The role of hormones on *Toxoplasma gondii* infection: a systematic review

María de la Luz Galván-Ramírez *, Adrián Fernando Gutiérrez-Maldonado, Fabiola Verduzco-Grijalva and Judith Marcela Dueñas Jiménez

Neurophysiology Laboratory, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico

Edited by:

Veeranoot Nissapatorn, University of Malaya, Malaysia

Reviewed by:

Xun Suo, China Agricultural University, China Jorge Enrique Gómez Marín, Universidad del Quindio, Colombia Jaroslav Flegr, Charles University, Czech Republic

*Correspondence:

María de la Luz Galván-Ramírez, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara, Jalisco, CP 44340, México e-mail: mlgalvanr@gmail.com **Background:** *Toxoplasma gondii* is the causal agent of toxoplasmosis in which one third of the world's population has been infected. In pregnant women, it may cause abortion and severe damage to the fetal central nervous system. During pregnancy, the prevalence of toxoplasmosis increases throughout the second and third quarter of gestation, simultaneously progesterone and 17β -estradiol also increase. Thus, it has been suggested that these hormones can aggravate or reduce parasite reproduction. The aim of this study was reviewing the relationship between hormones and infection caused by *T. gondii* in several experimental animal models and humans, focused mainly on: (a) congenital transmission, (b) parasite reproduction, (c) strain virulence, (d) levels of hormone in host induced by *T. gondii* infection, and (e) participation of hormone receptors in *T. gondii* infection. Are the hormones specific modulators of *T. gondii* infection? A systematic review methodology was used to consult several databases (Pub Med, Lilacs, Medline, Science direct, Scielo, Ebsco, Sprinker, Wiley, and Google Scholar) dated from September, 2013 to March, 2014.

Results: Thirty studies were included; eight studies in humans and 22 in animals and cell cultures. In the human studies, the most studied hormones were testosterone, progesterone, prolactin, and 17β -estradiol. Type I (RH and BK) and Type II (Prugniaud, SC, ME49, T45, P78, and T38) were the most frequent experimental strains.

Conclusions: Thirty-five years have passed since the first studies regarding *T. gondii* infection and its relationship with hormones. This systematic review suggests that hormones modulate *T. gondii* infection in different animal models. However, given that data were not comparable, further studies are required to determine the mechanism of hormone action in the *T. gondii* infectious process.

Keywords: Toxoplasma infection, steroids hormones, no steroid hormones, toxoplasmosis, Toxoplasma

INTRODUCTION

Toxoplasma gondii (*T. gondii*) is the causal agent of toxoplasmosis and one third of the world population has been affected by this parasite (el-On and Peiser, 2003). In immunocompetent adults, 80% of the cases can be asymptomatic. On the other hand, in immunocompromised patients, *T. gondii* is an opportunistic parasite that has been held responsible for mortal encephalitis (Cabrera-Muñoz et al., 2010).

Congenital transmission of *T. gondii* causes severe consequences in which the degree of damage depends on the time when the mother is infected (Speroff et al., 1999). Infection during early pregnancy can result in apoptosis of placental cells and fetal resorption (Senegas et al., 2009). When pregnant females infected during latter stage of pregnancy and inflammatory responses are low, congenital transmission is likely to occur (Roberts et al., 2001; Pfaff et al., 2008). The transmission frequency of *T. gondii* is high (80%) at end of pregnancy.

PREGNANCY AND T. gondii INFECTION

During pregnancy, maternal hormones alter the immune responses of the mother in the presence of fetal antigens. The increases in the susceptibility to infection and a diminished proinflammatory response have critical anti-parasitic properties that cause an unfavorable development of toxoplasmosis (Craig et al., 2001; Roberts et al., 2001; Prigione et al., 2006; Dionne et al., 2012). In the second and third trimester of gestation, there is a significant increase of 17β -estradiol and progesterone levels and it is during this period, when the prevalence of *Toxoplasma* infection increases (Montoya and Remington, 2008; Al-warid and Al-qadhi, 2012).

17β-ESTRADIOL AND T. gondii INFECTION

 17β -estradiol (E2) is synthetized mainly in the ovary, breast, endometrial tissue, and brain. E2 plays a vital role in the menstrual cycle and human reproduction. In the nervous system, the estrogens are neuroprotective (Duenas et al., 1996; Arevalo et al., 2010). It has been reported that the administration of pharmacological doses of 17β -estradiol increases the susceptibility to *Toxoplasma* infection (Pung and Luster, 1986).

PROGESTERONE

Progesterone is present in the ovary and corpus luteum where it is primarily involved in the second phase of the menstrual cycle and reproductive processes of women. Progesterone is synthetized in breast, endometrial, and brain too (Speroff et al., 1999). In cells infected with tachyzoites of *T. gondii*, progesterone did not regulate the replication of parasites (Gay-Andrieu et al., 2002). Progesterone levels are reduced during pregnancy in sheep after infection by *T. gondii* (Aiumalamai et al., 1990; Fredriksson et al., 1990).

TESTOSTERONE LEVELS REGULATION BY *T. gondii* INFECTION IN HUMAN BEINGS AND MICE

Testosterone and their derivatives (dihydrotestosterone and dehydroepiandrosterone) are androgens produced mainly in male gonads, adrenal glands and the brain. Testosterone can act directly as a ligand of androgen receptors (AR) found in several target tissues. Androgens stimulate the development of the secondary sexual characters in males, participate in human reproduction and maturation of human fetal testes (O'Shaughnessy and Fowler, 2014). In the brain, it is considered as a neuroprotective hormone (Kurth et al., 2014). IgG anti-*Toxoplasma* antibodies were significantly correlated to testosterone (Shirbazou et al., 2011), and results are different accord type strain (Kaňková et al., 2011). *T. gondii* produces high testosterone levels in infected animals and mRNA expression of luteinizing hormone receptor (LHR) (Oktenli et al., 2004; Abdoli et al., 2012; Lim et al., 2013).

THYROXINE (T4) AND T. gondii INFECTION

Studies in Nylar female mice infected with *T. gondii*, exhibited hypogonadotrophic hypogonadism secondary to hypothalamic dysfunction (Stahl et al., 1985, 1994). These mice infected with *T. gondii* Cornell strain, present atrophy in the thymus, ovaries, and uterus, cessation of cycling, anovulation, and decline of serum thyroxine (T4) levels (Stahl et al., 1985).

CORTICOSTEROIDS EFFECT ON T. gondii

Cortisol is a glucocorticoid hormone secreted by the adrenal cortex. It works through a signal transduction pathway that initiates by hormone linkage to specific cell receptors. Proteins synthesized by the glucocorticoid response inhibit or stimulate the specific tissue (Gardner et al., 2011). Cortisone increased the amount of tachyzoites, cysts and cystozoite, as the breakage of cysts released a higher resistant antigen-cystozoite in mice brains infected with *T. gondii* (Hulínská et al., 1990).

ANTI-PARASITIC EFFECT OF PROLACTIN ON T. gondii INFECTION

PRL is capable of inhibiting multiplication of *Toxoplasma* in murine microglial cell cultures (Benedetto et al., 2001). PRL significantly restricted intracellular growth of *Toxoplasma* in mice and human cell lines (Dzitko et al., 2010, 2012). Moreover, it been documented that women with hyperprolactinemia showed lower *T. gondii* prevalence (Dzitko et al., 2008). It has been reported that

serum human prolactin (shPRL) has the capacity to bind to live RH tachyzoites (type I) and ME49 (type II) strains in a specific way (Dzitko et al., 2013).

The aim of this study was to review the relationship between hormones and infection by *T. gondii* in several experimental animal models and humans. Focusing the information on: (a) congenital transmission, (b) parasite reproduction, (c) strain virulence, (d) levels of hormone in host induced by *T. gondii* infection, (e) participation of hormone receptors in *T. gondii* infection.

MATERIALS AND METHODS

DATABASE SEARCH

Reports from September 2013 to February 2014 were obtained from a total of nine databases (Pub Med, Lilacs, Medline, Science direct, Scielo, Ebsco, Sprinker, Wiley, Google Scholar). Mesh terms were "Toxoplasma or toxoplasmosis or Toxoplasma gondii" combined with progesterone, 17β-estradiol, testosterone, cortisol, cortisone, aldosterone, 11-desoxicorticosterone, dihydrotestosterone, dehydroepiandrosterone, and non-steroid hormones; growth hormone, prolactin, parathyroid hormone, corticotrophin, insulin, glucagon, luteinizing hormone, thyroid stimulating hormone, human chorionic gonadotropin, antidiuretic hormone, oxytocin, melanocyte stimulating hormone, somatostatin, thyrotropin-releasing hormone, gonadotropinreleasing hormone, noradrenaline, adrenaline, melatonin, thyroxine, and triiodothyronine. Toxoplasma and hormones and strain Toxoplasma. The criteria used for including data were: the full text of papers written in English (reviews and case reports not considered), studies performed on humans, animals, and in cell cultures.

DATA COLLECTION METHODS

Two reviewers (GRML and GMAF) carefully studied all selected studies. The full text of selected original articles were obtained and reviewed. Inclusion criteria for this analysis were explicit data of all independent variables and at least one dependent variable; data collection and criteria eligibility were established for determining the frequency or proportion of each study. The independent variables were *T. gondii* strain, hormones, study design, stage of infection and developmental stage of the parasite, post infection evaluation time, age, host, and technical analysis. Dependent variables were increased or decreased of infection and number of parasites. Reference lists of full-text publications were examined for identifying studies not originally selected **Figure 1**.

From 30 articles meeting inclusion criteria, all results were captured on an Excel database. A number of studies presented frequency distribution of dependent variables; in these cases, the sum of the products of each value by frequency was included for comparison in the database. Some articles presented ranges, mean plus standard deviation; these articles were included in the database using the median.

RESULTS

One thousand two hundred and seventy eight articles potentially related to *T. gondii* or hormones were found. However, only 45 were selected and of these, 30 met the inclusion criteria for this

systematic review. The analysis was divided into three categories: (A) humans in **Table 1**, (B) several species of animals in **Table 2**, and (C) Cell cultures in **Table 3** and studies conducted in the time period that this research included **Figure 2**.

HUMANS

Eight articles were performed with different hormones on humans, from 17 to 40 years old: Testosterone (n = 5) (Oktenli et al., 2004; Hodková et al., 2007; Flegr et al., 2008a,b; Shirbazou et al., 2011), 17 β -estradiol and progesterone, dehydroepiandrosterone (DHEA), prolactin, and cortisol and testosterone (n = 1) (Dzitko et al., 2008; Al-warid and Al-qadhi, 2012; de la Torre et al., 2012). These studies used Radioimmunoassay (RIA) or Enzymelinked ImmunoSorbent assay (ELISA) in 8 studies combined with other analytic methods (**Table 1**).

ANIMALS

Fifteen articles evaluated the hormone effect in *T. gondii* infection using different animal models: murine model (n = 12); in guinea-pigs (1) (Kittas and Henry, 1979), in mice (8) (Kittas and Henry, 1980; Pung and Luster, 1986; Hulínská et al., 1990; Stahl and Kaneda, 1998a,b; Liesenfeld et al., 2001; Kaňková et al., 2011; Puvanesuaran et al., 2012), and rats (3) (Abdoli et al., 2012; Lim et al., 2013; Mitra et al., 2013). Two from ewes (2) (Aiumalamai et al., 1990; Fredriksson et al., 1990) and one for goats (1) (Engeland et al., 1996) (Table 2).

Progesterone and testosterone were the most studied hormones (n = 4), estradiol (n = 3), corticosterone and thyroxine (n = 2) and cortisone, adrenaline, and prednisolone (n = 1).

Eight *T. gondii* strains were also analyzed: two Type I (eight RH and four BK) and six Type II (two PRU, ME49 and SC and one T45, P78, T38) and two not specified (**Table 2**).

The most frequent parasite stage of development studied was the tachyzoite (n = 11), followed by cyst (n = 8), ooquiste (n = 2), and bradizoite (n = 1). The number of parasites used for each experiment depended on the stage of parasite development and the host. In the murine model, tachyzoites from 1×10^4 to 1×10^7 were used (Benedetto et al., 2001; Abdoli et al., 2012; Dzitko et al., 2013). The number of cysts used in different rodent species was from 8 to 100 (Stahl and Kaneda, 1998b; Liesenfeld et al., 2001). In an experiment with goats, 1250 bradyzoytes were used (Engeland et al., 1996) and in another study with sheep infected with ooquistes, the number of ooquistes was not indicated (Aiumalamai et al., 1990) (**Table 2**).

The post-infection time in each experiment was different, according to each species and parasite stage of development. In guinea pigs, 42 days (Kittas and Henry, 1979); mice, 4 to 60 days (Kittas and Henry, 1980; Pung and Luster, 1986; Hulínská et al., 1990; Stahl and Kaneda, 1998a,b; Liesenfeld et al., 2001; Kaňková et al., 2011; Puvanesuaran et al., 2012; in rats, 10 to 56 days (Abdoli et al., 2012; Lim et al., 2013; Mitra et al., 2013), in a goat, 54 to 73 days (Engeland et al., 1996) and in ewes 90.5 days (Aiumalamai et al., 1990; Fredriksson et al., 1990) (Table 2).

Concerning the route of infection, 15 studies were carried out, four subcutaneous (Kittas and Henry, 1979, 1980; Pung and Luster, 1986; Engeland et al., 1996) and six more by peritoneal administration (Hulínská et al., 1990; Stahl and Kaneda, 1998a,b; Abdoli et al., 2012; Lim et al., 2013; Mitra et al.,

References	Age of the host (years)	Sex ^a	Analysis technique ^b	Hormones ^c	Diagnostic/group ^d	2	Rest	Results ^e		d
Oktenli et al., 2004	17–18	NS	ELISA	Testosterone			T. go	<i>T. gondii</i> antibodies		
					Control Normal testosterone levels Low testosterone levels	20 31 9	lgM:0.53 ± 0.13 IgM:3.88 ± 1.14 * IgM:4.00 ± 1.03 *	lgG:0.43 ± 1.08 lgG:4.95 ± 0.91 * lgG:4.50 ± 1.08 *		<0.001 <0.001
			ault				Total Testost	Total Testosterone (TT) nM/L \pm SD		
					Control Normal testosterone levels Low testosterone levels	20 31 9	17.11 ± 1.01 17.29 ± 1.38 4.57 ± 0.56 *		ı ı →	<0.001
2 Hodková et al., 2007	21–24	NS	ELISA	Testosterone			T. go	<i>T. gondii</i> antibodies		
						68	Positive: 18 Negative: 71		1 1	
			Dom S				Don	Dominance score		
					Infected Uninfected	18 71	0.184 * 0.57*		~	=0.051
							Mat	Masculinity score		
			Mas S		Infected Uninfected	18 71	0.17 0.03		~	0.17
3 Flegr et al., 2008a			RIA	Testosterone			Testoste	Testosterone levels ng/mL		
	21.03 20.91	3 2				174 91	0.230 * 0.387*		11	<0.0001
			ELISA				T. go	T. gondii antibodies		
		3 Σ				174 91	Positive: 29 Negative: 23		ı ←	<0.001
4 Dzitko et al., 2008			ELISA	Prolactin			Seropositive ar	Seropositive anti-Toxoplasma antibodies	lies	
	NS	\geq			Control	205	93			
		Σ			Control	76	39			
		3 2			Hyperprolactinaemia Hyperprolactinaemia	168 66	57 * 31		\rightarrow	=0.025

Table 1 Continued									
References	Age of the host (years)	Sex ^a	Analysis technique ^b	Hormones ^c	Diagnostic/group ^d	2	Results ^e		٩
		3 Σ			Hypoprolactinaemia Hypoprolactinaemia	32	10 3		
5 Flegr et al., 2008b			RIA	Testosterone			Testosterone levels nM/L	els nM/L	
	21.05	\geq				135	0.23	1	<0.001
	20.94	Σ				106	0.41	Ι	
							Digit radio 2D:4D	:4D	
		SΣ	ELISA			194 106	Right: 0.315 Left: 0.587 Right: 0.167 Left: 0.002*	587 002 * I	<0.01
6 Shirbazou et al., 2011			ELISA				Seropositive T. gondii antibodies	i antibodies	
	NS	8				73	24	I	
	NS	Σ				107	39	ļ	
							Cortisol levels in blood	poold r	
	NS	8		Cortisol	Uninfected	12		I	
	NS	Σ			Uninfected	19		Ι	
	NS	×			Infected	24	t: 5.774*		<0.0001
	NS	Σ			Infected	39		I	
							Testosterone levels in blood	s in blood	
	NS	3		Testosterone	Uninfected	12		I	
	NS	Σ			Uninfected	19		Ι	
	NS	N			Infected	24	t: 2.491*		=0.002
	NS	Σ			Infected	39		I	
7 Al-warid and Al-qadhi, 2012			ELISA				Anti- <i>Toxoplasma</i> antibodies	ntibodies	
	19-40	N			Uninfected	6	(-) IgG (-) IgM	1	
					Acute	10		1	
					Sub-acute	6		1	
					Chronic	13	(+) IgG (+)	I	
							Progesterone levels ng/dL \pm SD	$ng/dL \pm SD$	
		8	ELISA	Progesterone (P4)	Uninfected	6	18.3 ± 9.84		
					Infected	32	11.19 ± 9.76		
									(Continued)

References	Age of the host (years)	Sex ^a	Analysis technique ^b	Hormones ^c	Diagnostic/group ^d	2	Results ^e	d
							P4 levels ng/dL ± SD	
					Acute Sub-acute Chronic	9 13	5.35 ± 7.15 15 ± 9.01 14.62 ± 10.38 Estradiol levels pg/dL ± SD	
		3	ELISA	17β-estradiol (E2)	Uninfected Infectadas	9 32	53.61 ± 76.24 - 88.19 ± 101.10 - E2 levels pg/dL ± SD	
					Acute Sub-acute Chronic	9 13 13	70.66 ± 51.08 - 92.51 ± 78.70 - 108.02 ± 138.67 -	
8 de la Torre et al., 2012	20–29		ELISA	DHEAS			Seropositive <i>T. gondii</i> antibodies	
						82	42	
			IL				DHEAS levels ug/dL	
		N			Active RC by <i>T. gondii</i>	26	1	
		Σ					206	
		3 2			RS of RC by <i>T. gondii</i>	19	95* 199*	=0.12 =0.79
		3			Positive of <i>T. gondii w</i> OL	16	113	
		Σ					177	
		$^{\wedge}$			Negative assay for <i>T. gondii</i>	21	122 *	=0.3
		Σ					161 *	=0.87

References	Type of study	Type of host	Age of the Way of Stage host (weeks) infection ^a parasite	Way of) infection ^a	Stage parasite	Strain ^b	Strain ^b Number of parasites p	Days post-infectio	Vumber of Days Analysis parasites post-infection technique ^c	Hormones ^d	Group ^e	≥ R	Results ^f	ď
Kittas and	In vivo	Guinea-	NS	sc	Cysts	B	50	42		Number	Number of <i>Toixoplasma</i> cysts ± SD	sts ± SD		
Henry, 1979		pigs							HIS	17β-estradiol (E2)	Control F: Control M:	∞ ∞	88.75 ± 21.60 82.50 ± 21.1 *	<0.001
											Gdt F:		63.00 ± 16.5	} →
											Gdt M:		65.25 ± 10.8	\rightarrow
											Gdt + Hex F:	8 20	200.25 ± 16.00	←
											Gdt + Hex M:		184.00 ± 36.80	←
Kittas and	In vivo	Mice	11	sc	Cysts	留	30	42		Numbe	Number of <i>Toxoplasma</i> cysts ±	sts ± SD		
Henry, 1980									HIS	17β-estradiol	Control F:		222 ± 42	
										(E2)	Control M:	8 22	220 ± 23	
											Gdt F:		$189\pm\mathbf{22^{*}}$	↓ <0.001
											Gdt M:	8	$\textbf{178} \pm \textbf{24}^{*}$	↓ <0.001
											Gdt + Hex F:	00 00	$598 \pm \mathbf{64^*}$	↑ <0.001
											Gdt + Hex M:		$599 \pm \mathbf{45^*}$	↑ <0.001
3 Pung and	In vivo	Mice	8-10	sc	Cysts	T45	30	35		Numbe	Number of <i>Toxoplasma</i> cysts ±	sts ± SD		
Luster, 1986		(B6C3F1)							RIA	Control		96	982 ± 194	
										DES			$2244 \pm 66^{*}$	↑ <0.05
										17β-estradiol			$1934 \pm \mathbf{198^*}$	↑ <0.05
										5α-Dihydrotesti osterone	ne		792 土 164	→
										Progesterone			1012 土 172	~
										Zeralanol			1463 ± 190	←
										a-Dienestrol			$\textbf{2405} \pm \textbf{227}^*$	↑ <0.05
										Corticosterone		6 19	$\textbf{1954}\pm\textbf{314}^*$	↑ <0.05
										Effect of Ta	Effect of Tamoxifen, number of cysts $\pm~\text{SD}$	f cysts ±	SD	
									RIA	17β-estradiol (E2)	Control	6 11	1115 土 112	
											Tamoxifen		975 土 124	\rightarrow
											17β-estradiol		$2220 \pm 182^{*}$	↑ <0.05
											Tamoxifen + E2	9	1027 ± 167	\rightarrow
4 Fredriksson	In vivo	Ewes	NS	Oral	Oocysts	RH	2000	90.5		Pro	Progesterone levels (nM/L)	M/L)		
et al., 1990		(Scottish hlackface)							RIA	Progesterone (P4)	Control	3 1C	10–20	
											Infected			SN →
											Vaccinated	15 10	0	↓ NS

Bit Mutuality of the field fiel	References	Type of study	Type of host	Age of the Way of host (weeks) infection ^a	Way of) infection ^a	Stage parasite	Strain ^b	Number of parasites	Days ost-infectio	Days Analysis post-infection technique ^c	Hormones ^d	Group ^e	2	Results ^f	d
The second fields Exercise of the second fields The second field fields The second field fie	1		Ewes	52-104	NS	Oocysts	NS	NS	90.5		Prc	ogesterone levels (n	M/L)		
Huttonic lease Inverse of accurate Antimicator Antitator Antimicator Antimicator<	et al., 1990		(Swedish Peltsheep)							RIA	Progesterone (P4)			Day 5: 6–8 Dave 10 a 15: 1	+ +
total 100 VUED Cartiolo Genup 1 20 1-14 days 7 England Move Genup 1 Set 2-47 Forestrone locationes 20 1-14 days 7 England Move Move Move Move Forestrone locationes 5 2 1-14 days 20 20 1-14 days 20 20 1-14 days 20 20 1-14 days 20 20 20 1-14 days 20		In vivo	Mice (H	4-5	≞	Cysts	P78	10			Number of tach	yzoites and stozoite			-
Fregetation Avvise (a.u., 1996) Central (a.u., 1996) Forgesterone (P4, 1) (non-order) Forgesterone (P4, 1	et al., 1990		VUFB)						5–14 12–47	HIS Y MIC	Cortisone	Group 1 Group 2	20	10–14 days	
et al. 1966 Findendia de vois Montri al avec Montr		In vivo	Goat		sc	Bradyzoites	s NS	1250	54-73			Progesterone level	s		
Stath and brands Invision wrLAR, wrLAR, brand No Mode (Nat) wrLAR, wrLAR, brands No Table (Neither) (No. WrLAR, wrLAR, brands Table (Neither) (No. WrLAR, wrLAR, wrLAR, brands Table (Neither) (No. WrLAR, wrLAR,	et al., 1996		(Norwegian,							ELISA y SF		Control Infected	പര		
Finandia Microaction Microaction Involue (T4) Control 10 75 Standia, Bisadia In woo MUARD Mice (Maine) In woo MUARD Mice (Maine) In mice (T4) Control In mice (T4)		In vivo	Mice (Nya:	NS	₫	Cysts	cs	ω	3 and 4			T4 levels (Mean)			
Stahl and involutional involutinvolutional involutional involutional involutio	Kaneda, 1998a		NYLAR)							RIA	Thyroxine (T4)	Control Infected		7.5 3	
MVLRN MILL Control R 11 Lineacted 8 1 Mice 8-10 Oral Cysts ME 49 100 7 Number of parasitophonous vacualism 256 ± 339 2 Mice 5-6 Oral Cysts ME 49 100 7 Number of parasitophonous vacualism 256 ± 339 2 Mice 5-6 Oral Cysts Tass not control Control 657 ± 339 2 2 Mice 5-6 Oral Cysts Tass not control Control 657 ± 339 2 2 Mice 5-6 Oral Cysts Tass not control Control 256 ± 328 2 2 Mice 5-6 Oral Cysts Tass not control Control 256 ± 328 2		In vivo	Mice (Nya:	12	₫	Cysts	cs	ω	4		Subnormal T4 re	sponse to a 1 lig bo	lus or T	RH (Mean)	
	Kaneda, 1998a		NYLAR)							RIA	Thyroxine (T4)	Control Infected		9 - 7	
NS Testosterone Control 657 ± 399 4 Mice 5-6 Oral Cysts T38 10 60 426 ± 282 4 Mice 5-6 Oral Cysts T38 10 60 M. Exosterone M. Exosterone M. Exosterone 426 ± 282 4 BLBC A Cysts T38 10 60 M. Exosterone M. Exosterone M. Exosterone M. Controls 20 4 <td>10 Liesenfeld</td> <td>In vivo</td> <td>Mice</td> <td>8-10</td> <td>Oral</td> <td>Cysts</td> <td>ME 49</td> <td>100</td> <td>2</td> <td></td> <td>Numbei</td> <td>r of parasitophorous</td> <td>s vacuole</td> <td>Se</td> <td></td>	10 Liesenfeld	In vivo	Mice	8-10	Oral	Cysts	ME 49	100	2		Numbei	r of parasitophorous	s vacuole	Se	
Mice (BALB/c and C57 Black)5-6OralCystsT381060EndDifferences in serum nestosterone levels(BALB/c and C57 Black)R/ATestosteroneM. Toxo infected12Z = -2.324(BALB/c and C57 Black)N. Son infected12Z = -2.324(BALB/c Black)N. Son infected12Z = -2.364(BALB/c Black)N. Son infected12Z = -2.364(Nistar)N. IN. IN. Son infected12Z = -2.36(Wistar)N. IN. IN. IN. Son infected12Z = -2.36(Wistar)N. IN. IN. IN. Son infected12Z = -2.36(Wistar)N. IN. IN. IN. Son infected30.64 0.01(Nistar)N. IN. IN. IN. III(Nistar)N. IN. IIIII(Nistar)N. IIIIII(Nistar)N. IIIIII(Nistar)II <t< td=""><td>et al., 2001</td><td></td><td>(C57BL/6)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td><td>Testosterone</td><td>Control Testosteron</td><td></td><td>657 ± 399 426 ± 282</td><td>↓ =0.0141</td></t<>	et al., 2001		(C57BL/6)							NS	Testosterone	Control Testosteron		657 ± 399 426 ± 282	↓ =0.0141
Black) Flat Testosterone M. Toxo infected 12 Z = -2.32 V and C57 M. Controls 20 M. Controls 20 V V Black) F. Toxo infected 12 Z = -2.36 V V Black) F. Toxo infected 12 Z = -2.36 V Rats NS IP Tachyzoites RH 1 × 107 Effect of <i>T gondii</i> infection on Serum Testosterone (ST) V (Wistar) 10 ELISA Testosterone 3 0.65 ± 0.01 V (Nistar) 10 ELISA Testosterone 0 1 0 <td>11 Kaňková</td> <td>In vivo</td> <td>Mice</td> <td>5-6</td> <td>Oral</td> <td>Cysts</td> <td>T38</td> <td>10</td> <td>60</td> <td></td> <td>Difference</td> <td>es in serum testoste</td> <td>erone le</td> <td>vels</td> <td></td>	11 Kaňková	In vivo	Mice	5-6	Oral	Cysts	T38	10	60		Difference	es in serum testoste	erone le	vels	
Rate NS IP Tachyzoites RH 1×10^7 Effect of <i>T gondii</i> infection on Serum Testosterone (ST) (Wistar) 10 ELISA Testosterone 0 6.6 ± 0.01 10 ELISA Testosterone 0 10 0.55 ± 0.02* \downarrow 10 ELISA Testosterone 0 0.55 ± 0.02* \downarrow 10 ELISA Testosterone 0.1nifected 5 0.55 ± 0.02* \downarrow 10 ELISA Testosterone Uninfected 5 0.55 ± 0.02* \downarrow 11 Effect of Tgondii infection on IntratesticularTe	et al., 2011		(BALB/c and C57 Black)							RIA	Testosterone	M. <i>Toxo</i> infecte M. Controls F. Toxo infected	12 20		+ =0.005 + =0.020
Rats NS IP Tachyzoites RH 1×10^7 Effect of <i>T. gondii</i> infection on Serum Testosterone (ST) (Wistar) 10 ELISA Testosterone Uninfected 5 0.6 ± 0.01 10 ELISA Testosterone Uninfected 3 $0.55 \pm 0.02^*$ \downarrow 10 ELISA Testosterone Uninfected 3 $0.55 \pm 0.02^*$ \downarrow 10 Effect of <i>T.gondii</i> infection on IntrascioularTestosteron (ITT) Infected 5 $4.07 \pm 0.02^*$ \downarrow 10 10 Uninfected 5 $4.07 \pm 0.02^*$ \downarrow												F. Controls	20		
(Wistar) 10 ELISA Testosterone Uninfected 5 0.6 ± 0.01 10 $ELISA Testosterone Uninfected 5 0.55 \pm 0.02^{*} \downarrow10 Effect of T.gondii infected 5 4.07 \pm 0.0210 Uninfected 5 4.07 \pm 0.0210 Infected 3 3.89 \pm 0.05^{*} \downarrow$	12 Abdoli et al.,	, In vivo	Rats	NS	₫	Tachyzoites	, RH	1×10^{7}			Effect of T. gondi	i infection on Serum	n Testos	terone (ST)	
Effect of <i>T.gondii</i> infection on IntratesticularTestosteron (ITT) Uninfected 5 4.07 ± 0.02 Infected 3 3.89 ± 0.05*	2012		(Wistar)						0 0	ELISA	Testosterone	Uninfected Infected		0.6 ± 0.01 0.55 ± 0.02 *	
Uninfected 5 4.07 ± 0.02 Infected 3 3.89 ± 0.05 *											Effect of <i>T.gondii</i> in:	fection on Intratesti	cularTes	tosteron (ITT)	
									10			Uninfected Infected		4.07 ± 0.02 3.89 ± 0.05 *	← <0.05

of Age of the Way of Stage Strain ^b N host (weeks) infection ^a parasite _F		Analycic	Hormones ^d			
	ites post-infectior	n technique ^c		Group ^e	N Results [†]	đ
an In vivo	0 ⁴ 4			Number of tachyzoites (Mean)	(Mean)	
et al., 2012 (Swiss)		MIC	Prednisolone	Control 235 ma/ka	3 1.48 \times 10 ⁷ 3 2.75 \times 10 ⁷	↑ <0.05
				470 mg/kg		↑ <0.05
				705 mg/kg	3 3.21 × 10^7	↑ <0.05
et al., <i>In vivo</i>			%	% Increase of Testosterona levels	ona levels	
2013 (Wistar)		ELISA	Testosterone		54 60%	↑ =0.057
15 Mitra et al., <i>In vivo</i> Rats 6.5 IP Tachyzoites PRU 10 \times 10 ⁶ 42–56				Circuling levels of corticosterone	osterone	
2013		ELISA	Corticosterone		126 64%	¢ <0.05

e С С ÷ ... ب \uparrow , increased hormoi Decrement intection; ↑. Increased infection; ↓. Hexoestrol. HeX, Gonadectomy; Thyrotropin-Releasing Hormone. ^eM, Male; F, Female; Gdt, Significant. NS, Not specified; SD, Standard deviation 2013). In four studies, oral administration was used for infection (Fredriksson et al., 1990; Liesenfeld et al., 2001; Kaňková et al., 2011; Puvanesuaran et al., 2012) and one was not specified (Aiumalamai et al., 1990) (**Table 2**).

CELL CULTURES

Seven studies were designed in cell lines; two in RAW 264.7 mouse cell lines (Gay-Andrieu et al., 2002; Gets and Monroy, 2005), one, in bone marrow stem cells (Jones et al., 2008) one in microglial cell cultures (Benedetto et al., 2001) and three with prolactin in Murine L929, Human Hs27, HeLa, and Peritoneal Blood Mononuclear cells (PBMC) (Dzitko et al., 2010, 2012, 2013; Abdoli et al., 2012) (**Table 3**).

Concerning non-steroid hormones, prolactin and thyroxine hormone have been studied. In this study, other non-steroid hormones such as growth hormone, parathyroid, corticotrophin, insulin and glucagon, luteinizing and follicle hormone, thyroid stimulating, human chorionic gonadotropin, antidiuretic, oxytocin, melanocyte stimulating, somatostatin, thyrotropinreleasing hormone, gonadotropin-releasing hormone, noradrenaline, adrenaline, melatonin, and triiodothyronine were not associated to *Toxoplasma* infection.

The laboratory analysis methods used were: Radioimmunoassay (RIA) (Pung and Luster, 1986; Aiumalamai et al., 1990; Kaňková et al., 2011). Enzyme-Linked Immunosorbent Assay (ELISA) (Engeland et al., 1996; Abdoli et al., 2012; Dzitko et al., 2012, 2013; Lim et al., 2013). A Morphological Method, (MM), Indirect Immunofluorescence (IFI), Flow Cytometry Analysis (CF) (Gay-Andrieu et al., 2002), Microscopy (Hulínská et al., 1990; Gay-Andrieu et al., 2002), in three histological studies (Kittas and Henry, 1979, 1980; Hulínská et al., 1990) and in two methods. Sabin and Feldman (SF) (Engeland et al., 1996) Inverse Reaction of Polymerase Chain and ELISA (Lim et al., 2013).

DISCUSSION

Congenital toxoplasmosis is one of the most significant burdens of *T. gondii* infection in humans. Both the maternal–fetal transmission and hormonal levels during pregnancy are poorly understood and yet, may play an important role during the course of the disease. In pregnant women with acute toxoplasmosis, low levels of progesterone and low levels of estrogens can induce severe infection caused by *T. gondii* (Al-warid and Al-qadhi, 2012). The changes in endocrine phenomena occurring during pregnancy, as well as the size and maturity of the placenta and the embryonic/fetal immune response definitely affect the ability to be protected from invasion or to fight infection (Ortiz-Alegría et al., 2010).

In pregnant women with toxoplasmosis, low levels of progesterone and estrogen can induce severe infection. Nevertheless, the mechanism is unknown (Al-warid and Al-qadhi, 2012). Current studies show that there weren't any statistically significant differences in progesterone levels between infected and uninfected women with *T. gondii*, although higher progesterone levels were observed in uninfected women compared to low level in infected women. Moreover, estrogen levels in both chronic and uninfected women did not exhibit significant differences, although

$ \begin{array}{ $	Kerences	Type of Study	Type of cell culture ^a	Stage parasite	Strain ^b	Number of parasites	Days post-infection	Analysis technique ^c	Hormone ^d	Group	2	Results ^e		d
Fituation Control Calculation Calculation <th< td=""><td>Benedetto</td><td>In vitro</td><td>MGC</td><td>Tachyzoites</td><td>RH</td><td>1×10^{4}</td><td>20 h</td><td></td><td>Intr</td><td>acellular replicaton o</td><td>if T. goi</td><td>ndii (Mean ± SD)</td><td></td><td></td></th<>	Benedetto	In vitro	MGC	Tachyzoites	RH	1×10^{4}	20 h		Intr	acellular replicaton o	if T. goi	ndii (Mean ± SD)		
Gray-harding tent. 2002 Markates FI-F Techostane poording feature Fit 1. 2002 Markates Barkyzetes Fit 2 Pooreserver No significant differences Grassand Markates Markates Barkyzetes Fit 2 Pooreserver No Significant differences Grassand Markates Markates Barkyzetes Fit 2 Pooreserver No Significant differences Jones tail Individuels Significant differences No Significant differences No Jones tail Individuels Significant differences No Significant differences No Jones tail Individuels Significant differences No Significant differences No Jones tail Individuels Significant differences No Significant differences No Jones tail Individuels Individuels No Significant differences No Jones tail Individuels Individuels No Significant differences No Jones tail Individuels Individue	et al., 2001		(C57BL/6)					ELISA	Prolactin (PRL)	Control PRL + rTNF-a				<0.05
IFE Pagesterone Notice Admeniate Control Notice Admeniate Control Notice Admeniate Control Notice Admeniate Control Ges and Monov, 2008 Mark Solution B x/26 Percentage of Inforced Admeniation No significant differences Jones et al. Mark Solution B x/26 Percentage of Inforced Admeniation No significant differences Jones et al. Mark Solution B x/26 Percentage of Inforced Admeniation No significant differences Jones et al. Mark Solution B x/26 Mark Solution No significant differences Percentage of Inforced Admeniation Percentage of Inforced Admeniation Jones et al. Mark Solution Mark Solution Mark Solution No significant differences Percentage of Inforced Admeniation Percentage of Inforced Admeniation Jones et al. Mark Solution Mark Solution Mark Solution No significant differences Percentage Percentage <t< td=""><td></td><td>In vitro</td><td>RAW 264.7</td><td>Tachyzoites</td><td>RH</td><td>3.3 × 10⁶</td><td>3–20 h</td><td></td><td></td><td>Toxoplasma go</td><td>indii rel</td><td>olication</td><td></td><td></td></t<>		In vitro	RAW 264.7	Tachyzoites	RH	3.3 × 10 ⁶	3–20 h			Toxoplasma go	indii rel	olication		
Gets and Micro. 2005 Invito Reventage of infected mecophages Micro. 2005 Adventage Control Adventage 555 1 Jonnov. 2005 Invito BinSCs Tachyzoles FH Adventage 555 1 Jonnov. 2005 Invito BinSCs Tachyzoles FH Adventage Control No 100 100 100 100 100 100 1000 100 10000 1000 1000 1	et al., 2002							IF, FC y MIC	Progesterone			No significant differences		<0.05
Monovy.1005 Jone In vira Control Adrenatine Adre			RAW 264.7	Tachyzoites	RH	5×10^{5}	18–24			Percentage of infec	cted m	acrophages		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Monroy, 2005							MIC	Adrenaline	Control				
Jones et al., 2008 In viro BmSCs Tachyzotes FH 2 × 10 ⁶ 1 Ns Frequencia No significant differences 2008 In viro Tachyzotes BK 2 × 10 ⁵ N Progesterone No significant differences Dipto et al., H=27 In viro Tachyzotes BK 2 × 10 ⁵ N No significant differences 2010 L929 No Tachyzotes BK 2 × 10 ⁵ No significant differences 2010 L929 N Prolactine No significant differences No significant differences 2010 L929 N Prolactine No significant differences 1 2010 L929 N Tooloo (ng/mL) 12 No significant differences 1 2010 Prolactine 10000 (ng/mL) 12 No significant differences 1 2010 No 200 (ng/mL) 12 No significant differences 1 1 2011 No 200 (ng/mL) 12 2.000 (ng/mL) 12										Adrenaline <i>a</i> Adrenaline p		5.55* 10*	<i>~ ~</i>	<0.05
DOB No significant differences No significant differences Dritko et al. In viro Tactyzoites BK 2 x 10 ⁵ Influence of nhPRL en la intensidad de multiplication de lgondi Dritko et al. In viro L928 No significant differences No significant differences Dritko et al. In viro L928 No Significant differences No Significant differences L929 No Significant differences No Significant differences No Significant differences L L929 No Significant differences No Significant differences No Significant differences L L929 No Significant differences No Significant differences L L L929 No Significant differences No Significant differences L </td <td></td> <td>In vitro</td> <td>BmSCs</td> <td>Tachyzoites</td> <td>RH</td> <td>2 ×10⁶</td> <td>-</td> <td></td> <td></td> <td>Effect on LPS-induce</td> <td>es killin</td> <td>g on <i>T. gondii</i></td> <td></td> <td></td>		In vitro	BmSCs	Tachyzoites	RH	2 ×10 ⁶	-			Effect on LPS-induce	es killin	g on <i>T. gondii</i>		
Dritto et al., In viro Tachyzoites BK 2 × 10 ⁵ Influence of rhPRL en la intensidad de multiplication de <i>Tgondii</i> 200 L929 MTT Prolactine No significant differences H427 No Significant differences 1000.0 (ng/mL) 18 890.4 346* 4 H427 No Significant differences 1000.0 (ng/mL) 18 890.4 346* 4 H42 No Significant differences 1000.0 (ng/mL) 12 No Significant differences 4 H42 No Significant differences 30 0 (ng/mL) 12 137 4 7 L929 No Significant differences 30 20.0 (ng/mL) 12 138 4 7 4 H42 No Significant differences 30 20.0 (ng/mL) 12 2366 ± 10.99* 7 7 H42 No Significant differences 1000.0 (ng/mL) 12 2366 ± 6.75 7 7 H42 No Significant differences 1000.0 (ng/mL) 12 2366 ± 6.75 7 7	2008							N	Progesterone			No significant differences		<0.05
L929 6 MTT Prolactine No significant differences Hs27 HeLa 1000.0 (ng/mL) 18 8.90 ± 3.46* ↓ HeLa 000.0 (ng/mL) 18 8.90 ± 3.46* ↓ HeLa Inhibition of the proliferation rate (%) of <i>T gondi</i> 100.0 (ng/mL) 12 9.90 ± 3.46* ↓ L929 0 (min) 2.0-100 (ng/mL) 12 9.90 ± 3.46* ↓ L929 0 (min) 12 19.87 ± 4.28* ↑ ↓ L929 0 (min) 12 19.87 ± 4.28* ↑ ↓ Hs27 0 (min) 12 2.96 ± 10.99* ↑ ↓ Hs2 0 (min) 12 2.86 ± 10.99* ↓ ↓ Hs2 0 (min) 12 2.96 ± 4.27* ↓ ↓ Hs2 0 (min) 12 19.86 ± 5.73* ↓ ↓ Hs2 0 (min) 12 19.86 ± 5.73* ↓ ↓ Hs2 0 (min) 12 19.86 ± 5.73*		In vitro		Tachyzoites	BK	2 × 10 ⁵			Influence of	^f rhPRL en la intensic	dad de	multiplication de <i>T.gondii</i>		
(No Sig. Diff.) Inhibition of the proliferation rate (%) of T gondi 30 2.0-100.0 (ng/m L) 12 No significant differences 30 2.00 (ng/m L) 12 No significant differences 30 2.00 (ng/m L) 12 19.87 ± 4.28* 1 60 2.00 (ng/m L) 12 19.87 ± 4.28* 1 180 2.00 (ng/m L) 12 23.66 ± 10.99* 1 180 2.00 (ng/m L) 12 25.53 ± 3.19* 1 180 0 (min) 12 25.00 ± 2.50* 1 30 2.00 (ng/m L) 12 20.01 (ng/m L) 12 20.6 ± 4.21* 1 60 2.00 (ng/m L) 12 20.01 (ng/m L) 12 20.6 ± 2.60* 1 180 2.00 (ng/m L) 12 2.00 (ng/m L) 12 2.005 ± 2.65* 1 180 2.00 (ng/m L) 12 2.00 (ng/m L) 12 2.00 ± 2.50* 1 180 2.00 (ng/m L) 12 2.00 ± 2.50* 1 1 1 180 2.00 (ng/m L) 12 2.00 ± 2	2010		L929 Hs27				9	TTM	Prolactine	1000.0 (ng/mL)	18	No significant differences 8.90 ± 3.46*		<0.01
Inhibition of the proliferation rate (%) of T gondi0 (min)2.0–100.0 (ng/m L)12No significant differences3020.0 (ng/m L)1219.87 ± 4.28*16020.0 (ng/m L)1223.66 ± 1099*16020.0 (ng/m L)1225.55 ± 3.19*118020.0 (ng/m L)1220.6 ± 2.50*118020.0 (ng/m L)1220.8 ± 4.21*118020.0 (ng/m L)1221.33 ± 5.48*118020.0 (ng/m L)1221.93 ± 5.48*118020.0 (ng/m L)1221.93 ± 5.48*118020.0 (ng/m L)1221.93 ± 5.48*118020.0 (ng/m L)1221.94 ± 5.25*118020.0 (ng/m L)1221.94 ± 5.25*118020.0 (ng/m L)1221.44 ± 5.25*118020.0 (ng/m L)1221.94 ± 5.25*118020.0 (ng/m L)1221.94 ± 5.25*119020.0 (ng/m L)1221.94 ± 5.25*119020.0 (ng/m L)1221.95 ± 5.3*1			HeLa									(No Sig. Diff.)		
0 (min) $2.0-100.0$ (ng/m L)12No significant differences30 20.0 (ng/m L)12 $19.87 \pm 4.28^*$ 100.0 (ng/m L) 12 60 100.0 (ng/m L)12 $23.66 \pm 10.99^*$ 100.0 (ng/m L) 12 180 20.0 (ng/m L)12 $23.66 \pm 10.99^*$ 100.0 (ng/m L) 12 180 0 (min) 12 $25.53 \pm 3.19^*$ 100.0 (ng/m L) 12 20.0 (ng/m L) 12 $25.56 \pm 3.02^*$ 100.0 (ng/m L) 12 20.0 (ng/m L) 12 $20.06 \pm 5.73^*$ 100.0 (ng/m L) 12 30 20.0 (ng/m L) 12 $20.81 \pm 4.21^*$ 100.0 (ng/m L) 12 30 20.0 (ng/m L) 12 $20.81 \pm 4.21^*$ 100.0 (ng/m L) 12 180 20.0 (ng/m L) 12 $20.81 \pm 4.21^*$ 100.0 (ng/m L) 12 180 20.0 (ng/m L) 12 $20.91 \pm 5.93^*$ 100.0 (ng/m L) 12 180 20.0 (ng/m L) 12 $20.91 \pm 5.93^*$ 100.0 (ng/m L) 12 100.0 (ng/m L) 12 $20.91 \pm 5.93^*$ 100.0 (ng/m L) 12 $20.14 \pm 5.62^*$ 100.0 (ng/m L)									Inhik	bition of the prolifera	tion rat	e (%) of <i>T. gondii</i>		
3020.0 (ng/mL)12 $19.87 \pm 4.28^{*}$ 760100.0 (ng/mL)12 $23.66 \pm 10.39^{*}$ 76120.0 (ng/mL)12 $23.66 \pm 5.73^{*}$ 7180100.0 (ng/mL)12 $25.53 \pm 3.19^{*}$ 718020.0 (ng/mL)12 $26.76 \pm 3.02^{*}$ 718020.0 (ng/mL)12 $26.76 \pm 3.02^{*}$ 73020.0 (ng/mL)12 $26.76 \pm 3.02^{*}$ 718020.0 (ng/mL)12 $20.0 \pm 2.50^{*}$ 718020.0 (ng/mL)12 $21.93 \pm 5.48^{*}$ 718020.0 (ng/mL)12 $21.93 \pm 5.48^{*}$ 718020.0 (ng/mL)12 $21.94 \pm 6.2^{*}$ 7100.0 (ng/mL)12 $21.94 \pm 5.62^{*}$ 7100.0 (ng/mL)12 $21.04 \pm 5.62^{*}$ 7			L929				0 (min)			2.0–100.0 (ng/m L)		No significant differences		
60100.0 (ng/mL)1223.66 ± 10.99*76020.0 (ng/mL)1223.66 ± 5.73*718020.0 (ng/mL)1225.53 ± 3.19*718020.0 (ng/mL)1226.76 ± 3.02*70 (min)20.0 (ng/mL)1226.76 ± 3.02*73020.0 (ng/mL)1220.0 ± 2.50*731100.0 (ng/mL)1220.01 ± 4.21*76020.0 (ng/mL)1220.81 ± 4.21*718020.0 (ng/mL)1221.93 ± 5.48*718020.0 (ng/mL)1221.93 ± 5.48*718020.0 (ng/mL)1221.94 ± 6.2*7100.0 (ng/mL)1221.93 ± 5.48*7100.0 (ng/mL)1221.94 ± 5.62*7100.0 (ng/mL)1221.94 ± 5.63*7100.0 (ng/mL)1221.94 ± 5.63*7100.0 (ng/mL)1221.04 ± 5.93*7100.0 (ng/mL)1221.04 ± 5.93*7							30			20.0 (ng/mL)	12	19.87 ± 4.28 * 1	∠	<0.05
60 $20.0 (ng/mL)$ 12 $19.066 \pm 5.73^*$ 7 180 $100.0 (ng/mL)$ 12 $25.53 \pm 3.19^*$ 7 180 $20.0 (ng/mL)$ 12 $26.76 \pm 3.02^*$ 7 $0 (min)$ $100.0 (ng/mL)$ 12 $26.76 \pm 3.02^*$ 7 30 $20.0 (ng/mL)$ 12 $20.0 \pm 2.50^*$ 7 30 $20.0 (ng/mL)$ 12 $20.81 \pm 4.21^*$ 7 60 $20.0 (ng/mL)$ 12 $21.93 \pm 5.48^*$ 7 180 $20.0 (ng/mL)$ 12 $21.93 \pm 5.48^*$ 7 180 $20.0 (ng/mL)$ 12 $21.95 \pm 2.63^*$ 7 180 $20.0 (ng/mL)$ 12 $21.14 \pm 5.62^*$ 7 $100.0 (ng/mL)$ 12 $21.14 \pm 5.62^*$ 7 $100.0 (ng/mL)$ 12 $21.14 \pm 5.62^*$ 7							()			100.0 (ng/mL)	12	23.66 ± 10.99*	∠ .	< 0.05
180 180 180 180 180 180 180 180 180 180 180 180 190 100							60			20.0 (ng/mL) 100 0 (ng/ml)	12	19.66 ± 5./3* 25 52 ± 2 19*	<i>~ 4</i>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							180			20.0 (ng/mL)	12	29.33 王 3.13 26.76 土 3.02*	_ ~	0.0×
2.0-100.0 (ng/m L) 12 No significant differences 20.0 (ng/m L) 12 20.81 ± 4.21 * ↑ 100.0 (ng/m L) 12 21.93 ± 5.48 * ↑ 20.0 (ng/m L) 12 21.93 ± 5.48 * ↑ 100.0 (ng/m L) 12 21.93 ± 5.63 * ↑ 20.0 (ng/m L) 12 21.14 ± 5.62 * ↑			Hs27				0 (min)			100.0 (ng/mL)	12	27.00 ± 2.50*	- <i>-</i>	<0.01
$20.0 (ng/mL) 12 20.81 \pm 4.21* \uparrow 100.0 (ng/mL) 12 21.93 \pm 5.48* \uparrow 100.0 (ng/mL) 12 21.93 \pm 5.48* \uparrow 100.0 (ng/mL) 12 21.95 \pm 2.63* \uparrow 100.0 (ng/mL) 12 23.01 \pm 5.93* \uparrow 100.0 (ng/mL) 12 21.14 \pm 5.62* \downarrow 100.0 (ng/mL) 12 21.14 \pm 5.62* \downarrow$										2.0–100.0 (ng/m L)		No significant differences		
$100.0 (ng/mL) 12 21.93 \pm 5.48 + \uparrow 20.0 (ng/mL) 12 21.93 \pm 5.48 + \uparrow 20.0 (ng/mL) 12 19.05 \pm 2.63 + \uparrow 100.0 (ng/mL) 12 23.01 \pm 5.93 + \uparrow 20.0 (ng/mL) 12 21.14 \pm 5.62 + \uparrow 100.0 + 100.0 (ng/mL) 12 21.14 \pm 5.62 + \uparrow 100.0 +$							30			20.0 (ng/mL)	12	20.81 ± 4.21 * 1	∠	<0.01
20.0 (ng/mL) 12 19.05 \pm 2.63* \uparrow 100.0 (ng/mL) 12 23.01 \pm 5.93* \uparrow 20.0 (ng/mL) 12 21.14 \pm 5.62* \uparrow 10.0 (nc/mL) 12 21.14 \pm 5.62* \uparrow										100.0 (ng/mL)	12	21.93 ± 5.48 [∗] 1	~	<0.01
$100.0 (ng/mL) 12 23.01 \pm 5.93* \uparrow 20.0 (ng/mL) 12 21.14 \pm 5.62* \uparrow 100.0 (ng/mL) 12 21.14 \pm 5.62* \star 400.0 (ng/mL) 12 26.15 \pm 11.52* \star 400.0 (ng/mL) 26.15 \pm 11.52* \star 400.0 (ng/mL) 26.15 \pm 11.52* \star 400.0 (ng/mL) 20.0 (ng/mL) 20.5 \pm 11.52* \star 400.0 (ng/mL) 20.5 \pm 11.52* $							60			20.0 (ng/mL)	12	19.05 土 2.63* 1	∠	<0.01
20.0 (ng/mL) 12 21.14 ± 5.62* ↑ 100.0 (nc/m) 12 26.15 ± 11.52* •										100.0 (ng/mL)	12	23.01 ± 5.93*	∠.	0.0 ^
							IQU			20.0 (ng/mL) 100.0 (52/55)	<u>7</u> 5	ZI. 14 ± 3.02" 26 15 ± 11 52*		

	Study	culture ^a	parasite		parasites	parasites post-infection	technique ^c		-			ď
		HeLa				0 (min)			2.0–100.0 (ng/mL)	12	No significant differences	
						30			20.0 (ng/mL)	12	23.05 ± 4.97 *	↑ <0.01
									100.0 (ng/mL)	12	31.74 ± 5.79 *	↑ <0.01
						60			20.0 (ng/mL)	12	27.71 ± 7.42*	↑ <0.01
									100.0 (ng/mL)	12	31.71 ± 7.06 *	↑ <0.01
						180			20.0 (ng/mL)	12	29.64 ± 6.23 *	↑ <0.01
									100.0 (ng/mL)	12	32.12 ± 3.53*	↑ <0.01
6 Dzitko et al.,	In vitro	PBMC	Tachyzoites	BK	2.5 × 10 5	m			% of <i>T. gondii</i> proliferation	prolife	ration	
2012							ELISA	rhPRL	0 (ng/mL)		76.35 ± 10.1	
									100.0 (ng/mL)		81.01 ± 11.6	
								sPRL	0 (ng/mL)		49.8 土 4.6	
									100.0 (ng/mL)		59.6 ± 3.1*	t0.01
7 Dzitko et al.,	In vitro	L929	Tachyzoites		1 × 10 7				% increse of prolactine Levels	lactine	evels	
2013				НН		30 (min)	ELISA	shPRL			10.1	
						90 (min)				SN		↑ =0.056
				ME49		30 (min)					16	
						90 (min)				NS	46.2	↑ =0.056

Galván-Ramírez et al.

Table 3 | Continued

www.frontiersin.org

 \uparrow , Increased hormone; \downarrow , Decrement hormone; * and bold, Statistically Significant. NS, Not specified; SD, Standard deviation.

infected women had a higher level, compared to uninfected women.

The study of 17β -estradiol in *T. gondii* infection began in 1979, when hexoestrol was administered to mice and increased the number of *T. gondii* cysts in muscle (Kittas and Henry, 1979). At the same time, the susceptibility to *T. gondii* infection increased in mice when pharmacological estrogen concentrations were used (Pung and Luster, 1986). Nevertheless, 35 years have passed since these experiments were performed and no further studies regarding 17β -estradiol mechanism in *T. gondii* infection have been reported.

Progesterone levels are reduced during pregnancy in sheep after infection by *T. gondii* (Aiumalamai et al., 1990; Fredriksson et al., 1990). This hormonal change could be contributing to the susceptibility to *T. gondii* infection in sheep.

In RAW 264.7 cells infected with tachyzoites of *T. gondii*, progesterone did not regulate the replication of parasites (Gay-Andrieu et al., 2002). However, bone marrow stem cells activated with Lippolysaccharide (LPS) and treated with progesterone, while infected with *T. gondii* tachyzoites, cells exhibited a significant reduction in parasite death compared to activated controls (Jones et al., 2008). These results suggest that progesterone can modulate the survival of parasites *in vitro*.

The results of this study showed that steroid hormones are the most studied toxoplasmosis interaction. However, the information has a great heterogeneity and is not comparable, due to their different experimental designs. For example, the progesterone has been studied in mice (Pung and Luster, 1986), sheep (Aiumalamai et al., 1990), goats (Engeland et al., 1996), and bone marrow stem cells cultures (Jones et al., 2008). Furthermore, in these experiments, different strains and parasite stage of development were used. Moreover, no study has shown how steroid hormones regulate *T. gondii* infection.

The first observation of *T. gondii* infection and its association with testosterone in humans shows that acute infection by this parasite produced temporary hypogondatrophic gonadal insufficiency (Oktenli et al., 2004). On the other hand, there are several human studies analyzing different genders, using portrait pictures of 89 male students, of which 18 were *Toxoplasma*

infected, and 109 female students. When statistically corrected for age, men with latent toxoplasmosis were perceived as more dominant (p = 0.009) and masculine (p = 0.052). These results suggest that the higher level of testosterone could be responsible for at least some of the toxoplasmosis-associated shifts in human and animal behavior (Hodková et al., 2007). In 2008, Flegr showed that the relationship between age, gender and 2D:4D ratio in hands sharply increased with Toxoplasma infection. Infected males had higher testosterone levels, while infected females had lower levels, than Toxoplasma-free males and females, respectively. Toxoplasma-infected males had a lower left hand 2D:4D ratio than Toxoplasma-free males. These results suggest that the relationship between 2D:4D ratio is particularly strong for the left hand and 2D:4D dimorphism will probably be higher in countries with a high prevalence of toxoplasmosis (Flegr et al., 2008b). These results indicate that sexual hormones and gender are key factors determining susceptibility to Toxoplasma infection.

Significantly, lower levels of testosterone in male and female mice with latent toxoplasmosis (strain T38 of *T. gondii*) were compared to uninfected controls (Kaňková et al., 2011). On the other hand, Liesenfeld in 2001 described the effect of sexual steroids and gender in the susceptibility to infection by *T. gondii* in mice. Death occurred in female mice before males, and mortality in females was associated to an increase in the number of tachyzoites. Female mice testosterone treatment reduced the number of parasites and pathology.

 5α -Dihydrotestosterone reduced the number of cysts in mice infected with *T. gondii* cysts strain T45. Mice treated with corticosterone increased twice the number of cysts of *T. gondii* (Pung and Luster, 1986; Hulínská et al., 1990). These results showed that corticosterone could exacerbate the infection process.

The prevalence of *T. gondii* infection was analyzed in women with hyper and hypoprolactinemia, with a significant increase in this last group (Dzitko et al., 2008). In other studies using peripheral blood mononuclear cells (PBMC) of patients with hyperprolactinemia revealed that exogenous recombinant human prolactin (rhPRL), as well as autologous shPRL from inactivated serum, significantly restricted intracellular growth of *Toxoplasma* in these cultures (Dzitko et al., 2012). PRL may be one of

the potential humoral factors implicated in the limitation of *T. gondii* invasion. A physiological increase in PRL concentration during pregnancy may significantly reduce the risk of *T. gondii* proliferating in the expecting mother (Dzitko et al., 2012).

rhPRL reduced T. gondii replication in human cells (Hs27 y HeLa) and murine cells (L929), (Dzitko et al., 2010, 2013). Afterwards in another experimental study, the replication of parasites was reduced in L929 cells treated with prolactin. These results indicate that the inhibition of replication of T. gondii was caused by a limited capacity of the parasites to penetrate host cells, as demonstrated by the reduced number of infected cells. On the other hand, PRL stimulates T cell proliferation (Clevenger et al., 1992) and the release of various protective cytokines as TNF- α which control efficiently the course of *T. gondii* infection (Benedetto et al., 2001). The possible PRL action could be bidirectional, namely PRL may limit the proliferation of Toxoplasma via surface host cell receptors (Dzitko et al., 2013) leading to the release of protective type-1 cytokines, such as interleukin 12 (IL-12) and IFN-c (Matalka, 2003), and by inhibiting their penetration ability (Dzitko et al., 2010, 2013).

In the last 35 years, researchers worldwide have made a great effort to advance in the field of knowledge on how the hormones are involved in *T. gondii* infection, however, a major number of studies and the use of modern molecular methods are required to define the mechanistic role of hormones in the regulation of toxoplasmosis.

IMPLICATIONS FOR RESEARCH

A crucial factor is the difference in experimental models to study of *T. gondii* infections and hormones. As well, type's strains and the number limited studies to comparative analysis.

REFERENCES

- Abdoli, A., Dalimi, A., and Movahedin, M. (2012). Impaired reproductive function of male rats infected with *Toxoplasma gondii*. Andrologia 44, 679–687. doi: 10.1111/j.1439-0272.2011.01249.x
- Aiumalamai, S., Fredriksson, G., Uggla, A., Kindahl, H., and Edquist, L. (1990). The effect of *Toxoplasrna gondii* Infection in Flunixin Meglumine Treated Pregnant Ewes as Monitored by Plasma Levels of 15-Ketodihydroprostaglandin F2a, progeterone, Oestrone Sulphate and Ultrasound Scanning. *J. Vet. Med.* 37, 23–34. doi: 10.1111/j.1439-0442.1990.tb00872.x
- Al-warid, H. S., and Al-qadhi, B. N. (2012). Evaluation of progesterone and estrogen hormonal levels in pregnant women with toxoplasmosis. *Eur. J. Sci. Res.* 91, 515–519.
- Arevalo, M. A., Santos-Galindo, M., Bellini, M. J., Azcoitia, I., and Garcia-Segura, L. M. (2010). Actions of estrogens on glial cells: implications for neuroprotection. *Biochim. Biophys. Acta* 1800, 1106–1112. doi: 10.1016/j.bbagen.2009.10.002
- Benedetto, N., Folgore, A., Romano Carratelli, C., and Galdiero, F. (2001). Effects of cytokines and prolactin on the replication of *Toxoplasma gondii* in murine microglia. *Eur. Cytokine Netw.* 12, 348–358.
- Cabrera-Muñoz, E., Escobedo, G., Guzmán, C., and Camacho Arroyo, I. (2010). Role of progesterone in HIV and parasitic infections. *Open Neuroendocrinol. J.* 3, 137–142.
- Clevenger, C. V., Sillman, A. L., Hanley-Hyde, J., and Prystowsky, M. B. (1992). Requirement for prolactin during cell cycle regulated gene expression in cloned T-lymphocytes. *Endocrinology* 130, 3216–3222.
- Craig, W. R., Willian, W., and James, A. (2001). Sex-asociated hormones and inmunity to protozoan parasites. *Clin. Microbiol. Rev.* 14, 476–488. doi: 10.1128/CMR.14.3.476-488.2001
- de la Torre, A., Ríos-Cadavid, A. C., Cardozo-García, C. M., Padilla, L., and Gómez-Marín, J. E. (2012). Serum levels of dehydroepiandrosterone sulfate (DHEAS) in ocular toxoplasmosis. *J. Microbiol. Immunol.* 45, 65–68. doi: 10.1016/j.jmii.2011.09.003

- Dionne, P., Robinson, S., and Klein, L. (2012). Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. *Horm. Behav.* 62, 263–271. doi: 10.1016/j.yhbeh.2012.02.023
- Duenas, M., Torres-Aleman, I., Naftolin, F., and Garcia-Segura, L. M. (1996). Interaction of insulin-like growth factor-I and estradiol signaling pathways on hypothalamic neuronal differentiation. *Neuroscience* 74, 531–539. doi: 10.1016/0306-4522(96)00142-X
- Dzitko, K., Dziadek, B., Gatkowska, J., and Długońska, H. (2013). *Toxoplasma gondii* binds sheep prolactin. *Exp. Parasitol.* 134, 216–219. doi: 10.1016/j.exppara.2013.02.010
- Dzitko, K., Gatkowska, J., Płociński, P., Dziadek, B., and Długońska, H. (2010). The effect of prolactin (PRL) on the growth of *Toxoplasma gondii* tachyzoites *in vitro*. *Parasitol. Res.* 107, 199–204. doi: 10.1007/s00436-010-1849-3
- Dzitko, K., Lawnicka, H., Gatkowska, J., Dziadek, B., Komorowski, J., and Długońska, H. (2012). Inhibitory effect of prolactin on Toxoplasma proliferation in peripheral blood mononuclear cells from patients with hyperprolactinemia. *Parasite Immunol.* 34, 302–311. doi: 10.1111/j.1365-3024.2012.01359.x
- Dzitko, K., Malicki, S., and Komorowski, J. (2008). Effect of hyperprolactinaemia on *Toxoplasma gondii* prevalence in humans. *Parasitol. Res.* 102, 723–729. doi: 10.1007/s00436-007-0824-0
- el-On, J., and Peiser, J. (2003). Toxoplasma and toxoplasmosis. *Harefual*, 142, 48-55.
- Engeland, I. V., Waldeland, H., Kindahl, H., Ropstad, E., and Andresen, O. (1996). Effect of *Toxoplasma gondii* infection on the development of pregnancy and on endocrine foetal-placental function in the goat. *Vet. Parasitol.* 67, 61–74. doi: 10.1016/S0304-4017(96)01025-4
- Flegr, J., Lindová, J., and Kodym, P. (2008a). Sex-dependent toxoplasmosisassociated differences in testosterone concentration in humans. *Parasitology* 135, 427–431. doi: 10.1017/S0031182007004064
- Flegr, J., Lindová, J., Pivoňková, V., and Havlícek, J. (2008b). Brief Communication: latent toxoplasmosis and salivary testosterone concentration—important confounding factors in second to fourth digit ratio studies. *Am. J. Phys. Anthropol.* 137, 479–484. doi: 10.1002/ajpa.20888
- Fredriksson, G., Buxton, D., Uggla, A., Kindahl, H., and Edqvist, L. E. (1990). The effect of *Toxoplasma gondii* infection in unvaccinated and iscom-vaccinated pregnant ewes as monitored by plasma levels of 15-ketodihydroprostaglandin F2 alpha, progesterone, and oestrone sulphate. *J. Vet. Med.* 37, 113–122. doi: 10.1111/j.1439-0442.1990.tb00882.x
- Gardner, D. G., Shoback, D. M., and Greenspan, F. S. (2011). Basic and Clinical Endocrinology. New York, NY: McGraw-Hill Medical.
- Gay-Andrieu, F., Cozon, G. J. N., Ferrandiz, J., and Peyron, F. (2002). Progesterone fails to modulate *Toxoplasma gondii* replication in the RAW 2647 murine macrophage cell line. *Parasite Immunol.* 24, 173–178. doi: 10.1046/j.1365-3024.2002.00451.x
- Gets, J., and Monroy, F. P. (2005). Effects of alpha- and beta-adrenergic agonists on *Toxoplasma gondii* infection in murine macrophages. *J. Parasitol.* 91, 193–195. doi: 10.1645/GE-3242RN
- Hodková, H., Kolbeková, P., Skallová, A., Lindová, J., and Flegr, J. (2007). Higher perceived dominance in Toxoplasma infected men–a new evidence for role of increased level of testosterone in toxoplasmosisassociated changes in human behavior. *Neuro Endocrinol. Lett.* 28, 110–114.
- Hulínská, D., Sykora, J., and Zastera, M. (1990). Efect of cortisone on *Toxoplasma* gondii infection studied by electron microscopy. *Folia Parasitol*. 37, 207–212.
- Jones, L. A., Jean-Paul, A., Henriquez, F. L., Lyons, R. E., Nickdel, M. B., Carter, K. C., et al. (2008). Toll-like receptor-4-mediated macrophage activation is differentially regulated by progesterone via the glucocorticoid and progesterone receptors. *Immunol. Lett.* 125, 59–69. doi: 10.1111/j.1365-2567.2008.02820.x
- Kaňková, S., Kodym, P., and Flegr, J. (2011). Direct evidence of Toxoplasmainduced changes in serum testosterone in mice. *Exp. Parasitol.* 128, 181–183. doi: 10.1016/j.exppara.2011.03.014
- Kittas, C., and Henry, L. (1979). Effect of sex hormones on the immune system of guinea-pigs and on the development of toxoplasmic lesions in non-lymphoid organs. *Clin. Exp. Immunol.* 36, 16–23.
- Kittas, C., and Henry, L. (1980). Effect of sex hormones on the response of mice to infection with *Toxoplasma gondii*. Br. J. Exp. Pathol. 61, 590–600.
- Kurth, F., Luders, E., Sicotte, N. L., Gaser, C., Giesser, B. S., Swerdloff, R. S., et al. (2014). Neuroprotective effects of testosterone treatment in men with multiple sclerosis. *Neuroimage Clin.* 6, 454–460. doi: 10.1016/j.nicl.2014. 03.001

- Liesenfeld, O., Nguyen, T. A., Pharke, C., and Suzuki, Y. (2001). Importance of gender and sex hormones in regulation of susceptibility of the small intestine to peroral infection with *Toxoplasma gondii* tissue cysts. *J. Parasitol.* 87, 1491–1493. doi: 10.1645/0022-3395(2001)087[1491:IOGASH] 2.0.CO;2
- Lim, A., Kumar, V., Hari Dass, S. A., and Vyas, A. (2013). Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol. Ecol. 22, 102–110. doi: 10.1111/mec.12042
- Matalka, K. Z. (2003). Prolactin enhances production of interferon-gamma, interleukin-12, and interleukin-10, but not of tumor necrosis factor-alpha, in a stimulus-specific manner. *Cytokine* 21, 187–194. doi: 10.1016/S1043-4666(02)00496-9
- Mitra, R., Sapolsky, R. M., and Vyas, A. (2013). Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion. Dis. Models Mech. 6, 516–520. doi: 10.1242/dmm. 009928
- Montoya, J. G., and Remington, J. S. (2008). Management of Toxoplasma gondii infection during pregnancy. Clin. Infect. Dis. 47, 554–566. doi: 10.1086/590149
- O'Shaughnessy, P. J., and Fowler, P. A. (2014). Development of the human fetal testis. Ann. Endocrinol. 75, 48–53. doi: 10.1016/j.ando.2014.03.009
- Oktenli, C., Doganci, L., Ozgurtas, T., Araz, R. E., Tanyuksel, M., Musabak, U., et al. (2004). Transient hypogonadotrophic hypogonadism in males with acute toxoplasmosis: suppressive effect of interleukin-1 beta on the secretion of GnRH. *Hum. Reprod.* 19, 859–866. doi: 10.1093/humrep/ deh161
- Ortiz-Alegría, L. B., Caballero-Ortega, H., Cañedo-Solares, I., Rico-Torres, C. P., Sahagún-Ruiz, A., Medina-Escutia, M. E., et al. (2010). Congenital toxoplasmosis: candidate host immune genes relevant for vertical transmission and pathogenesis. *Genes Immun.* 11, 363–373. doi: 10.1038/gene.2010.21
- Pfaff, A. W., Mousli, M., Sénégas, A., Marcellin, L., Takikawa, O., Klein, J. P., et al. (2008). Impact of foetus and mother on IFN-gamma-induced indoleamine 2,3-dioxygenase and inducible nitric oxide synthase expression in murine placenta following *Toxoplasma gondii* infection. *Int. J. Parasitol.* 38, 249–258. doi: 10.1016/j.ijpara.2007.07.007
- Prigione, I., Chiesa, S., Taverna, P., Ceccarelli, R., Frulio, R., Morandi, F., et al. (2006). T cell mediated immune responses to *Toxoplasma gondii* in pregnant women with primary toxoplasmosis. *Microbes Infect.* 8, 552–560. doi: 10.1016/j.micinf.2005.08.008
- Pung, O. J., and Luster, M. I. (1986). Toxoplasma gondii: decreased resistance to infection in mice due to estrogen. Exp. Parasitol. 61, 48–56. doi: 10.1016/0014-4894(86)90134-7
- Puvanesuaran, V. R., Nowroji, K., Sreenivasan, S., Noordin, R., and Balakrishnan, V. (2012). Use of prednisolone to aid propagation of *Toxoplasma gondii* in mice. *Eur. Rev. Med. Pharmacol. Sci.* 16, 1028–1032.

- Roberts, C. W., Walker, W., and Alexander, J. (2001). Sex-associated hormones and immunity to protozoan parasites. *Clin. Microbiol. Rev.* 14, 476–488. doi: 10.1128/CMR.14.3.476-488.2001
- Senegas, A., Villard, O., Neuville, A., Marcellin, L., Pfaff, A. W., Steinmetz, T., et al. (2009). *Toxoplasma gondii*-induced foetal resorption in mice involves interferon-gamma-induced apoptosis and spiral artery dilation at the maternofoetal interface. *Int. J. Parasitol.* 39, 481–487. doi: 10.1016/j.ijpara.2008.08.009
- Shirbazou, S., Abasian, L., and Talebi, M. F. (2011). Effects of *Toxoplasma gondii* infection on plasma testosterone and cortisol level and stress index on patients referred to Sina hospital, Tehran. *Jundishapur J. Microbiol.* 4, 167–173.
- Speroff, L., Glass, R. H., and Kase, N. G. (1999). Clinical Ginecologic Endocrinology and Infertility, 6th Edn. Philadelphia, PA: Lippincott Williams & Wilkins.
- Stahl, W., Dias, J. A., and Turek, G. (1985). Hypothalamic-adenohypophyseal origin of reproductive failure in mice following chronic infection with *Toxoplasma* gondii. Proc. Soc. Exp. Biol. Med. 178, 246–249. doi: 10.3181/00379727-178-42006
- Stahl, W., and Kaneda, Y. (1998a). Impaired thyroid function in murine toxoplasmosis. *Parasitology* 117(Pt 3), 217–222. doi: 10.1017/S003118209800300X
- Stahl, W., and Kaneda, Y. (1998b). Aetiology of thyroidal dysfunction in murine toxoplasmosis. *Parasitology* 117(Pt 3), 223–227. doi: 10.1017/S0031182098003035
- Stahl, W., Kaneda, Y., and Noguchi, T. (1994). Reproductive failure in mice chronically infected with *Toxoplasma gondii*. Parasitol. Res. 80, 22–28. doi: 10.1007/BF00932619

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 10 April 2014; accepted: 08 September 2014; published online: 09 October 2014.

Citation: Galván-Ramírez ML, Gutiérrez-Maldonado AF, Verduzco-Grijalva F and Jiménez JMD (2014) The role of hormones on Toxoplasma gondii infection: a systematic review. Front. Microbiol. **5**:503. doi: 10.3389/fmicb.2014.00503

This article was submitted to Microbial Immunology, a section of the journal Frontiers in Microbiology.

Copyright © 2014 Galván-Ramírez, Gutiérrez-Maldonado, Verduzco-Grijalva and Jiménez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.