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Legionella is an opportunistic pathogen of public health concern. Current regulatory and
management guidelines for the control of this organism are informed by risk assessments.
However, there are many unanswered questions and uncertainties regarding Legionella
epidemiology, strain infectivity, infectious dose, and detection methods.This review follows
the EnHealth Risk Assessment Framework, to examine the current information available
regarding Legionella risk and discuss the uncertainties and assumptions. This review can
be used as a tool for understanding the uncertainties associated with Legionella risk
assessment. It also serves to highlight the areas of Legionella research that require
future focus. Improvement of these uncertainties will provide information to enhance risk
management practices for Legionella, potentially improving public health protection and
reducing the economic costs by streamlining current management practices.
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INTRODUCTION
Legionella spp. is the causative agent of Legionellosis and has
been identified as a public health concern since 1976 (Fields
et al., 2002; Bartram et al., 2007; Berger, 2012). Currently, gov-
ernment bodies rely on risk assessment models to inform the
development of regulatory tools for the control of Legionellosis
(Cooper et al., 2004). Current Legionella risk assessments may
be compromised by uncertainties in Legionella detection meth-
ods, strain infectivity and infectious dose. This paper follows
the EnHealth Risk Assessment Framework (Figure 1) developed
in Australia to review current knowledge of Legionella risk and
discuss the uncertainties and assumptions made. The EnHealth
risk assessment framework was adopted by the Australian govern-
ment to provide a national approach for assessing human health
risks from environmental hazards. It provides a benchmark for
risk assessments that are being undertaken for a wide variety
of projects by governments and industry in Australia (Priestly
et al., 2012). The uncertainties associated with each component
of the risk assessment framework are collated in Figure 2 and pro-
vide a useful tool when evaluating data used for Legionella risk
assessment.

RISK IDENTIFICATION
Worldwide, Legionella pneumophila is the most common
causative agent of Legionellosis (Buchbinder et al., 2002).
Recently, a global increase in the incidence of reported
Legionellosis has been observed (Centers for Disease Con-
trol and Prevention, 2011; Beauté et al., 2013). In 2011,
there were 4897 confirmed Legionellosis cases across Europe
(incidence rate of 0.97 cases per 100,000; European Cen-
tre for Disease Prevention and Control, 2013). and 4,202
cases across the United States (incidence rate of 1.36 cases
per 100,000; Centers for Disease Control and Prevention,
2013a). In 2013, Australia recorded 2.2 cases of Legionellosis

per 100,000 (Department of Health, 2014). The true inci-
dence of Legionellosis may be much higher as many commu-
nity acquired cases go unreported (Marston et al., 1997; Todd,
2005).

Legionellosis outbreaks are primarily associated with artifi-
cial aquatic environments (Fields et al., 2002). Hence, the risk
assessment for Legionella is especially important for public health
officials and managers responsible for maintenance of water dis-
tribution systems and cooling towers within industrial or public
buildings (Cooper et al., 2004). Risk identification is the first com-
ponent of the risk assessment framework, for Legionella this is
limited as the true incidence of Legionellosis is unknown and it
has been estimated that the true incidence of Legionellosis could be
20 times greater than the currently reported incidence (Marston
et al., 1997). Many Legionellosis community acquired cases go
unreported, which places the focus of nosocomial infection and
makes assumptions regarding disease epidemiology within the
whole community difficult.

HAZARD ASSESSMENT
Legionellosis collectively refers to clinical syndromes as a conse-
quence of Legionella infection (Fields et al., 2002). This includes
Pontiac fever, a self-limiting febrile illness and Legionnaires dis-
eases, a severe multisystem illness involving atypical pneumonia
(Buchbinder et al., 2002; Fields et al., 2002; Bartram et al., 2007).
The mortality rates of Legionellosis are highly variable and can
range from 1 to 80%, depending on the underlying health of a
patient, promptness of diagnosis and treatment and whether the
disease is nosocomial, sporadic or part of an outbreak (Bartram
et al., 2007; Diederen, 2008). Currently, there is no consensus as
to why exposure to L. pneumophila may result in either Pontiac
fever or Legionnaires disease (Diederen, 2008; Remen et al., 2011).
Remen et al. (2011) identified cases of Pontiac fever from 104
nurses working at 19 different retirement homes over a 4 month
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FIGURE 1 | EnHealth risk assessment framework adapted from Priestly

et al. (2012).

period and found no association with concentrations of Legionella
detected from the retirement village showers and cases of Pontiac

fever. Occasionally simultaneous outbreaks of Pontiac fever and
Legionnaires’ disease from the same source have been observed
(Bartram et al., 2007; Euser et al., 2010). A greater understand-
ing of the epidemiology of these vastly different clinical outcomes
would significantly improve Legionella risk assessment models. In
2007 the overall case fatality rate for reported cases of Legionel-
losis across Europe was 6.6% (Joseph and Ricketts, 2010) and from
2005 to 2009 the case fatality rate was 8% across the United States
(Centers for Disease Control and Prevention, 2011). The annual
cost of hospitalisations due to Legionellosis in the United States is
estimated to exceed US$716 million (Giambrone, 2013).

There are limited data regarding human dose response for
L. pneumophila and the concentration of Legionella required to
result in an outbreak is unknown (O’Brien and Bhopal, 1993;
Armstrong and Haas, 2007a). The organism is ubiquitous to many
natural and artificial environments which suggest people are fre-
quently exposed to low concentration of the organism with no
consequence or asymptomatic production of Legionella antibodies
(Bartram et al., 2007). This was demonstrated by Boshuizen et al.
(2001) who investigated an outbreak of Legionnaires disease

FIGURE 2 | Uncertainties of Legionella risk assessment highlighted through each step of the EnHealth risk assessment frame work.
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caused by a display whirlpool spa at a floral trade show and found
that 742 exhibitors without Legionnaires disease had higher aver-
age antibody levels than the general population. The exhibitors
were surveyed regarding their whereabouts during the fair and
those who ventured closer to the whirlpool spa had higher anti-
body levels. The data from animal models for Legionella dose
response have been used for quantitative microbial risk assessment
(QMRA) purposes. In vitro inhalation exposure data for L. pneu-
mophila is available for guinea pigs (Davis et al., 1982; Breiman
and Horwitz, 1987), mice (Wright et al., 2003), rats (Davis et al.,
1982), marmosets (Baskerville et al., 1983), and monkeys (Kishi-
moto et al., 1979; Baskerville et al., 1983). However, the infectious
dose (LD50%) across these animal models range from 1200 to
1000000 CFU (colony forming unit; Armstrong and Haas, 2007a).
Guinea pigs models have been generally accepted as the most
appropriate representation of human dose response for L. pneu-
mophila, primarily because in vitro studies show similarities for
Legionella uptake, survival and replication within guinea pigs
and human macrophages (Rechnitzer et al., 1992; Armstrong and
Haas, 2008). Armstrong and Haas (2007b) used guinea pig ID50%

(12 CFU) to a to create a QMRA model for Legionella expo-
sure (Armstrong and Haas, 2007a), the justification for using
this guinea pig model was also published (Armstrong and Haas,
2008). This study used composite data from animal dose response
models, average environmental concentrations from previous
studies and exposure data from three outbreaks, one associated
with one whirlpool spa and two hot spring spas. From this
QMRA model the predicted infectious dose from the whirlpool
spa was a mean of 10 CFU and had a 95% range of 1.3–34
CFU, and the predicted infectious dose for the two hot spring
spas was a mean of 47 CFU with a 95% range of 24–84 and
for the other a mean of 2.3 CFU with a 95% range of 1.1–4.1
CFU. Although the models acknowledges uncertainties associated
with the QMRA model, the final predicted infectious dose val-
ues calculated for the specific outbreaks are significantly lower
compared to the concentrations of Legionella detected from envi-
ronmental sources not associated with infection reported in
numerous published studies (Buchbinder et al., 2002; Valster et al.,
2011; Wang et al., 2012). The limitations of data used for the
Legionella qMRA model were acknowledged by Armstrong and
Haas (2007a). Improvements of this model can only be achieved
through future research and greater understanding of Legionella
epidemiology.

Uncertainties with Legionella dose response data also arise due
to the large variation in virulence of environmental Legionella
strains (Bollin et al., 1985b; Alli et al., 2003). Several studies have
demonstrated that variation in growth temperature affect the
virulence of L. pneumophila (Edelstein et al., 1987; Mauchline
et al., 1994). However, even these studies are conflicting, Edel-
stein et al. (1987) reported L. pneumophila grown at 25◦C were
more virulent compared to those grown at 41◦C; whereas Mauch-
line et al. (1994) reported that L. pneumophila grown at 37◦C
were more virulent than those grown at 24◦C. Increased viru-
lence of L. pneumophila is also associated with flagellation which
is life cycle dependent and genetically associated to the expres-
sion of a virulent phenotype (Heuner and Steinert, 2003). Cirillo
et al. (1999) also reported that L. pneumophila grown intracellular

within an amoeba host has greater virulence than culture grown
strains.

The disparity between Legionnaires disease and Pontiac fever
further confounds L. pneumophila infectious dose data. Cur-
rently there is no consensus for an epidemiological definition
of Pontiac fever (Tossa et al., 2006). Furthermore, some experts
believe that Pontiac fever is caused by exposure to a mixture
of live and dead microorganisms including endotoxins made by
non-Legionella bacteria plus low doses of live or dead Legionella
which are unable to cause pneumonia in the infected host.
However, more research is required to confirm this assumption
(Burnsed et al., 2007; Edelstein, 2007; Diederen, 2008). Legion-
naires disease and Pontiac fever vary in regards to patients risk
factors and disease outcomes (Diederen, 2008). The incuba-
tion period for Legionnaires disease is 2–10 days (Bartram et al.,
2007); whereas Pontiac fever has an incubation period of 30–90 h
(Pancer and Stypukowska-Misiurewicz, 2002).

EXPOSURE ASSESSMENT
Men aged 40 years and over with underlying health issues includ-
ing smoking, alcohol abuse, diabetes, heart disease, and other
immunosuppression are the most susceptible population for
community acquired or travel associated Legionnaires disease.
Susceptible patients for nosocomial Legionnaires disease include
transplant recipients, other immunosuppression, surgery, can-
cer, diabetes, treatment with respiratory devices, chronic heart
or lung disease, smoking and alcohol abuse, which are also associ-
ated with higher mortality rates (Fields et al., 2002; Bartram et al.,
2007). However, Pontiac fever preferentially affects the younger
population and the median age range from several outbreaks was
reported to be 29–32 years (Tossa et al., 2006). Age, gender, and
smoking have not been observed to be risk factors for Pontiac fever
(Friedman et al., 1987).

Legionella is present in a range of aquatic environments and
human infection occurs through the inhalation of contaminated
aerosol or aspiration of contaminated water (Bartram et al., 2007).
Incidences of Legionellosis have been linked to contaminated
shower heads (Hanrahan et al., 1987; Zmirou-Navier et al., 2007),
spas (Jernigan et al., 1996; Benkel et al., 2000), baths (Sasaki
et al., 2008) a hospital steam towel warmer (Higa et al., 2012), ice
machines (Graman et al., 1997; Schuetz et al., 2009), mist genera-
tors (Mahoney et al., 1992), decorative water fountains (Fleming
et al., 2000; O’Loughlin et al., 2007; Haupt et al., 2012), hospi-
tal water distribution systems (Tobin et al., 1981; Hanrahan et al.,
1987) dental units (Reinthaler et al., 1988; Atlas et al., 1995) and
cooling towers (Isozumi et al., 2005; Nguyen et al., 2006). L. pneu-
mophila has also been detected in potable water and in 2011, 57.6%
of all potable water related disease outbreaks in the United States
were due to Legionella spp. (Centers for Disease Control and Pre-
vention, 2013b). A recent study also used quantitative polymerase
chain reaction (qPCR) to detect Legionella spp and L. pneumophila
ubiquitously through South Australian potable and reuse water
distribution pipelines. Within the potable water distribution sys-
tem Legionella spp and L. pneumophila was detected at maximum
concentrations of 106 and 103 copies/mL respectively (Whiley
et al., 2014). Human to human transmission of Legionella has not
been observed (Albert-Weissenberger et al., 2007).
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There have been numerous studies which have investigated the
production, size and spread on Legionella contaminated aerosols
(Bollin et al., 1985a; Ishimatsu et al., 2001; Nguyen et al., 2006;
Dutil et al., 2007; Zmirou-Navier et al., 2007; Chang et al., 2010).
The ability of Legionella to access the human respiratory tract is
governed primarily by the size of the aerosol. Aerosols >10 μm
in diameter get captured within the nose and throat, between
5 and 10 μm and aerosols can reach the upper and lower res-
piratory tract and between 2 and 5 μm they can reach the
lungs and conducting airways (Cox and Wathes, 1995). In Bollin
et al. (1985a) demonstrated that 90% showerhead aerosol con-
taminated with L. pneumophila sampled above a shower door
were between 1 and 5 μm in diameter and 50% of Legionella
contaminated aerosols from facets were 1–8 μm in diameter.
These aerosols are small enough to efficiently transport the L.
pneumophila into the lower respiratory system. The produc-
tion of aerosols also provides Legionella a method to further
spread contamination. This is particularly important for cool-
ing towers. Nguyen et al. (2006) demonstrated that contaminated
aerosols from a cooling tower identified as the source of an
outbreak of legionnaires’ disease spread up to 6 km from the
cooling tower. Dennis and Lee (1988) demonstrated that viru-
lent strains of L. pneumophila survived longer within aerosols
compared to avirulent strains, which is important to con-
sider when determining the potential spread of contaminated
aerosols.

This difference in susceptible population for Legionnaires dis-
ease and Pontiac fever is a significant limitation for Legionella risk
assessment. The potential for contaminated aerosols to spread
considerable distances makes it challenging to identify the ori-
gin of the aerosol and limits knowledge regarding sources of
Legionellosis (Nguyen et al., 2006). Variation in the size of aerosols
also affects the infectivity, which makes it difficult to determine
the infectious dose and what environmental concentrations are
considered acceptable.

In order to quantify the risk of Legionellosis, enumer-
ation of Legionella from a source is required. Many reg-
ulatory guidelines are based on the detection of Legionella.
For example, in Australia each state has different cool-
ing tower legislation regarding Legionella. In South Aus-
tralia, Queensland and Australian Capital Territory detection of
≥1000 Legionella CFU/mL from a cooling tower water sample
requires mandatory reporting to the relevant health depart-
ment (Australian Capital Territory Department of Health, 2005;
Workplace Health and Safety Queensland, 2008; South Australian
Department of Health and Aging, 2013). Whereas, in Vic-
toria mandatory reporting is required if there are three
consecutive detections of Legionella ≥10 CFU/mL (Depart-
ment of Health, 2009). The problem with this legis-
lation is the inherent difficulty regarding the detection
of Legionella from environmental samples (Hussong et al.,
1987; Centers for Disease Control and Prevention, 2005;
Whiley and Taylor, 2014).

Currently, culture is considered the “gold standard” for L.
pneumophila detection (Reischl et al., 2002). However, the slow
growth rate of L. pneumophila makes the method tedious and can
be inaccurate due to plate being overgrown from faster growing

organism (Bopp et al., 1981; Hussong et al., 1987). Further inac-
curacies occur with variation of sample holding time prior to
culturing. McCoy et al. (2012) demonstrated that sample holding
time significantly impacted Legionella recovery by culture, with
enumerated Legionella changing by up to 50% within 6 h and up
to 2 log10 difference after 24 h. In Australia the standard hold-
ing time for NATA (National Association of Testing Authorities)
accredited laboratories is <8 h (McCoy et al., 2012). Inaccuracies
with culture enumeration may also occur if final confirmation
of all Legionella isolates are not performed using an alternative
method such as 16s RNA sequencing, polymerase chain reaction
(PCR), latex agglutination test, or immunofluorescence antibody
test. Borges et al. (2012) used the standard Legionella culturing
method and found that 40 isolates from natural and artificial
water samples grew on GVPC selective Legionella agar, had the
same morphological “ground glass” appearance of Legionella, and
when restreaked onto blood agar isolates did not grow. How-
ever, 16s RNA sequencing confirmed that the isolates were not
Legionella and in fact were from the Chitinophagaceae family.
Although not an issue in accredited laboratories which would
complete final confirmation tests, it does present the possibility
of false positives when culturing Legionella, a concept that should
be considered when reading past studies relying on culture for
detection.

A significant limitation of culture detection is that it does not
account for the presence of viable but non-culturable (VBNC)
organisms (Chang et al., 2009). Studies have shown that Legionella
becomes VBNC during starvation, when exposed to high tem-
peratures and monochloramine disinfection (Chang et al., 2007;
Alleron et al., 2008). Allegra et al. (2011), compared Legionella
detected from hospital water systems using culture and a flow
cytometry assay to identify VBNC cells and found that VBNC cells
varied from 4.6 to 71.7%. The problem with the presence of VBNC
Legionella is that using the viable culture method of detection a
negative result does not necessarily mean that Legionella is not
present. This has serious ramifications for public health protection
using routine sampling.

Legionella detection using qPCR is becoming a popular
alternative to culture methods as it has a quick turnaround
time and high specificity. The main problem with qPCR
is that it enumerates both live cells and intact killed cells
(Delgado-Viscogliosi et al., 2009). This means there is a sig-
nificant discrepancy between detection of Legionella using
either culture or qPCR. A review of studies which detected
Legionella from environmental samples with culture and
qPCR simultaneously found that from a total of 28 stud-
ies, 2856/3967 (72%) samples tested positive for Legionella
spp. using qPCR and 1331/3967 (34%) using culture (Whiley
and Taylor, 2014). This discrepancy highlights the limitation
of both the current detection methods and potential con-
cerns with relying on these results for risk assessment pur-
poses.

Another difficulty of detection from environmental sources is
the ability of Legionella to opportunistically parasitise free liv-
ing protozoa (Walser et al., 2014). Berk et al. (1998) demonstrated
that vesicles expelled from amoeba may contain 20–200 Legionella;
however, only one CFU was detected using culture. This study
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also demonstrated that over 90% of vesicles containing L. pneu-
mophila expelled from Acanthamoeba polyphaga and A. castellanii
were 2.1–6.4 μm in diameter which is within the respirable size
range. A single A. polyphaga was able to expel 25 L. pneumophila
filled vesicles over a 24 h period. Buse and Ashbolt (2012) demon-
strated that under conditions representative of a drinking water
system the maximum number of L. pneumophila release from A.
polyphaga and Naegleria fowleri was respectively 1,348 and 385
CFU per trophozoite. Comparison of these concentrations to a
guinea pig aerosol infection model (Berendt et al., 1980) demon-
strated that as few as 1–75 infected amoebae within aerosols
may contain enough pathogenic L. pneumophila to cause human
infection.

The significant discrepancies between infectious dose mod-
els and detection methods has resulted in published stud-
ies giving Legionella counts which are potentially meaningless
for risk assessment purposes. Armstrong and Haas (2007a)
extrapolated animal modeling and data from 3 outbreaks
of Legionellosis for QMRA modeling and predicted infec-
tious doses or Legionella ranging from 1.3 to 47 CFU. The
governments of South Australia, Queensland and Australian
Capital Territory require mandatory reporting if Legionella is
detected at a concentration ≥1000 Legionella CFU/mL from
a cooling tower water (Australian Capital Territory Depart-
ment of Health, 2005; Workplace Health and Safety Queens-
land, 2008; South Australian Department of Health and Aging,
2013). Wang et al. (2012) used qPCR to detect Legionella in
potable water from point of use at maximum concentrations
of 2.3 × 103 ± 9 × 102 copies/mL. Whiley et al. (2014)
used qPCR to detect Legionella at a dead-end of a potable
water distribution system at a maximum concentration of 106

copies/mL. The inconsistencies of these values highlight the
biggest flaw with current Legionella risk assessment and ques-
tion the value of routine sampling. The discrepancies between
Legionella concentrations measured using the different detec-
tion methods also make it difficult to compare findings from
published studies. This makes it challenging to identify envi-
ronmental sources of potential public health significance and
to compare the effectiveness of different control measures and
protocols.

RISK CHARACTERIZATION
Presently there are risk assessments models available for Legionella
(Bentham, 2003; Mouchtouri et al., 2010; Torrisi et al., 2012).
This include QMRA models for Legionella exposure from spas
(Armstrong and Haas, 2007b), distributed water (Storey et al.,
2004), and rainwater (Ahmed et al., 2010). These risk assess-
ments characterize the nature and magnitude of risk associated
with environmental sources of Legionellosis using the infor-
mation currently available. However, often results of these
risk assessments are not consistent or considerate of the lit-
erature regarding Legionella in the environment and its ubiq-
uitous nature in aquatic environments. When utilizing risk
assessments for the purpose of regulatory tools the realities
of the limitation and assumptions made must be taken into
consideration, particularly when considering potential cases of
liability.

RISK COMMUNICATION AND MANAGEMENT
Currently in most developed countries there are many models of
risk communication regarding Legionellosis including: training
and education programs, management procedures and established
documentation and communication procedures (Cooper et al.,
2004; Bartram et al., 2007). Current risk management strategies
for Legionella in built water systems are focused on maintaining
overall system health to control biofilm formation. This can be
achieved by maintaining water temperature at <20◦C or >50◦C,
periodical flushing of the system with hot water, or disinfection
with biocides, copper–silver ionization, anodic oxidation or ultra
violet light (Sidari et al., 2004; Bartram et al., 2007). The uncer-
tainties associated with Legionella risk assessment presented in this
paper also highlight areas requiring greater research in the future.

Routine testing for Legionella is required by most regulatory
bodies. This is aimed at monitoring the effectiveness of treatment
and management protocols, but also is a result of political expe-
diency. Politicians and government officials often require routing
testing for Legionella to demonstrate that the public health risk
is being managed, despite the uncertainties of current detection
methods. The main danger of this is the false sense of security
gained from a negative Legionella test result, as there is little cor-
relation between a positive Legionella test results using culture
and human health risks (Kool et al., 1999). Communicating this
concept to the public proves a challenging proposition, especially
considering the fear association with public perception regarding
Legionellosis (Irie et al., 2004; Laws et al., 2006).

In Japan, from 1997 to 2000 there was a significant decrease
in sales of 24 h hot water baths due the public fear of Legionel-
losis after the 1996 detection of L. pneumophila in a public bath
(Irie et al., 2004). In Australia, the largest outbreak of Legionellosis
occurred in April 2000 and was caused by the Melbourne aquar-
ium cooling towers. This outbreak resulted in two deaths and 111
identified cases of Legionellosis. The public fear in response to this
outbreak was devastating to Melbourne’s tourism, with significant
trading losses and legal claims exceeding $35 million (Laws et al.,
2006).

One difficulty with communicating risk occurs when a situation
is highly publicized and raises significant “public outrage,” for
example a cooling tower testing positive for Legionella. This causes
the potential risk level to be perceived to be much higher than
an actual calculated risk level. This is something which must be
considered when completing Legionella risk assessments as the
implementation of risk decisions has a much greater chance of
success when supported by the public (Finucane, 2004).

CONCLUSION
Present regulatory models manage the risk of Legionella through
strategies maintaining good system health, disinfection residu-
als and minimizing exposure routes. These regulatory guidelines
are informed by Legionella risk assessment models which best
use the information currently available. The uncertainties asso-
ciated with each components of Legionella risk assessment have
been highlighted in this paper. Minimizing these uncertainties
will result in improved management protocols. The effectiveness
of these management protocols is an important public health
issue. Underestimating the risk of Legionella may have serious
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public health consequences; however, overestimating the risk may
result in significant economic costs. The paper provides a tool
for understanding the uncertainties associated with Legionella risk
assessment and also provide an overview of the areas that require
future research.
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