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Clostridium difficile colonization in pig intestine has been a public health concern. We
analyzed C. difficile prevalence among piglets in Japan to clarify their origin and extent
of the associated risk by using molecular and microbiological methods for both swine and
human clinical isolates and foreign isolates. C. difficile was isolated from 120 neonatal
piglet fecal samples. Toxin gene profile, antimicrobial susceptibilities, PCR ribotype, and
multiple-locus variable-number tandem-repeat analysis (MLVA) type of swine isolates were
determined and compared with those of human clinical and foreign isolates. One-hundred
C. difficile strains were isolated from 69 (57.5%) samples, and 61 isolates (61%) were toxin
gene-positive. Some isolates were resistant to antimicrobials, contributing to antibiotic-
associated diarrhea by C. difficile. These results suggest that C. difficile, prevalent among
Japanese pigs, is a potential risk for antibiotic-associated diarrhea. Furthermore, PCR
ribotype 078 (12 isolates), which has been linked to multiple outbreaks worldwide, was
the third-most frequently isolated of the 14 PCR ribotypes identified. Moreover, MLVA
revealed that all 12 PCR ribotype 078 isolates were genetically related to European PCR
ribotype 078 strains found in both humans and pigs. To date, in Japan, many breeding
pigs have been imported from European countries. The genetic relatedness of C. difficile
isolates of Japanese swine origin to those of European origin suggests that they were
introduced into Japan via imported pigs.
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INTRODUCTION
Clostridium difficile is a gram-positive spore-forming anaerobic
bacterium that causes antibiotic-associated diarrhea and pseu-
domembranous colitis in humans. Most pathogenic C. difficile
strains produce two structurally similar toxins, toxin A, and toxin
B, the main virulence determinants associated with C. difficile
infection. C. difficile is often isolated from patients and food-
producing animals (Keessen et al., 2011). Although zoonotic trans-
mission remains speculative, meat products could be a common
source of C. difficile infection in humans, and food-producing
animals could also serve as a reservoir.

In the past decade, C. difficile infections have become more
common and more severe in developed countries, including Japan
(Rupnik et al., 2009; Honda et al., 2014). Recent reports have
demonstrated that the increase in C. difficile burden has been
driven by a rapid change in the global epidemiology with the emer-
gence of an epidemic strain of C. difficile. The strain PCR ribotype
027 (BI/NAP1) was detected initially in North America, and was
observed subsequently in European countries, Australia, and some
Asian countries (Richards et al., 2011; Collins et al., 2013; Knight

et al., 2013). In addition, the prevalence of PCR ribotype 078, a
strain commonly found in pigs, has increased since 2006 and is
currently one of the most common types in European countries
(Bauer et al., 2011). Some reports have highlighted the high-level
relatedness that exists between C. difficile PCR ribotype 078 isolates
from both human and swine origins by using highly discriminative
typing methods such as multiple-locus variable-number tandem-
repeat analysis (MLVA; Debast et al., 2009; Bakker et al., 2010). In
Japan, PCR ribotype 027 has only been observed in sporadic cases
and PCR ribotype 078 has not been detected, unlike in Europe
and North America (Collins et al., 2013). PCR ribotype 018 (smz)
is the most prevalent isolate detected from human cases of C. dif-
ficile infection in Japan (Collins et al., 2013). To evaluate the risk
to human health, it is important to determine bacterial proper-
ties of swine C. difficile isolates, such as toxigenicity, genotype,
and antimicrobial susceptibility, and compare them with those of
human isolates.

The purpose of this study was to clarify the risk to human health
associated with C. difficile isolates present in the swine population
of Japan. We have previously attempted to isolate C. difficile from
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250 slaughter pigs; however, C. difficile was isolated from only two
fecal samples (Asai et al., 2013). C. difficile is more frequently iso-
lated from neonatal piglets, rather than slaughter pigs (Hopman
et al., 2011). In addition, there is no clear link between C. diffi-
cile isolation and neonatal porcine diarrhea (Alvarez-Perez et al.,
2009). Therefore, we isolated C. difficile from clinically normal
piglets to elucidate the present status of C. difficile in Japan. We
assessed the toxigenicity and antimicrobial susceptibility of the
C. difficile isolates, and determined the relatedness of C. difficile
that originated from piglets, human clinical isolates, and foreign
isolates by analyzing their molecular characteristics.

MATERIALS AND METHODS
BACTERIAL STRAINS AND FECAL SAMPLES
A total of 120 fecal specimens were collected from neonatal piglets
less than 20 days of age. These samples were collected at 12 farms
(10 piglets from different farrowing sows/farm) during June–
August 2012 in seven different prefectures of Japan. The piglets
did not exhibit symptoms of diarrhea at the time of sampling.

Two isolates of C. difficile obtained from slaughter pigs in Japan
(Asai et al., 2013) were used in this study. Seventy-three clinical
isolates of C. difficile that were obtained between 2002 and 2005
at two Tokyo hospitals (Oka et al., 2012) were also used in this
study to compare their antimicrobial susceptibilities and genetic
relatedness with the swine isolates. C. difficile strains 9689, 43593,
700057, BAA–1870, and BAA–1875 were obtained from the Amer-
ican Type Culture Collection (ATCC; Manassas, VA, USA) to serve
as reference strains.

CULTURE MEDIA
Clostridium difficile isolated from fecal samples that were treated
with alcohol for spore selection as described previously (Asai
et al., 2013), was cultured on cycloserine-cefoxitin-mannitol agar

(CCMA)-Ex (Nissui Pharmaceutical, Tokyo, Japan) at 37◦C for
36–48 h under anaerobic conditions. Isolated colonies were
purified by restreaking onto CCMA-Ex followed by anaerobic
incubation as indicated above. For each fecal sample, a maximum
of three colonies were identified as C. difficile based on colony
morphology, and were then analyzed further.

IDENTIFICATION AND TOXIN GENE DETECTION
DNA was extracted using a commercial kit (InstaGene Matrix,
BioRad, Hercules, CA, USA) according to the manufacturer’s
instructions. Polymerase chain reaction (PCR) with a specific
primer set (Table 1; Kikuchi et al., 2002) was used to confirm bacte-
rial identification. The presence of genes encoding toxin A, B, and
binary toxin (tcdA, tcdB, and cdtA/B, respectively) was analyzed
using multiplex PCR as described previously (Persson et al., 2008).
Primer sequences are listed in Table 1. To investigate the 3′ end
deletion in tcdA, a supplemental PCR was performed as described
previously (Kato et al., 1999) using the primers (Table 1).

PCR RIBOTYPING
Polymerase chain reaction ribotyping was performed as described
previously (Stubbs et al., 1999; Oka et al., 2012). Briefly, the vol-
ume of the PCR mixture was downscaled from 50 to 15 μL, and
the amplified PCR products were concentrated to a final volume
of approximately 10 μL by heating at 75◦C for 90–120 min. Elec-
trophoresis in 3% Metaphor agarose (Lonza Rockland Inc., Basel,
Switzerland) at a constant voltage of 120 V for 4 h was used to sepa-
rate the PCR products. The PCR ribotyping banding patterns were
analyzed using the BioNumerics program (Applied Maths, Sint-
Martens-Latem, Belgium). Similarity and diversity were assessed
by applying the Dice coefficient. Cluster analysis was performed
using the Unweighted Pair Group Method with Arithmetic Mean
algorithm.

Table 1 | Primers used in the present study.

Gene target Primer name Primer sequence (5′-3′) Amplicon size (bp) Reference

16S rDNA CIDIF-F CTTGAATATCAAAGGTGAGCCA 1085 Kikuchi et al. (2002)

CIDIF-R CTACAATCCGAACTGAGAGTA

tcdA tcdA-F3345 GCATGATAAGGCAACTTCAGTGGTA 629 Persson et al. (2008)

tcdA-R3969 AGTTCCTCCTGCTCCATCAAATG

tcdB tcdB-F5670 CCAAARTGGAGTGTTACAAACAGGTG 410 Persson et al. (2008)

tcdB-R6079A GCATTTCTCCATTCTCAGCAAAGTA

tcdB-R6079B GCATTTCTCCGTTTTCAGCAAAGTA

cdtA cdtA-F739A GGGAAGCACTATATTAAAGCAGAAGC 221 Persson et al. (2008)

cdtA-F739B GGGAAACATTATATTAAAGCAGAAGC

cdtA-R958 CTGGGTTAGGATTATTTACTGGACCA

cdtB cdtB-F617 TTGACCCAAAGTTGATGTCTGATTG 262 Persson et al. (2008)

cdtB-R878 CGGATCTCTTGCTTCAGTCTTTATAG

tcdA 3′-end deletions NK9 CCACCAGCTGCAGCCATA 2355a Kato et al. (1999)

NKV011 TTTTGATCCTATAGAATCTAACTTAGTAAC

aAmplicon size when no deletion was present.
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ANTIMICROBIAL SUSCEPTIBILITY TESTING
We performed minimal inhibitory concentration (MIC) determi-
nations using the agar dilution method according to the Clinical
Laboratory Standards Institute [CLSI] (2007) guidelines. Suscep-
tibility to vancomycin, metronidazole, clindamycin, ceftriaxone,
erythromycin, and ciprofloxacin (Sigma-Aldrich, St. Louis, MO,
USA) was tested. The resistance breakpoints of metronidazole,
clindamycin, and ceftriaxone adopted were those defined by the
CLSI guidelines (Clinical Laboratory Standards Institute [CLSI],
2007). The breakpoints for vancomycin, erythromycin, and
ciprofloxacin, which are not defined by the CLSI guidelines, were
chosen as described in a previous report Oka et al. (2012). C.
difficile ATCC700057 was used as a quality control strain. Antimi-
crobial susceptibility of 73 human clinical isolates of C. difficile
was determined by the E-test Oka et al. (2012) and the agar dilu-
tion method to compare the MICs of swine and human clinical
isolates.

CHARACTERIZATION OF PCR RIBOTYPE 078 ISOLATES
The toxinotype of all PCR ribotype 078 isolates was determined by
the method described by Rupnik et al. (2001). The tcdC sequence
of all PCR ribotype 078 isolates was determined as described by
Spigaglia and Mastrantonio (2002).

MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM-REPEAT ANALYSIS
(MLVA)
The MLVA of all PCR ribotype 078 isolates was determined by
the optimized MLVA method based on six loci (Bakker et al.,
2010). PCR was carried out as described by Bakker et al. (2010).
To confirm the number of tandem repeats, the PCR prod-
uct was directly sequenced. The amplified product was purified
with FastGene Gel/PCR Extraction Kit (Nippon Genetics, Tokyo,

Japan) and sequenced in both directions using the same primers
employed in the PCR. Nucleotide sequences were determined
using the BigDye Terminator, version 3.1, Cycle sequencing
kit with an automated DNA sequencer (ABI 3130; Applied
Biosystems, Foster City, CA, USA). The number of tandem
repeats at each locus was manually determined using the BioEdit
software (http://www.mbio.ncsu.edu/bioedit/bioedit.html). The
motif copy numbers in the tandem array were imported into the
BioNumerics software (Applied Maths) and a minimum-spanning
tree was generated using the categorical coefficient of the software.
We compared the MLVA profiles of our PCR ribotype 078 isolates
and the foreign PCR ribotype 078 isolates derived from pigs and
humans (Bakker et al., 2010).

RESULTS
Isolation of C. difficile FROM PIGLET FECAL SAMPLES
Fecal samples from 120 piglets were analyzed, and C. difficile was
isolated only from a subset of those piglets. When two or three
isolates from a fecal sample exhibited the same PCR ribotype and
antimicrobial susceptibility, they were considered to be a single iso-
late. Thirty-nine isolates were derived from 39 samples, 58 isolates
were derived from 29 samples (two isolates from each sample),
and three isolates were derived from one sample (three isolates
from the single sample). In total, 100 C. difficile isolates were iden-
tified. C. difficile was isolated from 69 (57.5%) of the 120 samples
obtained from 11 (91.7%) of the 12 farms (Table 2).

TOXIN GENE PROFILE
The toxin profile of the C. difficile isolates was examined by PCR.
Of the 100 isolates of C. difficile, 61.0% (61/100) were positive for
tcdA and tcdB (Toxin A+B+), among which 42.6% (26/61) were
also positive for the binary toxin genes (cdtA and cdtB; CDT+;

Table 2 | Isolation and toxin gene profile of Clostridium difficile from Japanese piglets.

Farm Location of

prefecture

Samples No. of positive

samples

No. of isolates Toxin A+B+ Toxin A−B−CDT−

CDT+ CDT−

A Hokkaido 10 9 11 0 10 1

B Hokkaido 10 7 8 0 8 0

C Hokkaido 10 8 10 10 0 0

D Hokkaido 10 7 13 0 0 13

E Hokkaido 10 9 18 0 17 1

F Miyagi 10 0 0 0 0 0

G Miyagi 10 7 10 5 0 5

H Yamagata 10 3 3 0 0 3

I Fukushima 10 5 7 0 0 7

J Tochigi 10 4 4 4 0 0

K Chiba 10 7 9 6 0 3

L Gifu 10 3 7 1 0 6

Sub Total 26 35

Total 120 69 (57.5%) 100 61 (61.0%) 39 (39.0%)
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Table 2). 3′ end deletion in tcdA was not detected in all 61 strains
positive for tcdA. Thirty-nine isolates (39.0%) were negative for
tcdA, tcdB, cdtA, and cdtB (Toxin A−B−CDT−). One isolate of
C. difficile derived from a slaughter pig (12EN) was also positive
for tcdA and tcdB (Toxin A+B+) by the multiplex PCR method
(Persson et al., 2008), although the isolate was only positive for
tcdB, as determined using the primer set described by Kato et al.
(1998). A deletion in tcdA that was complementary the NK11
primer, which was used for amplification of tcdA gene in the pre-
vious report Asai et al. (2013), was observed. The isolate of 12EN
was also positive for binary toxin genes. The other isolate derived
from a slaughter pig (134C1) was negative for toxin A, B, and
binary toxin (Toxin A−B−CDT−).

ANTIMICROBIAL SUSCEPTIBILITY
MIC50s, MIC90s, and the range of MICs of vancomycin, metron-
idazole, clindamycin, ceftriaxone, erythromycin, and ciprofloxacin
for the 100 C. difficile isolates were determined (Table 3).
All isolates were susceptible to vancomycin and metronidazole.
Resistance against clindamycin, ceftriaxone, erythromycin, and
ciprofloxacin were found in 59, 6, 46, and 75% of the iso-
lates, respectively. Of the 61 toxigenic C. difficile isolates (Toxin
A+B+), the incidence of resistance to clindamycin, ceftriax-
one, erythromycin, and ciprofloxacin was 71, 10, 43, and 74%,
respectively. The percentage of resistant isolates derived from
piglets against all antimicrobials, particularly ceftriaxone, was
lower than that clinically isolated from humans (Oka et al.,
2012).

GENOTYPING
All 100 isolates were PCR ribotypeable and resolved into 14 PCR
ribotypes (Figure 1; Table 4). The major PCR ribotypes of C.
difficile isolates were P1 (34 isolates), P2 (20 isolates), and P3
(12 isolates). The banding patterns of PCR ribotype P2 and PCR
ribotype P3 was identical to that of ATCC 700057 (PCR ribo-
type 038) and ATCC BAA-1875 (PCR ribotype 078), respectively.
The banding patterns of 134C1 and 12EN, which were derived

from slaughter pigs (Asai et al., 2013), were identical to PCR
ribotype P2 and PCR ribotype P3, respectively. None of the
PCR ribotypes of C. difficile isolates from piglets were identical
to those from human clinical isolates in Japan (Oka et al., 2012) or
the reference strains C. difficile ATCC 9689 (PCR ribotype 001),
ATCC 43593 (PCR ribotype 060), and ATCC BAA-1870 (PCR
ribotype 027).

CHARACTERIZATION OF PCR RIBOTYPE 078 ISOLATES
All 12 C. difficile PCR ribotype 078 strains belonged to toxinotype
V. All 12 C. difficile PCR ribotype 078 strains were found to contain
a 39-base pair deletion in the toxin regulator gene (tcdC). One
isolate of C. difficile PCR ribotype 078 derived from a slaughter
pig (12EN) belonged to toxinotype VI. This isolate also contains a
39-base pair deletion in tcdC.

MLVA
In a previous report, 102 and 56 C. difficile PCR ribotype 078
strains of human and swine origins, respectively, from four Euro-
pean countries were investigated by MLVA (Bakker et al., 2010).
The largest genetically related clusters (GCs) contained 103 strains,
encompassing 47 swine strains and 56 human strains. In this
study, all C. difficile PCR ribotype 078 strains from 12 piglets
and one slaughter pig also belonged to the largest GCs (Figure 2;
Table 5).

DISCUSSION
We demonstrated the high prevalence of C. difficile in clinically
normal piglets (57.5%), despite the previous isolation of only two
strains from slaughter pigs (0.8%) in Japan (Asai et al., 2013).
Hopman et al. (2011) suggested that piglets acquire C. difficile
shortly after birth. A previous study revealed that piglets become
infected with C. difficile through contamination of the environ-
ment in the farrowing crates (Hopman et al., 2011). A significant
reduction in the rate of colonization with C. difficile with age has
also been reported Norman et al. (2009). The PCR ribotypes of
two isolates from slaughter pigs (Asai et al., 2013) belonged to that
of the two dominant PCR ribotypes detected among piglet strains

Table 3 | Antimicrobial susceptibility of Clostridium difficile piglet isolates and human clinical isolates.

Piglet Humanc

MIC (μg/mL) MIC (μg/mL) No. of resistant

isolates (n = 100)

MIC (μg/mL) No. of resistant

isolates (n = 73)
Antimicrobials Break point 50% 90% Range 50% 90% Range

Vancomycin ≥32a 1 2 1–4 0 0.5 1 0.06–2 0

Metronidazole ≥32b 0.5 8 0.125–8 0 0.25 0.25 <0.06–0.25 0

Clindamycin ≥8b 8 256 0.25–>256 59 (59.0%) 256 >256 0.125–>256 64 (87.7%)

Ceftriaxone ≥64b 16 32 2–>256 6 (6.0%) 256 256 0.125–>256 62 (84.9%)

Erythromycin ≥8a 2 >256 1–>256 46 (46.0%) >256 >256 <0.125–>256 61 (83.6%)

Ciprofloxacin ≥4a 8 8 0.5–128 75 (75.0%) 64 64 0.125–64 68 (93.2%)

MIC, minimum inhibitory concentration.
aThe value was the previous report break point (Oka et al., 2012).
bThe value was the CLSI break point (Clinical Laboratory Standards Institute [CLSI], 2007).
cThese isolates were isolated in the previous report Oka et al. (2012).
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FIGURE 1 | Polymerase chain reaction (PCR) ribotype profiles

of Clostridium difficile strains isolated from piglets, slaughter

pigs, and humans. PCR ribotyping pattern analysis was performed
by applying the Dice coefficient. Sixty-nine isolates from piglets

were isolated in this study. Two isolates from slaughter pigs
and 73 isolates from humans were isolated previously (Oka et al.,
2012; Asai et al., 2013). ATCC strains were used as control
strains.

(P2 and P3; Figure 1). Although the prevalence of C. difficile was
relatively low in slaughter pigs, the presence of healthy pigs carry-
ing this pathogen in slaughterhouses poses a significant potential
for the contamination of meats and subsequent human infection
(Weese et al., 2011).

The current study showed that several strains could be isolated
from a single sample. In many cases, each of these isolates yielded
different PCR ribotypes. These results suggest that various types
of C. difficile might co-exist in the piglet intestine. The most preva-
lent PCR ribotype in this study was P1. This ribotype indicated
several toxin gene profiles. Previously, one PCR ribotype indi-
cated the same toxin gene profile, except for a rare case (Martin
et al., 2008). The second most prevalent PCR ribotype P2 was then
non-toxigenic PCR ribotype 038. The prevalence of this ribotype

has not been reported in other countries in piglet. In European
countries, PCR ribotype 078 derived from piglets was the most
prevalent PCR ribotype (Keel et al., 2007; Hopman et al., 2011;
Schneeberg et al., 2013). These results suggest that the distribu-
tion of this PCR ribotype in Japan was unique. Although the toxin
gene profile of P1 was unusual, this ribotype should be monitored
in Japanese pigs.

This study demonstrated that toxigenic C. difficile (Toxin
A+B+) were isolated with high prevalence (61.0%) from piglets
in Japan. The binary toxin genes, which contribute to the sever-
ity of infection (Bacci et al., 2011), were found in 26% of the
isolates. Some C. difficile isolates were also resistant to the
tested antimicrobials which are linked to antibiotic-associated
diarrhea caused by C. difficile (Bartlett and Gerding, 2008).
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Table 4 | Relationship between the PCR ribotype and the toxin gene

profile.

PCR

Ribotypes

No. of

isolates

Toxin A+B+ Toxin A−B−CDT−

CDT+ CDT−

P1 34 8 9 17

P2 20 0 0 20

P3 12 12 0 0

P4 9 0 9 0

P5 6 0 6 0

P6 5 5 0 0

P7 3 0 3 0

P8 3 0 3 0

P9 2 2 0 0

P10 2 0 2 0

P11 1 1 0 0

P12 1 0 1 0

P13 1 0 1 0

P14 1 0 1 0

Table 5 | For each strain, the results of the optimized MLVA for each of

the 7 loci.

Isolate

No.

Farm MLVA result (No. of tandem repeats

for indicated locus)

A6cd B7cd C6cd E7cd F3cd G8cd H9cd

1 E NA 22 37 8 4 10 2

2 E NA 22 37 8 4 10 2

3 E NA 22 37 8 4 10 2

4 F NA 8 36 9 4 4 2

5 J NA 22 34 8 4 11 2

6 J NA 21 36 8 4 11 2

7 J NA 22 36 8 4 11 2

8 J NA 22 35 8 4 11 2

9 J NA 18 36 8 4 11 2

10 J NA 22 35 8 4 11 2

11 J NA 22 36 8 4 11 2

12 J NA 21 36 8 4 11 2

12ENa NA 25 33 8 4 12 2

NA, not applicable.
aThis isolate was derived from slaughter pig (Asai et al., 2013).

Comparing the antimicrobial susceptibility between piglet iso-
lates and human clinical isolates, the resistance rate of piglet
isolates was lower than that of human clinical isolates. These find-
ings suggest that human clinical isolates are frequently exposed
to the antimicrobials in clinical practices, resulting in a higher
incidence of resistance. Moreover, the low percentage of cef-
triaxone resistance (6.0%) in swine isolates is likely due to the

FIGURE 2 | Minimum spanning tree analysis of C. difficile PCR ribotype

078 isolates by multiple-locus variable number tandem repeat analysis

(MLVA). Each MLVA type is indicated by one node or branch tip, displayed
as a circle that is connected by branches of minimum-spanning tree. The
length of the branches represent genetic distances. The colors indicate the
origin of isolates (European humans: green; European swine: red;
Japanese piglet: purple; Japanese slaughter pig: yellow). European isolates
derived from four European countries were investigated in the previous
report Bakker et al. (2010).

rare usage of cephalosporin in pigs (Ministry of Agriculture
Forestry and Fisheries [MAFF], 2012). The hypervirulent PCR
ribotype 078 has caused serious outbreaks in humans world-
wide and has been detected in both humans and pigs among
European countries (Bakker et al., 2010; Keessen et al., 2011).
Currently, PCR ribotype 078 is the third dominant PCR ribo-
type among Japanese piglets, although it has not been isolated
in the human clinical setting in Japan (Collins et al., 2013). Our
results indicate that piglets are potential reservoirs of toxigenic and
antimicrobial-resistant C. difficile, including PCR ribotype 078, in
Japan.

Clostridium difficile can survive in the environment for several
months because of its spore-forming ability (Kim et al., 1981).
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Vermin can also play a role in the spread and transmission of C.
difficile within pig farms and to other locations (Burt et al., 2012).
In addition, as the manure of pigs, including piglets, are used to
fertilize crops, C. difficile can pollute the soil and contaminate veg-
etables (al Saif and Brazier, 1996). Therefore, C. difficile can be
readily transferred to humans via both animal products and veg-
etables. In addition, pigs are sometimes kept as pet. The pets are
thought to pose a high risk transmission of C. difficile to humans,
because of close contact with humans. In the current study, C. dif-
ficile was not isolated from farm F. Therefore, reducing C. difficile
infection in piglets is possible. However, we could not clarify the
reason for the negative test for C. difficile in farm F, and so a future
study should assess the cause of this observation. To minimize the
risk posed by C. difficile, it is necessary to develop effective hygiene
management practices to aid in the limitation of the dissemination
of C. difficile.

It is important to establish an epidemiological analysis for
C. difficile to clarify its origin in pigs in Japan. MLVA revealed
that swine isolates of PCR ribotype 078 in Japan were genet-
ically related to European isolates from both humans and pigs
(Bakker et al., 2010). In addition, Japanese isolates of PCR ribo-
type 078, except for one strain isolated from a slaughter pig (Debast
et al., 2009), were toxinotype V and contained a 39-base pair dele-
tion in the toxin regulator gene (tcdC), the same as European
PCR ribotype 078 isolates (Pirs et al., 2008). Many breeding pigs
have been imported to Japan from European and North Amer-
ican countries (Baba et al., 2010). In European countries, the
isolation of PCR ribotype 078 from piglets was more prevalent
compared with the current study (Keel et al., 2007; Hopman et al.,
2011; Schneeberg et al., 2013). The spread of pathogenic bacte-
ria such as methicillin-resistant Staphylococcus aureus could be
related to the global distribution of the pigs (Espinosa-Gongora
et al., 2012). These results raise the possibility that C. difficile PCR
ribotype 078 was brought to Japan via the import of breeding
pigs.

In conclusion, 14 PCR ribotypes of 100 C. difficile strains iso-
lated from piglets were distinguishable from those of 73 human
clinical isolates included in this study. As all human clinical iso-
lates were isolated from only two hospitals in Tokyo, large-scale
studies are essential to clarify the relatedness between human clin-
ical isolates and animal isolates in Japan. This study revealed that
C. difficile, prevalent among Japanese pigs, is a potential risk for
antibiotic-associated diarrhea. Although PCR ribotype 078 were
isolated in Japanese piglets, a unique distribution of PCR ribotypes
was observed in Japan. Continuous surveillance of C. difficile PCR
ribotype 078 among human clinical isolates is also necessary.
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