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Routine antibiotics susceptibility testing still relies on standardized cultivation-based
analyses, including measurement of inhibition zones in conventional agar diffusion tests
and endpoint turbidity-based measurements. Here, we demonstrate that common off-
line monitoring and endpoint determination after 18–24 h could be insufficient for reliable
growth-dependent evaluation of antibiotic susceptibility. Different minimal inhibitory con-
centrations were obtained in 20- and 48 h microdilution plate tests using an Enterococcus
faecium clinical isolate (strain UKI-MB07) as a model organism. Hence, we used an on-line
kinetic assay for simultaneous cultivation and time-resolved growth analysis in a 96-well
format instead of off-line susceptibility testing. Growth of the Enterococcus test organism
was delayed up to 30 h in the presence of 0.25 μg mL−1 of vancomycin and 8 μg mL−1

of fosfomycin, after which pronounced growth was observed. Despite the delayed onset
of growth, treatment with fosfomycin, daptomycin, fusidic acid, cefoxitin, or gentamicin
resulted in higher maximum growth rates and/or higher final optical density values
compared with antibiotic-free controls, indicating that growth stimulation and hormetic
effects may occur with extended exposure to sublethal antibiotic concentrations. Whereas
neither maximum growth rate nor final cell density correlated with antibiotic concentration,
the lag phase duration for some antibiotics was a more meaningful indicator of dose-
dependent growth inhibition. Our results also reveal that non-temporal growth profiles are
only of limited value for cultivation-based antimicrobial silver nanoparticle susceptibility
testing. The exposure to Ag(0) nanoparticles led to plasma membrane damage in a
concentration-dependent manner and induced oxidative stress in Enterococcus faecium
UKI-MB07, as shown by intracellular ROS accumulation.

Keywords: Enterococcus, antibiotic susceptibility testing, growth dynamics, subinhibitory, hormesis, antimicrobial

nanoparticles, silver

INTRODUCTION
Antibiotics are commonly used for the medical treatment of both
human and animal diseases, and they are also used for prophylaxis
in veterinary medicine and promotion of animal growth in inten-
sive livestock farming (Barton, 2000; Sarmah et al., 2006; Singer
et al., 2007; Marshall and Levy, 2011). The continued widespread
overuse and misuse of antibiotics and the release of increasing
amounts of antibiotics into the environment is cause for con-
cern. Inappropriate wastewater treatment technologies combined
with the application of antibiotic-containing liquid manure onto
agricultural fields and their direct release into surface waters has
resulted in extensive and continuous release of antibiotics into
the environment (Sarmah et al., 2006; Kümmerer, 2009a). This
is thought to be an important triggering factor in the emer-
gence and spread of antibiotic resistance, which has in turn
resulted in an increased prevalence of infections with antibiotic-
resistant bacteria (Kümmerer, 2009b; Martinez, 2009a,b; Marshall
and Levy, 2011; Rizzo et al., 2013). Moreover, resistant bacteria

serve as genetic pools for the further spread of resistance genes
among other microorganisms (Zhang et al., 2009; Rizzo et al.,
2013).

Gram-positive enterococci are an important source of noso-
comial infections, with high and partly increasing rates of
incidence and mortality (European Antimicrobial Resistance
Surveillance System [EARSS] Annual Report, 2008; Fisher
and Phillips, 2009; Arias and Murray, 2012; Victorian Advi-
sory Committee on Infection Control [VACIC], 2012). In
addition to other severe infections, opportunistic Enterococcus
pathogens can cause urinary tract infections, endocarditis,
bacteremia, and sepsis, and their emergence in recent years
corresponds to an increase in glycopeptide and high-level
aminoglycoside resistance (HLAR; European Antimicrobial Resis-
tance Surveillance System [EARSS] Annual Report, 2008; Vic-
torian Advisory Committee on Infection Control [VACIC],
2012). Some Enterococcus spp. show the highest prevalence
of clinical vancomycin resistance, due to the acquisition of
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antibiotic resistance genes, most likely from sources within
the hospital or via routes involving intensive poultry farm-
ing (Uttley et al., 1988; Klare et al., 2003; Lester et al., 2006;
Arias and Murray, 2012).

Evaluating the efficacy of antibiotics may result in potent
treatments for infectious diseases. Because nosocomial infec-
tions caused by antibiotic-resistant bacteria frequently result
in serious complications, such as sepsis, pneumonia, and
even death, proven treatments with antibiotics that are effec-
tive against these organisms could help reduce their toll.
Due to the exorbitant costs of intensive care treatment of
nosocomial infections, targeted and more responsible use
of antibiotics will also decrease related follow-up costs for
the healthcare system and social framework (Eber et al.,
2010).

Reliable testing and monitoring of antibiotic efficacy is nec-
essary as a first step toward development of a reasonable and
sustainable plan for the use of antibiotics. Whereas molecular
methods are increasingly used in research and development, rou-
tine testing still requires cultivation-dependent analyses, including
the use of conventional susceptibility tests (e.g., off-line determi-
nation of microbial growth in the presence of antibiotics, such as
measurement of inhibition zones in agar diffusion tests, turbidity-
based measurements, and the counting of colony-forming units
after serial dilution; Jorgensen and Ferraro, 2009). Applied meth-
ods, including standardized techniques (e.g., those recommended
by the Clinical and Laboratory Standards Institute [CLSI], 2013
or by The European Committee on Antimicrobial Susceptibil-
ity Testing [EUCAST], 2014), are based on either diffusion
(e.g., Kirby-Bauer and Stokes tests), dilution [determination
of the minimal inhibitory concentration (MIC)] in serial dilu-
tions), or diffusion and dilution (e.g., E-test method; Jorgensen
and Ferraro, 2009). A common feature of all of the meth-
ods described above is that they rely on off-line measurement
(i.e., endpoint or regular-interval growth determination); how-
ever, these methods are not intended for monitoring microbial
growth kinetics with high temporal resolution in the presence of
antibiotics.

Antibiotics exert specific effects on growing microorgan-
isms. For example, an antibiotic may impair cell wall syn-
thesis, alter the chromosomal topology by targeting DNA
gyrase, and interfere with synthesis of DNA, RNA, and pro-
teins (Kohanski et al., 2010). This suggests that in addition
to dynamic exposure scenarios, target organisms exhibit dis-
similar susceptibility to different antibiotics at different growth
stages, resulting in complex and antibiotic-specific dynamic
growth profiles. But surprisingly, few previous studies have
addressed antibiotic-induced dynamic changes in microbial
growth patterns. Bacteria have developed a diverse array
of strategies to counter antibiotic toxicity, including reduc-
ing the amount of antibiotic taken up, enzymatic inactiva-
tion of antibiotics, modification of the molecular target to
reduce binding, and upregulation of cellular repair mecha-
nisms (Martinez et al., 2009; Nikaido, 2009). Antibiotic trans-
port, initial interaction with cellular components, exertion
of biocidal effects, and the development of microbial resis-
tance mechanisms are all time- and growth-stage–dependent

and therefore affect growth dynamics. In light of these fac-
tors, all of which underscore the need for time-based screening,
it is remarkable that none of the existing growth-dependent
antibiotic susceptibility tests has been adapted to determine
microbial growth kinetics with a high degree of temporal reso-
lution.

Our aim was to overcome the limited applicability of existing
methods for studying the dynamic effects of antibiotics on micro-
bial growth kinetics by modifying a common microdilution assay
to allow simultaneous cultivation and online analysis of growth
inhibition with high temporal resolution.

MATERIALS AND METHODS
CULTIVATION AND GROWTH ANALYSIS FOR TIME-RESOLVED
SUSCEPTIBILITY TESTING
Cultivation of an Enterococcus faecium clinical isolate (strain
UKI-MB07, isolated from material at the Innsbruck Medi-
cal University) was performed using standard MICRONAUT-S
MRSA/IFSG GP4 microdilution plates (n = 3) for susceptibility
testing of bacteria (Merlin Diagnostika GmbH, Bornheim-Hersel,
Germany). The plates were closed with sterile standard-profile
lids without condensation rings (polystyrene lids, art. #656161,
Greiner Bio-One, Frickenhausen, Germany). Each plate con-
tained the following antibiotics (multiple concentration range, in
μg mL−1): ampicillin (0.5–16), cefotaxim (2–8), cefoxitin (2–
16), ciprofloxacin (1–2), clindamycin (1), cotrimoxazol (16–64),
daptomycin (0.5–4), doxycyclin (1–4), erythromycin (1–4), ery-
thromycin/clindamycin (4/0.5), fosfomycin (8–64), fusidic acid
(1–4), gentamicin (0.5–8/500), linezolid (1–8), moxifloxacin
(0.25–2), mupirocin (4–8), oxacillin (0.25–32), penicillin G
(0.125–16), rifampicin (1–8), streptomycin (1000), synercid (0.5–
4), teicoplanin (0.125–16), tigecycline (0.125–1), and vancomycin
(0.25–32).

The standardized inoculum for the test plates was prepared
by mixing bacteria (pre-cultured for 16 h at 36 ± 0.5◦C) with
sterile 0.9 % NaCl solution to adjust the turbidity to that of
McFarland standard No. 0.5. A 100 μL volume of the result-
ing suspension was pipetted into 11 mL of Mueller–Hinton II
broth (Merlin Diagnostika GmbH, Bornheim-Hersel, Germany)
and the mixture was homogenized, after which 100 μL was trans-
ferred into each well of the test plates using a multichannel
pipette. The plates were incubated at 36 ± 0.3◦C and analyzed
over a period of 48 h with a 30 min temperature equilibra-
tion period before data acquisition was started. The optical
density (OD) at 660 nm was determined for each well using a
Tecan Infinite M200 multimode microplate reader equipped with
monochromator optics (Tecan Group Ltd., Männedorf, Switzer-
land). During incubation, orbital shaking conditions were selected
(4 mm amplitude and 15 s shaking cycles), and measurements
were taken every 15 min using the multiple-reads-per-well mode
(filled-circle alignment, 3 × 3 spots, five reads per well, border
2000 μm). Based on the resulting data, MICs were determined
and in part interpreted according to the current CLSI Perfor-
mance Standards for Antimicrobial Susceptibility Testing (Clinical
and Laboratory Standards Institute [CLSI], 2012, 2013). Growth
analysis was accompanied by controls cultured in the absence of
antibiotics to obtain reference curves, sterile media controls with
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and without antibiotics, and reference strains for quality con-
trol testing (Clinical and Laboratory Standards Institute [CLSI],
2013).

The same procedure was used to examine the effect of antibi-
otic/silver nanoparticle combinations on growth of the test isolate,
except that 100 μL of the McFarland 0.5-adjusted cell suspension
was mixed with 11 mL of Mueller-Hinton Broth to which Ag(0)
nanoparticles (AgPure W10, primary particle size distribution
D90 < 15 nm, ras Materials, Regensburg, Germany) in aque-
ous buffer were added from a 5 mg mL−1 Ag(0) stock solution to
give a final Ag(0) nanoparticle concentration of 50 μg mL−1. Ster-
ile media controls with or without Ag(0) nanoparticles were also
analyzed at each sampling point to determine the background sig-
nals. All test data were normalized by subtracting the background.
The stability of the nanoparticle suspensions was monitored using
both light and electron microscopy as well as nanoparticle track-
ing analysis (data not shown). For scanning electron microscopy
and elemental analysis (SEM-EDX), a Phenom pro X system was
used (Phenom-World, Eindhoven, The Netherlands), which was
equipped with a CeB6 electron source, a 4-segment backscattered
electron detector, a silicon drift detector for EDX analysis, and
Phenom Pro Suite software. SEM-EDX analyses were acquired
from Enterococcus sp. strain UKI-MB07 cultures grown for 36 h
at 37◦C in Mueller-Hinton Broth spiked with Ag(0) nanoparticles
[0.006% (w/v)]. Samples were applied on silicon carriers, dried at
room temperature, and analyzed at 5 kV.

FURTHER SUSCEPTIBILITY TESTING
The in vitro susceptibility to antimicrobial agents of the tested
E. faecium strain UKI-MB07 and two reference strains E. faecalis
ATCC 29212 and E. faecium ATCC 700221 was further tested by
determining MIC-values employing the broth microdilution tech-
nique according to ISO 20776-1 (2006) as well as Etest (Liofilchem
s.r.l., Roseto degli Abruzzi, Italy) according to the EUCAST inter-
national guidelines (The European Committee on Antimicrobial
Susceptibility Testing [EUCAST], 2014). The in vitro susceptibility
results of the two reference strains were in the range of pub-
lished data (European Committee for Antimicrobial Susceptibility
Testing [EUCAST] of the European Society of Clinical Micro-
biology and Infectious Diseases [ESCMID], 2003; ISO 20776-1,
2006).

PCR AMPLIFICATION, ANALYSIS OF 16S rDNA SEQUENCES AND
FURTHER STRAIN IDENTIFICATION
Material from single colonies was utilized for DNA extraction
(UltraClean® Microbial DNA Isolation Kit, MO BIO Laboratories,
Inc., Carlsbad, CA, USA). Isolated DNA was used as the template
for almost complete 16S rDNA amplification using the universal
primer pair 27F (5′-GAGTTTGATCMTGGCTCAG-3′) and 1492R
(5′-ACGGYTACCTTGTTACGACTT-3′; Lane, 1991) according to
established PCR protocols. Purified amplicons were sequenced by
LGC Genomics GmbH (Berlin, Germany). Sequences were ana-
lyzed using MEGA software, version 5.0 (Tamura et al., 2011), and
closest relatives were identified using the EMBL-EBI Fasta33 and
NCBI BLAST programs.

The strain was also identified using the Rapid ID 32 Strep
system (bioMérieux SA, Marcy l’Etoile, France) as well as the

VITEK-MS (bioMérieux SA, Marcy l’Etoile, France). The VITEK-
MS uses a direct colony method and was operated on the V2.0
Knowledge Base for clinical use. Both methods were performed
according to the recommendations of the manufacturer.

ASSESSMENT OF CELL MEMBRANE INTEGRITY
The effects of Ag(0) nanoparticles on cell membrane integrity
were assessed by using the LIVE/DEAD BacLight Bacterial Viabil-
ity Kit (Molecular Probes, Eugene, OR; Thermo Fisher Scientific,
Waltham, MA, USA), containing SYTO 9 and propidium iodide
to differentiate between live bacteria with intact cell mem-
branes from dead bacteria with damaged cell membranes. The
Live/Dead BacLight Bacterial Viability Kit was applied accord-
ing to the manufacturer’s instructions, with the exception of
using sterile 0.9 % NaCl solution and centrifugation for 30 min
at 3,345 × g for washing steps. Duplicate aliquots (5 μL) of
each sample were spotted onto wells of Teflon-coated diagnostic
slides (Menzel, Braunschweig, Germany) and a Zeiss Axio-
plan2 epifluorescence microscope (HBO 100W) was used with
different objectives (Plan-Apochromat 63 × /1.40 Oil, Plan-
Neofluar 100 × /1.30 Oil) to examine cells after exposure to
0.002 or 0.006% Ag(0) nanoparticles (AgPure W10, primary
particle size distribution D90 < 15 nm, ras Materials, Regens-
burg, Germany) compared to Ag(0)-free controls. Images were
acquired with a Zeiss AxioCam MRc CCD camera, in both
bright field and fluorescence mode (Zeiss filter set 15 and fil-
ter set Sp. Green HC mFISH, modified with BrightLine HC
515/LP instead of HC 494/20, AHF Analysentechnik AG, Tübin-
gen, Germany), and processed using Zeiss AxioVision Rel. 4.8
software.

DETECTION OF INTRACELLULAR REACTIVE OXYGEN SPECIES
The accumulation of intracellular ROS was assessed with
Image-iT® LIVE Green Reactive Oxygen Species (ROS) Detec-
tion Kit (Molecular Probes, Eugene, OR; Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions.
The assay is based on carboxy-H2DCFDA (5-and 6-)carboxy-2′,7′-
dichlorodihydrofluorescein diacetate) as marker for ROS in live
cells, tert-butyl hydroperoxide (TBHP), a common inducer of
ROS production as positive control, and Hoechst 33342 as cell-
permeant nucleic acid stain. Samples derived from 0.006% Ag(0)
nanoparticle treatments were checked using an epifluorescence
microscope (in comparison to Ag(0)-free control incubations and
positive controls incubated for 24 h in the presence of 13.3 %
Manuka honey, MGO400, Manuka Health, New Zealand), and
images were acquired with a digital camera as described above, but
additionally using the filter set BrightLine HC 360/12 (AHF Anal-
ysentechnik AG, Tübingen, Germany) for detection of Hoechst
33342 signals.

RESULTS
EXPERIMENTAL DESIGN FOR ON-LINE SUSCEPTIBILITY TESTING:
GENERAL PROPERTIES AND POTENTIAL
The spectrum of antibiotics provided in the microdilution plates
allows for the specific detection of clinically relevant antibiotic
resistance in Gram-positive opportunistic pathogens. For instance,
the plates contain antibiotics that are known for their intrinsic
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resistance in Gram-positive bacteria (e.g., fosfomycin and fusidic
acid for some staphylococci; cephalosporins and aminoglycosides
for enterococci), and allow for susceptibility testing of “novel”
antibiotics such as tigecycline and daptomycin as well as differ-
entiation between E. faecium and E. faecalis via determination
of synercid susceptibility. The microdilution plates also allow
for the detection of vancomycin-resistance phenotypes. Potential
synergistic effects between ampicillin, penicillin, or vancomycin
and aminoglycosides were estimated by a HLAR screening test
using gentamicin and streptomycin. Characteristics of an HLAR-
strain were not detected for the Enterococcus isolate examined
here.

Although the microtiter plate format is routinely used for end-
point growth determination and susceptibility testing (Häussler
et al., 2003; Jorgensen and Ferraro, 2009), kinetic measurements
are rarely used for susceptibility testing. We therefore deployed
a technique for simultaneous cultivation and determination of
the effects of antibiotics on microbial growth that employs
automated turbidity measurements using a monochromator-
based microplate spectrophotometer. To examine the dynamic
effects of antibiotics over time and their impact on micro-
bial growth kinetics, our analyses were separated by 15 min
intervals. However, the interval can be easily increased or
decreased depending on the desired level of temporal resolu-
tion.

EFFECT OF VARIOUS ANTIBIOTICS ON ENTEROCOCCUS GROWTH
DYNAMICS
The effects of various antibiotics on the growth dynamics of
the Enterococcus clinical isolate were monitored using an auto-
mated 96-well microtiter plate assay that allowed simultaneous
cultivation and on-line analysis of bacterial growth. By exam-
ining growth over time using the automated method, different
effective exposure times and concentration-dependent effects on
the growth dynamics of the Enterococcus clinical isolate became
evident. Despite the fact that categorization of data after 48 h
of incubation remains “theoretical” since we did not follow the
guideline incubation time for utilizing MIC interpretative stan-
dards for Enterococcus spp. (dilution methods: 16 to 20 h, 24 h for
vancomycin; Clinical and Laboratory Standards Institute [CLSI],
2012, 2013), for antibiotics tested at two concentrations, the Ente-
rococcus isolate was sensitive to cefotaxim (2/8), doxycyclin (1/4),
cotrimoxazol (16/64), mupirocin (4/8), and erythromycin (1/4) in
both the 20- and 48 h experiments. According to the current break-
point interpretation (Clinical and Laboratory Standards Institute
[CLSI], 2013), these data indicate that the Enterococcus test isolate
can be categorized as susceptible (S) to doxycyclin and as either (S)
or of intermediate susceptibility (I) to erythromycin (“theoretical”
categorization of 48-h data sets). Ciprofloxacin showed interme-
diate performance (growth at 1 μg mL−1 and no growth at 2 μg
mL−1) in both the 20- and 48-h experiments; however, growth in
the presence of 1 μg mL−1 of ciprofloxacin did not begin until
about 15 h of incubation (Figure 1A).

A total of 15 antibiotics were tested at more than two con-
centrations. Only considering those seven antibiotics that were
tested at more than two concentrations and showed limited activ-
ity against the Enterococcus isolate at the lower concentrations

(moxifloxacin, vancomycin, fosfomycin, daptomycin, fusidic acid,
cefoxitin, and gentamicin), six of them showed different MIC val-
ues by comparison of the 20 and 48-h data sets (Table 1). All of
these six antibiotics showed concentration-dependent effects on
basal microbial growth dynamics (Figures 1B–H).

After a lag phase of about 9 h, control cultures without
antibiotics showed a sharp increase in OD, followed by a slow
decrease over the remainder of the incubation period (Figure 1).
Extended lag phases were observed in cultures containing fluo-
roquinolones (ciprofloxacin, moxifloxacin) at concentrations of
1 μg mL−1 (ciprofloxacin) and 0.25 μg mL−1 (moxifloxacin;
Figures 1A,B). For ciprofloxacin, the duration of the lag phase
was 17 h (Figure 1A). Despite a lag phase of >20 h, cells exposed
to moxifloxacin began to grow exponentially at a rate comparable
to that of the antibiotic-free control (Figure 1B). However, for
cultures exposed to both fluoroquinolones, the final OD values
did not reach that of the controls.

An even longer lag phase, with a maximum duration of up
to 30 h, was observed with cultures exposed to vancomycin, fos-
fomycin, daptomycin, fusidic acid, and cefoxitin (Figures 1C–G).
If the recommended cultivation duration of 16–20 h (24 h for
vancomycin; Clinical and Laboratory Standards Institute [CLSI],
2012) had been used, no growth would have been detected in any
of the cultures containing these antibiotics. Compared with the
antibiotic-free control, cells exposed to fosfomycin, daptomycin,
fusidic acid, cefoxitin, and gentamicin grew at even higher rates
during the logarithmic phase and reached higher final OD val-
ues. Despite the fact that some antibiotics have limited clinical
efficacy in treating Enterococcus infections (e.g., restricted clini-
cal efficacy of cephalosporins for Enterococcus infections, intrinsic
resistance for fusidic acid), these results suggest that at low con-
centrations these antibiotics actually stimulate the growth of this
organism (Figures 1D–H). For instance, the maximum specific
growth rate in the presence of 8 μg mL−1 of fosfomycin was con-
siderably higher than the control lacking antibiotic. The OD value
of the fosfomycin-exposed culture exceeded that of the control
after 31 h and reached a maximum value of more than twice
that of the control after 48 h. Under more severe fosfomycin-
induced stress, however, the Enterococcus isolate was unable to
grow. As for all other tested antibiotics, higher concentrations
completely and irreversibly inhibited growth of the Enterococcus
isolate (Figures 1D–H).

A more complex concentration-dependent effect was observed
in the case of fusidic acid, for which growth was observed at con-
centrations up to 2 μg mL−1 (Figure 1F). Whereas a lag phase of
about 22 h was observed in the presence of 1 μg mL−1 of fusidic
acid, with 2 μg mL−1 growth did not begin until about 30 h. The
duration of the lag phase in cultures exposed to fusidic acid in the
range 0–4 μg mL−1 was concentration-dependent (Figure 1F).
Despite the delayed onset of growth, similar maximum specific
growth rates were determined for all cultures treated with 0–2 μg
mL−1 of fusidic acid. The final OD values for cultures exposed
to fosfomycin over the same concentration range were higher
than that of the antibiotic-free control, with the maximum OD
observed in the presence of 1 μg mL−1. This result indicates that,
in contrast to the duration of the lag phase, for some antibiotics
neither the maximum specific growth rate nor the final OD value
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FIGURE 1 | Continued
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FIGURE 1 | Continued

Effect of selected antibiotics on the growth dynamics of Enterococcus

faecium strain UKI-MB07. Note the extended lag phase and partial

growth promotion at low concentrations for some antibiotics. This
hormetic effect was associated with higher maximum specific growth rates
and increased OD values. Each data point (time resolution over 48 h: 15 min)
represents mean values of triplicate cultivations, normalized with data from
identical incubations in the absence of bacterial cells (sterile controls).
Hence, each curve represents 576 single data points and kinetics from
about 21,900 single data points are shown in this figure. For visual clarity,
standard deviations (error bars) are only presented for selected time points.

Table 1 |The minimal inhibitory concentration (MIC) of selected

antibiotics against an Enterococcus sp. clinical isolate determined

after 20 and 48 h of exposure.

Antibiotic MIC [μg ml−1]

20 h

MIC [μg ml−1]

48 h

Ampicillin ≤0.5 ≤0.5

Cefoxitin ≤2 8

Daptomycin ≤0.5 1

Fosfomycin ≤8 16

Fusidic acid ≤1 4

Gentamicin 2 2

Linezolid ≤1 ≤1

Moxifloxacin ≤0.25 0.5

Oxacillin ≤0.25 ≤0.25

Penicillin G ≤0.125 ≤0.125

Rifampicin ≤1 ≤ 1

Synercid ≤0.5 ≤0.5

Teicoplanin ≤0.125 ≤0.125

Tigecycline ≤0.125 ≤0.125

Vancomycin ≤0.25 0.5

Due to the limited clinical applicability of some antibiotics [e.g., restricted efficacy
of cephalosporins for Enterococcus infections, intrinsic resistance to fusidic acid,
Clinical and Laboratory Standards Institute [CLSI], 2013)] and because we did not
follow the guideline incubation time for utilizing MIC interpretative standards for
Enterococcus spp. in case of 48 h of incubation, MIC values are reported without
an accompanying S, I, or R categorization.

is a meaningful predictor of dose-dependent inhibitory effects on
microbial growth.

STRAIN IDENTIFICATION AND FURTHER CHARACTERIZATION
In addition to the 16S rRNA-based phylogenetic analysis of the
isolate, which confirmed the identification of E. faecium strain
UKI-MB07, the strain was also identified as E. faecium using the
Rapid ID 32 STREP system and VITEK-MS. Results of additional
in vitro susceptibility testing (microdilution technique according
to ISO 20776-1 as well as Etest) confirmed the MIC values obtained
with the MICRONAUT-S MRSA/IFSG GP4 microdilution plates,
and showed either identical MIC values or those within a range
of one to four dilution steps. The E. faecium strain was suscepti-
ble to ampicillin and thus representing an exceptional phenotype
(Leclercq et al., 2013).

EFFECT OF COMBINED Ag(0) NANOPARTICLE/ANTIBIOTIC TREATMENT
ON ENTEROCOCCUS GROWTH DYNAMICS
The monochromator-based instrument used in this study enables
adjustment of the optical measurement settings in the presence of
dispersed nanoparticles. Metal nanoparticles often exhibit strong
background signals, which can affect absorbance measurements
due to nanoparticle-specific (e.g., metal speciation and parti-
cle size distribution) and concentration-dependent properties.
To examine putative synergism between antibiotics and metal
nanoparticles, we compared the growth characteristics of the Ente-
rococcus isolate in the presence of antibiotics or nanoparticles alone
with its growth in the presence of both antibiotics and Ag(0)
nanoparticles. Although growth was only partially inhibited by
antibiotics alone at the tested concentrations (see Figure 1), the
organism did not grow in the presence of both antibiotics and
nanoparticles. The inhibitory effects of combined antibiotic/Ag(0)
nanoparticle treatments involving ciprofloxacin and moxifloxacin
are shown in Figures 2A,B.

INTRACELLULAR ACCUMULATION OF REACTIVE OXYGEN SPECIES
The accumulation of intracellular ROS was assessed with a
carboxy-H2DCFDA-based assay and accompanying examination
by fluorescence microscopy. The exposure to Ag(0) nanoparticles
led to intracellular accumulation of ROS as shown by strong green
fluorescence in samples derived from 0.006% Ag(0) nanoparticle
treatments (Figure 3A, right panels). Accumulation of ROS in
Enterococcus cells did occur to a much lesser extent in the absence
of Ag(0), as indicated by the presence of only weak fluorescence
signals in Ag(0)-free control incubations (Figure 3A, left panels).

CELL MEMBRANE INTEGRITY
In the absence of nanoscale Ag(0) particles, cell membrane disrup-
tion was only observed in about 20% of the Enterococcus cells after
48 h (Figure 3B). The exposure to Ag(0) nanoparticles led to cell
membrane disruption of Enterococcus cells (Figure 3B,C), and the
effects increased with increasing Ag(0) nanoparticle concentration
(Figure 3B). As indicated by the predominance of red fluorescence
signals after combined SYTO 9/PI staining, about 90% of the cells
were considered as dead bacteria with damaged cell membranes
in samples derived from 0.006% Ag(0) nanoparticle treatments
(Figure 3B).

DISCUSSION
A cultivation-based assay was employed to analyze the dynamic
effects of various antibiotics on the growth of an E. faecium clinical
isolate. Conventional testing of antibiotic susceptibility typically
involves disk diffusion methods, antimicrobial gradient diffusion
techniques, and broth (micro)dilution tests (Jorgensen and Fer-
raro, 2009). In accordance with the current reference methods
(e.g., Clinical and Laboratory Standards Institute [CLSI], 2012,
2013), most recently published studies have reported antibiograms
that are based on endpoint growth determination or analyses at
discrete time points. However, on-line and real-time analysis of
antibiotics susceptibility will provide by far more information for
an optimized antibiotics treatment than static acquisition of single
data points.
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FIGURE 2 | Inhibition of growth of the E. faecium isolate by simultaneous treatment with antibiotics and silver nanoparticles. Results for only
ciprofloxacin and moxifloxacin are shown, but inhibitory effects were observed with all antibiotics tested. For visual clarity, SD (n = 3, error bars) are only
presented for selected time points.

In our study, low concentrations of some antibiotics resulted
in only partial inhibition of the growth of the E. faecium clinical
isolate, as demonstrated by the extended lag phases, which would
not have been observed in some cases if we had followed the rec-
ommended 16–20-h test duration. Importantly, different MICs
were determined for some antibiotics after 20 and 48 h of suscep-
tibility testing, including several “novel” and “reserve” antibiotics,
such as daptomycin and vancomycin. This result underscores the
importance of utilizing extended incubation periods for specific
test organisms and antibiotics.

After the extended lag phase, the activity of some antibiotics
correlated with reduced culture OD in the plateau phase, but con-
trary to our expectations, exposure to fosfomycin, daptomycin,
fusidic acid, cefoxitin, or gentamicin led to reversible growth inhi-
bition, which could be compensated for by higher cell densities
until the end of the experiment. Exposing E. faecium UKI-MB07
to fosfomycin or fusidic acid even resulted in higher maximum
specific growth rates. It is immediately evident from these results
that conventional off-line antibiotic susceptibility testing is insuf-
ficient for tracking temporal changes in microbial growth profiles.
Furthermore, our findings clearly indicate that acquisition and
comparison of antibiotic resistance profiles should include anal-
yses of dynamic growth profiles. There is a lack of reliable data
illustrating the number of cases of antibiotic treatment failure
associated with inadequate testing methods or testing periods too
short in duration, which may result in misinterpretation of an
organism’s susceptibility. This can lead to prolonged and exces-
sive inflammation of affected tissues due to various substances
produced by colonizing bacteria (e.g., proteases, toxins, and proin-
flammatory molecules), resulting in subsequent spread of the
infection and possibly sepsis.

Our observation of limited promotion of Enterococcus growth
under conditions of moderate stress (i.e., stimulation of growth
in the presence of sublethal concentrations of antibiotics) in
comparison to antibiotic-free controls is perplexing. The rea-
son for such an effect is not yet clear, and we have not proven
whether this phenomenon occurs in vivo. If so, the consequences
with respect to our understanding of the actions of antibiotics

and their proper application would be far-reaching, as it is not
possible to ensure that the concentration of an antibiotic will
remain high enough in all body compartments and tissues to
eliminate an infection over the standard course of treatment
(Theuretzbacher, 2007; Czock et al., 2009; Nau et al., 2010). The
establishment of such “host” microcompartments may facilitate
subinhibitory levels of antibiotics in such sections and dur-
ing specific periods of treatment when the concentration of an
antibiotic may decline below a specific threshold. Such scenario
could expand enrichment, survival and promotion of antibiotic-
tolerant organisms by known selection mechanisms (Aminov,
2009; Davies and Davies, 2010) to effects that occur when antibi-
otics are present at low concentrations, such as persistence, SOS
response, hypermutation, direct mutagenic effects, and changes
for intrachromosomal recombination and horizontal gene transfer
(Rodriguez-Rojas et al., 2013). In addition, as our data for growth
promotion in pure cultures of strain UKI-MB07 could indicate
(at low antibiotics concentrations compared to antibiotic-free
controls), this might be accompanied or accelerated by further
mechanisms.

Beneficial (hormetic) effects associated with low concentra-
tions of antibiotics were described early in the antibiotics era,
and the ecological significance of these effects has been discussed
previously (Miller et al., 1945; Davies et al., 2006; Linares et al.,
2006; Martinez et al., 2009). Our results imply that low concen-
trations of antibiotics not only lead to selective enrichment of
tolerant bacteria by enabling them to outcompete less tolerant
species (Andersson and Hughes, 2011) and the described effects
at subinhibitory levels (Rodriguez-Rojas et al., 2013), but they can
actually promote the growth of tolerant species itself. Treatment
with antibiotics may thus directly promote the enrichment and
maintenance of antibiotics tolerance in microbial populations,
and thus also involving enhanced dissemination of multidrug
resistance.

Enteroccoccus spp. are increasingly reported as causative agents
of nosocomial infections, including urinary tract infections and
endocarditis (European Antimicrobial Resistance Surveillance Sys-
tem [EARSS] Annual Report, 2008; Fisher and Phillips, 2009; Arias
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FIGURE 3 | Continued
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FIGURE 3 | Continued

Silver-nanoparticle mediated ROS accumulation in Enterococcus cells,

shown by green fluorescence signals after carboxy-H2DCFDA staining,

identical sections after counterstaining with Hoechst 33342 (A), and

assessment of cell membrane integrity at different Ag(0) nanoparticle

concentrations (B). Representative images in (B) show SYTO 9 stained
(green) Enterococcus cells with intact cell membranes and propidium iodide
(red) stained cells with compromised cell membranes. SEM-EDX image of
Ag(0) nanoparticles (0.006%, w/v) attached to cell debris in Enterococcus
sp. cultures (C).

and Murray, 2012; Victorian Advisory Committee on Infection
Control [VACIC], 2012). Acquired antibiotic resistance, including
vancomycin resistance, has gained considerable notoriety (Uttley
et al., 1988; Klare et al., 2003; Fisher and Phillips, 2009; Arias and
Murray, 2012). In contrast to treatment with antibiotics alone, we
also examined antibiotic/Ag(0)-nanoparticle combinations, and
found that they completely inhibited the growth of the Enterococ-
cus isolate, with clearly different dynamics compared with sole
antibiotic or sole nanoparticle treatments. Among other toxic
effects, Ag(0) nanoparticles (and released silver ions) interact
with DNA, proteins, and other phosphorus- and sulfur-containing
cell constituents and generate ROS. ROS can significantly disrupt
multiple metabolic pathways, thus inhibiting the core physiolog-
ical functions of the cell (Nel et al., 2006, 2009; Su et al., 2009;
Marambio-Jones and Hoek, 2010). Additionally, silver nanopar-
ticles can attach to the cell surface and alter the physical and
chemical properties of the cell membrane and cell wall, and the
resulting destabilization disrupts critical functions such as cell
division, permeability, osmoregulation, electron transport, and
respiration (Nel et al., 2009; Su et al., 2009; Marambio-Jones and
Hoek, 2010). In our study, the exposure to Ag(0) nanoparticles
led to the disruption of Enterococcus cell membranes in a dose-
dependent manner. Furthermore, Ag(0) nanoparticle treatment
induced oxidative stress in the Enterococcus faecium test organisms,
as shown by increasing accumulation of intracellular ROS. Also in
light of other studies (Nel et al., 2009; Su et al., 2009; Marambio-
Jones and Hoek, 2010), this suggests that oxidative stress and the
involved cellular response could be a common mechanism for
the adverse effects caused by antimicrobial metal- or metal oxide
nanoparticles. The effects of Ag(0) nanoparticles, including the
production of ROS, are amplified through the release of silver
ions over time in a dose-dependent– and particle-size–dependent
manner (Nel et al., 2006; Carlson et al., 2008; Liu and Hurt, 2010;
Marambio-Jones and Hoek, 2010).

The use of silver nanoparticles in medicine seems promising.
For example, when applied to the surfaces of surgical instruments,
implants, endotracheal tubes, catheters, or wound dressings, silver
nanoparticles can reduce the bioburden in open wounds and act
as a barrier against further infection (Senior et al., 2012). Future
studies should aim to investigate the occasionally observed low-
ered susceptibility or even resistance to Ag and potential cross- or
coresistance to metals and antibiotics (Silver, 2003; Stepanauskas
et al., 2006; Chopra, 2007; Schacht et al., 2013).

CONCLUSION
Determination of the degree of bacterial resistance to antibiotics is
an important part of the management of infectious diseases. Based

on our results, we recommend acquisition of growth kinetic data
for further strains and antibiotics and assessment of their eligibil-
ity as meaningful predictors for antibiotics susceptibility. If clinical
relevance is evaluated, incorporation of dynamic growth analysis
in standardized methods for culture-based antibiotic susceptibil-
ity testing and extension of testing periods could be suggested
to enable detection of delayed or enhanced growth in the pres-
ence of some antibiotics. Antibiotic-induced growth promotion
of specific microorganisms at rates higher than in the absence of
antibiotics can have profound consequences for treatment out-
comes and underscores the need for a thorough examination
of potential in vivo hormetic effects associated with subin-
hibitory antibiotic concentrations. Treatment using antimicrobial
nanoparticles appears to have promising additive or synergistic
effects; however, the potential role of metal nanoparticles in driv-
ing the rise and/or spread of bacterial antibiotic resistance must
be ruled out through additional studies.
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