorganisms have
been detected in 3.6 km deep groundwater accessed via South
African gold mines (Moser et al., 2003), in sub-sea floor sediments
(Schrenk et al., 2010), and at almost 4 km beneath ice sheets in
Lake Vostok (Priscu et al., 1999). However, given the extent of the
deep biosphere, the majority of potential habitats remain almost
completely unexplored (Edwards et al., 2012). As such, a series of
wide-ranging research questions remain unanswered: what con-
trols the subsurface microbial abundance (McMahon and Parnell,
2014)? What is the taxonomic diversity of these systems (Teske and
Sorensen, 2007)? What microbial metabolisms are active across
diverse chemical and physical conditions (Orsi et al., 2013)? How
do cells survive exceedingly low fluxes of energy and nutrients that
lead to extremely slow doubling times, and bring to question the
energy requirements for cellular maintenance and repair (Hoehler

and Jorgensen, 2013)? How do taxonomically similar microorgan-
isms appear in seemingly isolated deep environments across the
Earth (L’Haridon et al., 1995)? How are microorganisms impacted
when human activity alters these deep subterranean and oceanic
environments? These outstanding questions emphasize the impor-
tance of continued deep subsurface research, in both terrestrial and
marine systems.

SAMPLE COLLECTION AND CONTAMINATION ASSESSMENT
Recovering material from the subsurface generally requires drilling
technologies to reach suitable depths, although in some instances
pre-existing infrastructure may be used for sample collection
(e.g., South African gold mines). A number of drilling techniques
including hollow-stem auger coring, cable-tool coring, and rotary
sonic are suitable for shallow sampling in unconsolidated sedi-
ments (Kieft, 2010). While these techniques can be used without
drilling fluids, thus limiting potential contamination of recovered
materials, they are not suitable for recovery of deeper rock and sed-
iments. For accessing deeper materials (> 300 m), rotary drilling is
generally used in conjunction with added drilling fluids. This con-
trasts with drilling in marine sediments, where surrounding ocean
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water can be used as the drilling fluid. Such fluids are frequently
muds (bentonite, and other organic constituents), although for-
mation waters, foams and gasses can be substituted in some
instances. Although these fluids are essential to seal the borehole,
to cool and lubricate the drill bit, and to adjust density and viscos-
ity with the borehole, they can support extremely high densities of
microorganisms, and must be carefully managed when acquiring
microbiological samples (Beeman and Suflita, 1989). Preserving in
situ geochemical and microbiological signatures during recovery
of core material is technically challenging. Returning sediments to
the surface from deep locations can take significant time, during
which such signatures may change. Rock and sediments exhibit-
ing high porosity and permeability may be particularly at risk
to these changes. Technologies are currently being developed to
design a freeze-shoe sampler that would enable the freezing of
sediment and rock cores in situ during recovery, and thus prevent
microbiological and geochemical shifts.

Samples and measurements can be obtained at multiple points
during and after borehole drilling. In situ pore water chemistry
can be estimated during drilling, via the use of devices that enable
“probe-at-the-bit” measurements (Hall et al., 2008). Once a well
has been developed, U-tube borehole fluid samplers can be used
to remove the drilling fluid or monitor its dilution over time
with ground water flow and then collect true formation fluids
and gasses at near in situ conditions (Freifeld, 2009; Stotler et al.,
2011). Further, geochemical conditions and microbial community
structures for specific fractures can be determined through the use
of packers that isolate those fractures within a borehole for sam-
pling (Haveman et al., 1999; Shimizu et al., 2006; Purkamo et al.,
2013). Finally, significant understanding of the mineralogy and
geochemistry of a subsurface environment can be derived from
the effective utilization of well log data (Onstott et al., 1998).

When solid rock and sediment matrices are recovered, a pri-
mary concern focuses around potential contamination issues.
Contamination can occur at several points during the drilling
and coring process. Sources include: surface water used during

drilling, air contamination of the mud tanks, additives to the
drilling fluid, contaminated surfaces of the mud pumps, core bar-
rels and drill bits, and contamination from overlying formations
and groundwater via a process known as drilling drag-down. Due
to the extremely low biomass in deep subsurface formations, spe-
cial care must be taken to minimize microbial contamination as
even a small quantity of exogenous bacteria can mask indige-
nous biomarkers and compromise cultivation and enrichment
efforts. Common methods to assess the extent of contamination
include the use of chemical, microbiological and particle trac-
ers, with multiple, redundant, tracers recommended to ensure
sample integrity (Russell et al., 1992; Kieft et al., 2007). Typical
tracers include visual markers such as fluorescein and rhodamine
B (Russell et al., 1992; Wandrey et al., 2010), and chemical trac-
ers such as perfluorocarbons (McKinley and Colwell, 1996; Smith
et al., 2000; House et al., 2003; Pfiffner et al., 2008; Santelli et al.,
2010) and perdeuterated n-octacosane (nC28; Agouron Institute
Drilling Project, 2014). Some of these tracers may be added
throughout drilling (e.g., fluorescein), some may be changed
as suites at discrete formational/depth changes (e.g., perfluoro-
carbons), while others are applied onto bits and core barrels
prior to drilling (e.g., perdeuterated n-octacosane). Fluorescent
microspheres 0.5– 1.0 μm diameter can be used as a proxy for bac-
terial cells, and quantified by microscopy (Kallmeyer et al., 2006;
Kieft et al., 2007; Stroes-Gascoyne et al., 2007; Pfiffner et al., 2008;
Santelli et al., 2010; Cardace et al., 2013; Yanagawa et al., 2013;
Figure 1). Fluorescent microspheres can be added to the drilling
fluid but become cost-prohibitive and impractical in the deep sub-
surface as large volumes of fluids are needed; instead microspheres
may be deployed in the core catcher in a plastic bag that ruptures
as core material enters the core barrel (Kieft et al., 2007; Pfiffner
et al., 2008; Mason et al., 2010; Yanagawa et al., 2013). Microbio-
logical tracers (e.g., active microbial cells) have also been used to
assess penetration of microorganisms into core material (Zhang
et al., 2005). Finally, total organic carbon (TOC) measurements
in recovered material can be a surrogate for contamination from

FIGURE 1 | Example of fluorescent microspheres (green dots) on shale

showing contaminated and uncontaminated regions. The 2.5 by 4 cm
shale was exposed to an aqueous solution containing 0.5 μm Fluoresbrite
yellow-green microspheres (Polysciences Inc., Warrington, PA, USA) at a
concentration of 3.64 × 108 particles/mL. Images were obtained using a

Nikon Eclipse Ti inverted microscope at 100x total magnification (10x
objective) and NIS Elements v. 4.00.07 software. Image (A) shows a
volumetric composite of captured Z -stack images over a depth of 201.60 μm;
image (B) shows the same data as a composite maximum-intensity
projection. Scale bar = 100 μm.
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the carboxymethyl cellulose (CMC) component of drilling mud
(Wandrey et al., 2010).

A rigorous assessment of contamination includes the sub-
sampling of all materials coming in contact with cores before,
during and after all operational steps (e.g., drilling operations,
core retrieval, and sample processing). Example samples for con-
tamination analyses include swabs from surfaces used for drilling,
coring, or paring; samples of drilling muds and return cuttings,
especially when new formations are encountered; samples of drill
bit lubricants; and swabs/samples from core liners (Kieft et al.,
2007; Pfiffner et al., 2008). Additionally, the collection of sam-
ple “blanks” at multiple points throughout drilling and sampling
processing allows for the detection of environmental contami-
nants (e.g., air, moisture, gloves, glovebag) to distinguish from
native microorganisms. Once cores have been analyzed for tracers
and potential contamination has been documented, they must be
immediately subsampled prior to geochemical and microbiolog-
ical analyses. Common paring and disaggregation/size reduction
methods utilize core extrusion (Russell et al., 1992; Kieft et al.,
2007), a hammer and/or chisel, (Pfiffner et al., 2008) circular
saws with hydraulic crushing, (Santelli et al., 2010) or mortar and
pestle/ball mill (Herrera and Cockell, 2007) depending upon the
lithology and subsequent analyses. Field samples must be imme-
diately preserved using appropriate methods to retain competency
for subsequent microbial and geochemical analyses. Where non-
culturing approaches are to be used, rapid freezing is generally
ideal to capture microbial community structures from molecular
biomarkers (e.g., nucleic acids, proteins, and lipids). If cultur-
ing approaches are to be applied, samples should be maintained
at in situ pressures and temperatures or refrigerated and used as
soon as possible to prevent outgrowth of organisms (Haldeman
et al., 1994; Brockman et al., 1998).

MEASURING MICROBIAL BIOMASS, ACTIVITY, AND
COMMUNITY STRUCTURE
A number of techniques can be leveraged to determine micro-
bial community structure, function, biomass concentration, and
activity in the deep biosphere. DNA-based analyses are tractable
in these environments, and can range from single gene biomarker
studies to shotgun community genomic investigations that inform
microbial community structure and functional potential (Zhang
et al., 2005; Chivian et al., 2008; Wrighton et al., 2012, 2013; Dong
et al., 2014). Catalyzed reported deposition fluorescent in situ
hybridization (CARD-FISH) has been used in some environments
to identify active cells, while demonstrating that DNA is suffi-
ciently intact to hybridize with primers and probes (Hoehler and
Jorgensen, 2013). Recently, amino acid-based racemization rates
have been used to constrain potential depth limits and temper-
atures for microbial activity (Onstott et al., 2013). RNA-based
analyses for microbial activity are challenging in low-biomass deep
terrestrial environments. Messenger RNA signatures may change
during sample recovery, although the ability to sample at some
deep subsurface locations (e.g., South African gold mines) may
enable the rapid preservation of recovered biomass. As discussed
earlier, mechanisms for freezing samples during the coring process
may offer another solution to preserving signatures that would
otherwise change rapidly.

Similarly, lipid biomarker profiles can be determined from
intact polar lipids (PLs) or their derived fatty acid methyl esters
to provide estimates of biomass and determine the relative abun-
dance of taxonomic groups, including Eukaryotes, Bacteria, and
Archaea (Fredrickson et al., 1995; White et al., 1996; White and
Ringelberg, 1997; Schubotz et al., 2009). Polar lipid analyses
can be used to estimate total biomass and the proportion of
viable versus dead cells (Balkwill et al., 1988; Findlay et al., 1989;
Fredrickson et al., 1995; White and Ringelberg, 1997). In conjunc-
tion with taxonomic identification, these analyses can be used
to infer microbial phenotypic states as they relate to environ-
mental conditions, and are therefore very useful for subsurface
studies. For example, enriched trans and cyclopropyl fatty acids
have been used to indicate microbial responses to stress and tox-
icity (Heipieper et al., 1992; White and Ringelberg, 1997), while
higher proportions of cyclopropyl fatty acids versus monounsatu-
rated and saturated fatty acids have been used to indicate microbial
starvation (Guckert et al., 1986; Kieft et al., 1994). Additionally,
respiratory quinones have been employed to infer environmental
redox potentials (Hedrick and White, 1986; White and Ringelberg,
1997) and may be useful in environments where direct geochemi-
cal measurements are difficult to obtain. Finally, isotope signatures
in PLs offer a valuable indicator of microbial function in deep
subsurface environments. Isotopic compositions are determined
using a gas chromatograph combustion interface isotope ratio
mass spectrometer (GC-C-IRMS).

Deoxyribonuclicacid- and biomarker-based analyses require
the extraction of biological material from subsurface cores, a pro-
cess complicated by low biomass concentration, chemical, and
physical factors (Herrera and Cockell, 2007). The nature of the
matrix itself, which is often characterized by low porosity, car-
bonate precipitates, and brine minerals and fluids, impacts the
amount and quality of extractable DNA, RNA, and lipids (Nielsen
and Petersen, 2000; Herrera and Cockell, 2007; Wu et al., 2009).
In many systems, cells are encased in the physical matrix and this
directly affects the choice of subsampling to optimize extraction
efficiency. DNA is usually extracted from environmental samples
by direct cell lysis, using chemical or physical lysis, or a com-
bination of both (Zhou et al., 1996; Griffiths et al., 2000; Hurt
et al., 2001; Barton et al., 2006). Although many commercial DNA
extraction kits have been developed to increase extraction repro-
ducibility and yield, it is recommended that multiple methods be
tested and compared, either on actual sample material or chem-
ically similar samples (Barton et al., 2006; Herrera and Cockell,
2007; Novinscak and Filion, 2011; Direito et al., 2012; Paulin
et al., 2013). DNA sorption onto mineral surfaces is a significant
problem with low-biomass samples; although blocking agents or
carrier molecules have been shown to help overcome this challenge
(Barton et al., 2006; Direito et al., 2012).

Microbial activity in recovered material can be measured
through laboratory batch enrichments or continuous flow-
through experiments. Given that both pressure and tempera-
ture increase with depth in terrestrial subsurface environments,
microorganisms living in such environments must be able to
tolerate, survive, and even proliferate under these conditions.
Hydrostatic pressure-adapted microorganisms are known as
piezophiles, and have optimal growth rates at pressures greater
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than 0.1 MPa, while hyperpiezophiles require pressures > 60 MPa
for optimal growth (Bartlett, 2002). Growth experiments at these
pressures are therefore often desirable to obtain relevant data on
cultivable organisms (Zeng et al., 2009). High-pressure devices
allow recovered samples to be maintained at in situ pressures and
temperatures. Some of these systems require no de-pressurization
following core recovery, and allow pressurized material to be
subsampled and incubated under in situ conditions (Kyo et al.,
1991; Parkes et al., 2009). Other pressure core samplers have
been designed to recover material from depth at in situ pres-
sures (Pettigrew, 1992), and have been effectively used in the
oceanic deep subsurface (Dickens et al., 2003). These samplers
require de-pressurization for subsampling. U-tube samplers can
acquire fluid and microbial samples at formation pressure and
are readily adaptable to subsampling (Freifeld, 2009; Stotler et al.,
2011). Although rapid de-pressurization can result in cell death,
slower-rates of de-pressurization do not necessarily cause lethal
damage to piezophiles (Yayanos and Dietz, 1983; Chastain and
Yayanos, 1991; Park and Clark, 2002). Resulting material can be
re-pressurized to desired pressures using relatively simple equip-
ment, such as modified Hungate tubes (Bowles et al., 2011) or
pressure bags (Kato et al., 2008) inside high pressure stainless steel
vessels, enabling microbial batch cultivation in the laboratory.
Continuous flow-through high-pressure reactors have also been
developed, and recently used for determining rates of anaero-
bic methane oxidation (AOM; Deusner et al., 2010; Zhang et al.,
2011). The ability to culture microbial assemblages under environ-
mentally representative conditions enables rate measurements for
microbially catalyzed reactions to be determined (Brockman et al.,
1998; Deusner et al., 2010; Tamegai et al., 2012), while enrichment
of specific microbial groups can be used to obtain either pure
cultures or enriched microbial consortia. Resulting biomass pro-
vides abundant material for omics-based analyses of functional
potential, such as transcript expression or proteomics. In addi-
tion, cultivation at high pressures and temperatures can be used
to remove contaminant species that are unlikely to tolerate such
extreme conditions.

PHYSICAL AND CHEMICAL CHARACTERIZATION OF ROCK
CORE AND FLUIDS
In recovered rock samples, the development of linkages between
pore structure and microbial parameters is key for understand-
ing the distribution of microbial communities. In fine-grained
shale systems, source rocks have low porosities and extremely low
permeabilities, on the order of nanodarcies (Javadpour, 2009; Son-
dergeld et al., 2010). Understanding the microstructural controls
on porosity and permeability has implications for the nature of
biodiversity in such systems, in that it governs the movement
of cells and chemicals within the rock. Conversely, other host
rocks such as sandstone and carbonate systems can have higher
porosities and permeabilities, with greater potential for micro-
bial and chemical transport through fractures and matrix pores in
such formations (Fredrickson et al., 1997; Dong et al., 2014). Cur-
rently, a range of new imaging technologies can be used in concert
with more conventional characterization methods (Bryndzia and
Braunsdorf, 2014). The advent of focused ion beam – scanning
electron microscopic (FIB – SEM) techniques now allows us to

image pore networks in the rock matrix (Curtis et al., 2012). This
3-dimensional method is part of a broader suite of instruments
that image rock samples including X-ray and neutron computed
tomography – XCT and NCT (Perfect et al., 2014). Recently, the
application of Small and ultra-small angle neutron scattering
(USANS) has proved a valuable complement for the analysis of
porosity and pore connectivity at the nanometer to the centimeter
scale (Anovitz et al., 2013; Jin et al., 2013). Sample preparation for
X-ray and neutron tomography of native rock core only requires
the material to be sized (length and diameter) according to the
desired resolution of the instrument – e.g., imaging the pore fea-
tures < 1 micron requires samples ranging from a few to 10’s of
mm3. Neutron scattering is conducted on ∼150 micron-thick pol-
ished sections pressure impregnated with epoxy and mounted on
1 × 2 inch quartz slides (Anovitz et al., 2013). For higher resolu-
tion assessment down to the nanoscale by dual beam-FIB, a small
chip or core roughly a few mm’s on a side or diameter, respectively,
is used (Curtis et al., 2012).

Given the highly heterogeneous nature of pore networks and
fractures in many rock types and samples, determining spatial
aspects of microbial activity is important, yet technically difficult.
In a novel experimental setup, microautoradiography techniques
were applied to core material to determine spatial locations for
microbial sulfate reduction. In situ 35S-sulfate reduction was mon-
itored using freshly fractured cores wrapped in silver foil (Russell
et al., 1992; Fredrickson et al., 1997; Krumholz et al., 1997). 35S-
sulfide was retained on the foil and offered a two-dimensional
image of discrete pockets of microbial activity that could be
mapped to physical and chemical characterizations of the core.
These activity measurements can be directly related to cation and
anion analyses of pore waters trapped in cores using crush and
leach methods and correcting for drilling fluid contamination
using tracers. Stable N-isotope analyses have become sensitive
enough to obtain the N and O isotopic compositions of pore water
trapped in rock with only 1% porosity (Silver et al., 2012). Forma-
tion gas composition and its isotopic signatures provide valuable
information on whether methanogenesis is taking place within
the formation and is typically monitored during drilling. The pore
water gas compositions of cores can be measured by quickly trans-
ferring intact cores into evacuated leak-tight cylinders. The cores
then degas into the cylinders and are sampled for gas composition
and even for noble gas dating of the pore water (Lippmann-Pipke
et al., 2011).

Other chemical signatures in rock matrices can be analyzed
using isotope analysis tools to infer carbon pools, or determine
potential microbial activity. The carbon isotopic composition of
TOC is an excellent indicator for determining the source and type
of organic matter, given that diagenetic alterations or removal of
organic matter pools does not significantly affect the δ13C of bulk
organic matter in sedimentary rocks, particularly in black shales
(Meyers, 1994; Bekker et al., 2008; Young et al., 2008; Ader et al.,
2009; Jiang et al., 2012). Conversely, N and S isotope fractionations
in such media are closely associated with microbial processes like
sulfate reduction and denitrification (Berner, 1978; Gautier, 1986;
Beier and Hayes, 1989; Altabet, 2006; Quan et al., 2008). The bulk
δ13C and δ34S also serve as excellent tracers for microbial oxidation
of methane via sulfate reduction as this process leaves the sulfate
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pool enriched in 34S while adding light 12C to the total carbon
pool (Kemp and Thode, 1968; Jahnke et al., 1995; Freeman, 2001;
Seal, 2006). The C, N, and S isotopes are conservative and do not
get altered by exposure of the core to air and mild temperature
changes during storage. However, as with previously described
analysis techniques, microbial contamination from drilling flu-
ids and muds and their potential to impact paleoenvironmental
signals is best avoided by using material from inner portions of
recovered cores.

FUTURE CHALLENGES
Despite advances in deep biosphere sampling techniques, and
development of high-resolution molecular analysis tools, a range
of challenges still exists in understanding these environments.
How representative are collected samples? How can samples be
better preserved for downstream analyses? Advances are currently
being made in sample collection efforts, with development of
freeze-shoe samplers that can freeze sediment cores in situ. Perhaps
the greatest challenge is developing a predictive understanding
of microbial processes in such environments based on a limited
number of expensive, difficult to collect vertical borehole samples.
Characterization will require greater linkages between biogeo-
chemical, geophysical, mineralogical, and microbiological data,
and the presentation of these results in a regional and global con-
text. Additional research is also needed to determine the effects
of engineered activities (e.g., hydraulic fracturing, geologic CO2

sequestration) on shale and other rock-hosted biodiversity, as
the scale of these activities has the potential to promote signifi-
cant change within the terrestrial subsurface. Using best practices
for the collection, preservation, and analysis of biological and
chemical signatures of these samples is key to advancing our
understanding of the deep biosphere.
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